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Abstract: When one solves differential equations, modeling biological or physical phenomena, it is of great importance to 

take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions 

satisfy the same constraints as exact solutions. In this work, we introduce explicit finite difference schemes based on the 

nonstandard discretization method to approximate solution of the cross-diffusion system from bioscience. The proposed 

schemes improve the accuracy and guarantee the positivity requirement, as is demanded for the solution of such system. We 

apply new methods for numerical integration of the cancer growth model for illustrating the performance of them.  
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1. Introduction 

Partial differential equations (PDEs) appear in many 

physical, biological and economic applications [5, 13, 14, 

26]. A major difficultly in the study of these equations is, in 

general, the lack of exact analytical solution or cannot be 

solved by a straight forward formula. One way to proceed is 

to use numerical methods to obtained useful approximations 

on the solutions. A popular and important is one based on the 

use of the finite differences (FDs) to construct discrete 

models of the PDEs of interest [25]. One shortcoming of 

standard FDs is that essential qualitative properties of the 

exact solution are not transferred to the numerical solution. 

One way to avoiding this disadvantage is to employ 

nonstandard finite difference (NSFD) schemes [1, 2, 7-10, 

15, 19-23]. More precisely, NSFDs in addition to the usual 

properties of consistency, stability and hence convergency, 

produce numerical solutions which also exhibit essential 

properties of solutions [16, 17, 21]. A PDE that satisfies the 

condition of positivity of some of its solutions is the cross-

diffusion equations from bioscience [3-6, 11- 14, 24].  

In this paper we propose new positive NSFD schemes 

which enable us to solve accurately the cancer growth model. 

The rest of the paper is organized as follows: In Section 2, 

we give some preliminaries and definitions including 

nonstandard finite difference methods for differential 

equations. In Section 3, we consider a mathematical model of 

cancer growth and show that approximations obtained from 

standard finite difference (SFD) scheme and existing NSFD 

scheme in [6] which produce negative values. In Section 4 

we propose our new schemes and investigate the positivity 

requirement for them. Furthermore, to illustrate the 

advantages of new schemes we compare them with the 

results obtained from the SFD method and existing NSFD 

method in [6]. Finally we end the paper with some 

conclusions in Section 5. 

2. Preliminaries and Definitions 

We now give a brief summary of the NSFD methods for 

the numerical solution of 

0

( )
( ( )), (t 0), y(0)=y ,

dy t
f y t

dt
= ≥                (1) 

where ( )y t
 
may be a single function or a vector of functions 

of length k mapping 0[t , T ) kC→
 

 and the corresponding f  a single function or a vector of 

functions of length k  mapping 
k

0 0([t , T ), C )  [t , T