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Abstract: Canny edge detector is a very popular and effective edge feature detector that is used as a preprocessing step in 

many computer vision algorithms. It is a multi-step detector, which performs smoothing, filtering, non-maximum suppression, 

followed by a connected-component analysis stage to detect “true” edges, while suppressing “false” non-edge filter responses. 

Based on the literature, traditional Canny edge detector is sensitive to noise, hence it may lose the weak edge information after 

noise removal and show poor adaptability of fixed parameters like threshold values. In addition, Canny algorithm tends to 

over-smooth the noise, resulting in the loss of edge images or pseudo-edges, and the method of selecting thresholds is artificial, 

and the subjective factors are strong and computationally complex. This paper proposes an improvement to the traditional 

Canny algorithm by adding curvature information in the non-maximum suppression step (NMS) in order to obtain an accurate 

edge identification. Additionally, a set of tests and results is presented that show how by adding curvature characteristics to the 

NMS process, better results are obtained in the edge detection in Canny’s algorithm. 
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1. Introduction 

Edge refers to sharp changes in image brightness. According 

to Kitchen et. al. [1], an edge is the boundary between two 

adjacent regions in an image. Each region homogeneous 

within itself, but differing from the other with respect to some 

given local property. Thus, an edge should ideally be line-like 

[1]. Li et. al. [2] proposed that contour/boundary can be 

viewed as the edge’s generalized definition, which indicates 

the intersection of different regions. 

Edge detection has been a challenging task in low level 

image processing. One of the reasons is, that the 

development of the optimal or ideal edge detection scheme is 

difficult for the absence of evident and clear ground truth 

data, on which to evaluate performances unambiguously [3, 

4].  

Another reason is that it is possible to locate intensity 

changes where there are no edges. It is due to noise and the 

quantization of the original image during edge detection 

process. 

For similar reasons, it is also possible to completely miss 

existing edges. The degree of success of an edge-detector 

depends on its ability to accurately locate true edges [5]. 

Additional, edge localization is another problem encountered 

in edge detection. Adding noise to an image can cause the 

detected edge position to shift from its true location. Further, 

difficulty in any edge detection system arises from the fact 

that the sharp intensity transitions, which indicate an edge, 

are sharp because of their high-frequency components. As a 

result, any linear filtering or smoothing performed on these 

edges to suppress noise will also blur the significant 

transitions. 

Differential operation is used to capture the strength and 

position of discontinuities in image brightness. Recently 

efforts have been devoted to multi-resolution edge analysis, 

sub-pixel edge detection, and hysteresis thresholding [2]. In 

addition, other approaches are available for edge detection, 

some are based on error minimization, maximizing an object 

function, neural network, fuzzy logic, wavelet approach, 

Bayesian approach, morphology, and genetic algorithms [6]. 

Edge detection methods can be classified as differentiation-

based and learning-based. Differentiation-based filters are 

convolved to identify edge points. Learning-based methods are 

modeled as a machine learning based framework to 

discriminate edge points from smooth regions [2]. 
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Specifically, differentiation-based methods depend on the 

derivatives order. First-order differentiation based gradient 

operators appear in pairs for the two-dimensional case (e.g., 

Prewitt, Sobel). By those operators, gradients at different 

orientations are computed. Local maximums of gradient 

magnitudes are recorded as edges. Second-order 

differentiation filters such as Laplacian of Gaussian (LoG) 

find zero-crossings as the edge positions. Gaussian 

smoothing is necessary since the differential operation is 

sensitive to noise. Directional differentiation, such as 

Oriented Energy (OE) [7] adopts a batch of filters at different 

orientations to obtain brightness changes. An early survey on 

differentiation based edge detection is given in [5]. 

Canny edge detector [8-9] is based on the computational 

theory of edge detection. The edge detection is modeled as an 

optimization problem with three criteria: good detection, 

good localization and single-pixel response. Canny edge 

detection algorithm includes the following steps: 

1) Smoothing 

a) Blurring of the image to remove noise by convolving 

the image with the Gaussian filter. 

2) Finding derivatives, magnitude and orientation of 

gradient 

a) Filter image with x, y derivatives of Gaussian 

b) Find magnitude and orientation of gradient 

c) The edges should be marked where the gradients of the 

image have large magnitudes. 

3) Non-maximum suppression 

a) Thin multi-pixel wide “ridges” down to single pixel 

width. 

b) Only local maxima should be marked as edges. Finds 

the local maxima in the direction of the gradient, and 

suppresses all others, minimizing false edges. 

4) Double thresholding and edge tracking (linking) by 

hysteresis 

a) Potential edges are determined by thresholding (two 

thresholds: low and high are used). Canny 

recommended an upper: lower ratio between 2:1 and 

3:1 

Final edges are determined by suppressing all edges that 

are not connected to a very certain (strong) edge. Use the 

high threshold to start edge curves and the low threshold to 

continue them. 

Edge responses are firstly obtained by filtering with 

gradient operators. The edges are then traced and determined 

by hysteresis thresholds. Only the pixels with maximal 

magnitude in the gradient direction can be recorded as edge 

points. Canny edge detector still outperforms several new 

detectors and is still widely applied today. An extended 

Canny edge detection theory (D-ISEF) has been proposed 

recently by McIlhagga [10], with the aim to amend the 

computational theory of Canny in order to generate 

theoretically finite edge curves. McIlhagga finds that the 

optimal step edge detector, according to the Canny criteria, is 

the derivative of an Infinite Symmetric Exponential Filter 

(ISEF), proposed by Shen and Castan [11]. 

2. Non-maximum Suppression (NMS) 

There are two elements in common to extract the 

maximum points (in this case, ridges or edges). The first 

corresponds to non-maximum suppression and the second to 

the hysteresis. Afterwards, most detectors follow the same 

basic process: non-maximum suppression that eliminates 

pixels that are not local maxima, and a thresholding step that 

obtains the final set of points. 

According to ter Haar Romeny [12], a natural way to 

define edges from a continuous grey-level image �: �� → � 

is as the union of the points for which the gradient magnitude 

assumes a maximum in the gradient direction. This method is 

usually referred to as non-maximum suppression (see e.g., 

Canny [8-9] or Korn [13]). Weickert [14] indicates that 

applying sophisticated thinning and linking mechanisms 

(non-maximum suppression and hysteresis thresholding), 

edges are identified as locations where the gradient 

magnitude has a maximum. According to Lindeberg [15], an 

edge point is defined as a point at which the gradient 

magnitude assumes a maximum in the gradient direction (see 

e.g., Canny [8-9] or Korn [13]). In conclusion, NMS can be 

positively formulated as a local maximum search, where a 

local maximum is greater than all its neighbors (excluding 

itself) [16]. 

2.1. Canny’s NMS Algorithm 

Nixon et. al. [17] indicated that Canny edge detection 

operator [8, 9] is perhaps the most popular edge detection 

technique nowadays. It was formulated with three main 

objectives: 

1) optimal detection with no spurious responses 

2) good localization with minimal distance between 

detected and true edge position 

3) single response to eliminate multiple responses to a 

single edge. 

The first requirement aims to reduce the response to noise. 

This can be effected by optimal smoothing; Canny was the 

first to demonstrate that Gaussian filtering is optimal for edge 

detection (within his criteria). The second criterion aims for 

accuracy: edges are to be detected, in the right place. This 

can be achieved by a process of non-maximum suppression 

(which is equivalent to peak detection). Non-maximum 

suppression retains only those points at the top of a ridge of 

edge data while suppressing all others. This results in 

thinning: the output of non-maximum suppression is thin 

lines of edge points in the right place. The third constraint 

concerns location of a single edge point in response to a 

change in brightness. This is because more than one edge can 

be denoted to be present, consistent with the output obtained 

by earlier edge operators. 

Canny [8-9] uses the edge direction estimated from gradient 

of a Gaussian-smoothed image surface using a simply 

differentiating in the x and y directions. The gradient magnitude 

is then non-maximum suppressed in the gradient direction. It 

uses an eight-pixel neighborhood, as shown in Figure 1. 

The normal to the edge direction is shown as an red arrow, 

and it has components (��, �
). Canny uses three points for 
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non-maximum suppression, one of which is px,y and the other 

two are estimates of the gradient magnitude at points 

displaced from px,y by the vector � � (��, �
�. Then, Canny 

considers for any vector u the two points in the 8-pixel 

neighborhood of px,y which lie closest to the line through px,y 

in direction u. The gradient magnitude at these two points 

together with the gradient at the point px,y are used to estimate 

the value at a point on the line. Canny uses the value of the 

interpolated gradient on both sides of the line. The point px,y 

is marked as a maximum if his gradient magnitude is greater 

than its neighbors’ magnitude. 

 

Figure 1. Kernel for non-maximum suppression used by Canny. 

2.2. Korn’s NMS Algorithm 

Korn [13] proposes the use of confidence intervals to 

determine the neighbors of the analyzed pixel. Korn 

considers the use of four major regions, as shown in Figure 2. 

Each region has its opposite in the direction contrary to the 

gradient. It allows considering all the possible options to find 

the two neighbors to the central pixel. 

The search for extreme in the image must be performed in 

the direction α, which is the direction of maximal gray value 

change (gradient magnitude). The angles α = 0 and α = 90 

degrees denote the directions of the x- and y-axis, 

respectively. For applications in machine vision, Korn 

defines four search paths sk, which are marked in Figure 2 by 

heavy arrows. 

 

Figure 2. Search paths for the detection of maxima [13]. 

The search for extreme is performed in the matrix of the 

magnitudes of the gray value gradient. Except for boundary 

pixels, the following differences for every point 
��, �� in 

this matrix (see Table 1) are computed: 

1. 
��, �� � 
��, � � 1�, search path s1 

2. 
��, �� � 
�� � 1, � � 1�, search path s2 

3. 
��, �� � 
�� � 1, ��, search path s3 

4. 
��, �� � 
�� � 1, � � 1�, search path s4 

searching for maxima on the search path sk, (k = 1, 2, 3, 4). 

Table 1. Pixel coordinates. 

(i − 1, j − 1) (i, j − 1) (i + 1, j − 1) 

(i − 1, j) (i, j) (i + 1, j) 

If a maximum Msk (i, j) of the gradient magnitude has been 

detected on search path sk, the corresponding angle α of the 

gradient at pixel (i, j) is checked. The angle α and the search 

path sk must be compatible using tolerance ranges for the 

gradient direction α. For example, if a maximum of the 

gradient magnitude is found for search path s1, at position (i, 

j), then the condition 67 < α ≤ 112 degrees or 247 < α ≤ 292 

degrees must be satisfied for the gradient direction α at 

position (i, j). 

For large changes of the direction α of the gray value 

gradient (e.g., corners, branching of edges), the accuracy of α 

is often very bad. Consequently, a maximum can be ignored 

because the corresponding angle α does not lie inside the 

prescribed range of tolerance, causing a gap. Thus, a 

connected chain of maxima can be terminated by such a gap. 

According to Korn [13], gaps can be detected using the 

following procedure: 

Beginning with a central pixel P(i, j) ≠ 0 in a 3x3 window, 

the neighbors which differ from zero are counted. The result 
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is a number N with 0 ≤ N ≤ 8. The two interesting cases are 

N = 1 and N = 2. 

1) If N = 1, there must be a gap. 

2) If N = 2, there are two neighbors P1 ≠ 0 and P2 ≠ 0 of P 

(i, j). 

The absolute value of the difference DC of the columns and 

the difference DR of the rows of P1 and P2, is considered to 

indicate a gap, provided the following condition is true: (DC 

≠ 2 and DR ≠ 2) and ((DC + DR) < 2). 

2.3. Devernay’s NMS Algorithm 

Non-maximum suppression method proposed by Devernay 

[18] is based on one of the two methods commonly used for 

edge detection, the suppression of the local non-maxima of 

the magnitude of the gradient of image intensity in the 

direction of this gradient, the other one is to consider edges 

as the zero-crossings of the Laplacian of image intensity. 

NMS algorithm consists of: 

1) Let a point (x, y), where x and y are integers, and I(x, y) 

the intensity of pixel (x, y). 

2) Calculate the gradient of image intensity and its 

magnitude in (x, y). 

3) Estimate the magnitude of the gradient along the direction 

of the gradient in some neighborhood around (x, y). 

4) If (x, y) is a local maximum, then estimate the position 

of the edge point in the direction of the gradient as the 

maximum of an interpolation on the values of gradient 

norm at (x, y) and the neighboring points. 

If (x, y) is not a local maximum of the magnitude of the 

gradient along the direction of the gradient, then it is not an 

edge point. 

Devernay uses for step (4) a typical 3x3 neighborhood, and 

the values of the magnitude are linearly interpolated between 

the closest points in the neighborhood. For example, in 

Figure 3 (left), the value at C is interpolated between the 

values at A7, A8, and the values at B between those at A3 

and A4. Devernay has also tried to use quadratic interpolation 

to compute it (the value at A would be interpolated between 

those at A7, A8, and A1 as in Figure 3 (right)) and compare 

the results with the linear interpolation. After this edge 

detection process, one usually does hysteresis thresholding [9] 

on the gradient norm and linking to get chains of pixels. 

 

Figure 3. Examples of linear and quadratic interpolation [18]. 

3. Proposed Method 

Non-maximum suppression methods have some problems. 

First, in Canny’s method, there are discontinuities between 

edges in the contour because NMS does not consider the 

edge direction during suppression. It takes only into account 

the gradient direction (to locate neighbors) and gradient 

magnitude (to suppress neighbors). Domain experts who 

know of anatomy can close these contours. Second, in Korn’s 

method is included a procedure to detect gaps. However, this 

criterion is based on masks that do not solve all cases. Third, 

multiple directional non-maximum suppression proposed by 

Sun and Valloton [19] include more direction in the analysis. 

Nevertheless, they do not specify additional criteria to 

suppress neighbors (it is similar to Canny’s method). 

As Lindeberg mentioned [15], a natural extension of the 

notion of non-maximum suppression is to define an edge as a 

curve on the edge surface such that some suitably selected 

measure of edge strength is locally maximal with respect to 

this curve. Usually, this happens when the curve does not 

have bifurcations or corners that affect the maxima analysis, 

because the curve has a maximal at some point when this 

point has the same direction as his neighbors. For this reason, 

the most important analysis occurs when there are neighbors 

in different directions to the analyzed point. Figure 4 shows a 

possible situation of neighbors to which the NMS algorithm 

should be applied. If the point analyzed is p(x, y), according 

to Canny, the two neighbors that are orthogonal to the 

direction of the normal are analyzed, in this case, p(x, y + 1) 

and p(x, y − 1). Then, if and only if the magnitude of p (x, y) 

is greater than the magnitude of p(x, y + 1) and p(x, y − 1), it 

is selected as maximum. As a result, the bifurcations and 

corners are eliminated, generating gaps in the line. 

 

Figure 4. Non-maximum suppression neighbors. 

For 3D images, Monga et. al. [20-22] include the gradient 

direction of the surface in each point analyzed in order to 

increase the connectivity and obtain a surface with fewer 

holes. However, the expansion is executed for all points 

belonging to the observation window. 

In this case, an NMS algorithm is proposed that allows the 
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use of the Canny and Monga et. al. results, generating two 

conditions for non-maximum suppression. Figure 5 shows an 

example of a possible situation of neighbors analysis in the 

NMS algorithm. If the point analyzed is p(x, y) and its 

normal direction to the surface is n = ν1, the two orthogonal 

neighbors p(x, y + 1) and p(x, y-1) are analyzed. The 

difference between the normal of the analyzed point and the 

normal ones of the neighbors is evaluated. In this case, the 

values β1 and β2 are obtained. It is determined if the angle is 

less than a threshold (30
°
). To calculate the difference, the dot 

product between the unit vectors is used. The absolute value 

in the range [0, 1] is taken, being the value of 1 when they 

present the same normal direction and 0 when they are 

orthogonal. In this case, since the maximum difference 

allowed between angles is 30
°
, a threshold of 0.866 is taken. 

 

Figure 5. Non-maximum suppression using normal directions. 

Therefore, NMS algorithm contains two restrictions. The 

first corresponds to the similarity of the normal direction of 

the neighbors. The second is the previously described 

condition. That is, the neighbors’ magnitude is less than that 

of the evaluated point. This allows eliminating only the 

neighbors that are in the same normal direction and that have 

a smaller value of magnitude. In conclusion, the above 

conditions allow reducing the surface thickness by 

eliminating neighbors that are not maxima. In addition, it 

does not eliminate possible bifurcations or corners, reducing 

the presence of holes in the surface. 

Additionally, the proposed algorithm allows including 

another restriction. It corresponds to the surface’s tangent 

direction, which can be evaluated in the same way as the 

surface’s normal direction. Figure 6 shows an example of the 

possible neighbors that are analyzed in the previous example. 

At first glance, this may seem redundant, but it is not. Mainly, 

when processing 3D images that present singularities, for 

instance, umbilical points. 

 

Figure 6. Non-maximum suppression using normal directions and tangent 

directions. 

4. Experimental Results 

Several tests are performed for both 2D images and 3D 

images to test the non-maximum suppression algorithm 

proposed. In the case of 2D images, constructed images 

(synthetic images) and images traditionally used in computer 

vision and image processing are used. In the case of 3D 

images, synthetic images were also constructed. In the first 

place, the tests with 2D images are presented and in second 

place the tests with 3D images. 

In the non-maximum suppression tests, both for 2D images 

and 3D images, the three conditions of suppression were 

considered. First, when the magnitude of the curvature (CM) 

is only used. Second, when the normal direction to the 

surface (CM + CN) is added. Finally, when the tangent 

direction of the surface (CM + CN + CD) is also included. 

The tests begin with 2D images, and then the tests with 3D 

images are presented. 

4.1. 2D Images 

Tests with 2D images start with the synthetic image that 

presents three geometrical figures, the square, the triangle 

and the circle. These figures were drawn by hand, therefore, 

their delineation is not smooth. It allows evaluating what 

happens with "irregular" edges.  

Table 2 presents the results obtained by applying the three 

criteria for NMS. The second column corresponds to the 

principal curvatures image. The third column presents the 

NMS taking into account only the curvatures magnitude of 

the orthogonal neighbors. The fourth column shows the NMS 

using the curvatures magnitude and the normal direction to 

the surface. The fifth column presents the results using the 

magnitude, the normal direction, and the direction of the 

tangent plane to the curvatures. For the rows, the second 

shows the curvatures magnitude and the region of interest 
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(blue box) to make a zoom that allows to appreciate with a 

greater level of detail the results of applying the NMS 

algorithm. The third row presents both the magnitude and the 

direction vectors (normal and tangent). The fourth row 

corresponds to the zoom of the region of interest defined in 

the second row. The fifth row shows the zoom of both the 

magnitude and the direction vectors. Finally, in the sixth row, 

the number of non-zero pixels that make up the image is 

assigned. 

Table 2. Non-maximum suppression results for 2D synthetic image. 

 Original CM CM+CN CM+CN+CD 

Image 

    

Directions 

    

Image + Zoom 

    

Curvatures + Zoom 

    
N. Pixels 7805 4847 5416 5416 

 

As can be seen in Table 2, using only the curvatures 

magnitude in a similar way to the NMS proposed by Canny, 

gaps are obtained. While in the other two cases, the gap is 

eliminated. The main problem when the normal direction and 

the tangent direction is considered, is that, a greater number 

of pixels is kept that must be processed by the linking 

algorithm. However, this problem becomes an advantage, 

because it is not initially required an algorithm to fill gaps. In 

sum up, this allows junction points to lie on multiple lines, 

and thus ensures that no gaps occur at junction areas. 

Next, tests are carried out with 2D images, which are 

traditionally used in computer vision. Tests that are going to 

be performed are the same as in the case of the synthetic 

image. From curvatures and directions images obtained when 

Hessian matrix is used, the NMS process is performed taking 

into account the three previously mentioned criteria. Table 3 

shows the results obtained using the lena image. The columns 

and rows of Table 3 are the same as for Table 2. In this case, 

the selected region to zoom corresponds to Lena’s left eye. 

In the row of images with zoom (see Table 3), if only the 

curvature magnitude is used in NMS algorithm, gaps appear. 

While the resulting images when using the normal direction 

and the tangent address do not generate those gaps. However, 

when considering the normal direction and the tangent 

direction a greater number of pixels (in this case, 72328) are 

generated. 

Table 3. Non-maximum suppression results for Lena’s image. 

 Original CM CM+CN CM+CN+CD 

Image 

    

Directions 

    

Image + Zoom 

    

Curvatures + Zoom 

    

N. Pixels 119518 61677 72090 72328 
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Table 4 shows the number of pixels that each 2D image 

has before applying the NMS algorithms and after it is 

applied using the different suppression criteria. As can be 

seen, the variation between the algorithm that only considers 

the curvature magnitude and the other two is approximately 

11% on average. While the difference between the 

algorithms that consider (CM + CN) and (CM + CN + CD) is 

0.2% on average. 

Table 4. Number of pixels before and after applying the NMS algorithms to 

2D images. 

 Original CM CM+CN CM+CN+CD 

geometric 7805 4847 5416 5416 

baboon 120310 83763 100273 100524 

barbara 118779 73852 87923 88183 

boat 115407 64910 80207 80436 

cameraman 31177 16477 20224 20273 

lena 119518 61677 72090 72328 

average  40.9% 29.8% 29.6% 

At this point, there is no significant difference between the 

last two NMS algorithms for the analyzed 2D images. It can 

also be stated that when curvature magnitude is only used, 

gaps appear at the edges, while for the other two NMS 

algorithms, no. 

4.2. 3D Images 

The tests performed with 3D images correspond to the 

synthetic images. In the same way, as in the previous section, 

the three criteria of voxels selection not to be suppressed are 

applied, that is, the curvature magnitude (CM), the normal 

direction to the surface (CN), and the tangent direction to the 

surface (CD). 

Table 5 presents the results obtained for the ellipsoid 

and the hyperbolic paraboloid. For each of the images, the 

three NMS algorithms are applied. The results obtained 

are presented in the rows of Table 5. Additionally, for 

each of the images a region of interest was selected, in 

order to see the algorithms’ behavior with a greater level 

of detail. For both the ellipsoid and the hyperbolic 

paraboloid, the upper left quadrant was selected. In 

addition, the slice 16 of the ellipsoid is shown in the axial 

plane, and for the hyperbolic paraboloid, the slice 129 was 

selected. 

Table 5. Non-maximum suppression results for 3D synthetic images. 

 ellipsoid zoom hyperbolic paraboloid zoom 

Image 

 

 

 

 

original 

    

CM 

    

CM+CN 

    

CM+CN+CD 

    

 

The reduction in the number of voxels using the 

curvature magnitude is greater. In the ellipsoid case, the 

edges are much more defined and with fewer voxels 

around the curvatures with high magnitude (red color). 

The lowest voxel reduction is presented when using the 

three criteria to select the voxels to be eliminated. The 

ellipsoid in all three cases does not have gaps. It is 

because the contours do not have bifurcations or 

significant corners. In the hyperbolic paraboloid case, the 

results are different. When the curvature magnitude is 

only used, it generates a loss of edges while the other two 

cases generate a complete contour. 

Table 6 presents the number of voxels of original images 

and images obtained when applying the NMS algorithms. 

Comparing the averages of reduction with that of the 2D 

images, this is reduced for all cases. In addition, the 

difference between the algorithm that only uses the curvature 

magnitude and the other two algorithms is reduced in 

percentage. This difference changes from 11% to 9%. 

Additionally, the difference between the algorithms that use 

as criteria (CM + CN) and (CM + CN + CD) is increased 

from 0.2% to 5% approximately. 

In conclusion, as in the case of 2D, the results when 

applying the NMS algorithm using only the curvature 



116 Cesar Bustacara-Medina et al.:  Improved Canny Edge Detector Using Principal Curvatures   

 

magnitude generates gaps in the surface, while when adding direction information, this does not happen. 

Table 6. Number of pixels before and after applying the NMS algorithms to 3D synthetic images. 

 Original CM CM+CN CM+CN+CD 

ellipsoide 6632 4278 4870 5588 

cube 51216 30228 31000 38704 

cylinder 80794 54959 61195 63499 

elliptic paraboloid 44611 27494 31921 33510 

hyperbolic paraboloid 10234 7793 9582 9766 

Average  34.13% 25.02% 18.21% 

 

5. Conclusions 

Edge detection is more accurate by incorporating the 

magnitude and direction of curvature into the NMS algorithm. 

A smaller number of gaps are generated since the number of 

pixels or voxels is greater in regions of interest, such as 

corners or intersection areas. When only the curvature’s 

magnitude is used, gaps appear at the edges, whereas if the 

direction of the curvature is incorporated, this does not 

happen. 

Using the curvature generates a greater number of pixels 

or voxels that eliminate the gaps at the edges. It is important 

to modify the hysteresis algorithm to obtain a set of edges 

that meet the good location criteria with a minimum distance 

between the detected positions and the true edges. Finally, 

the hysteresis algorithm must guarantee a single response to 

obtain a single edge. 
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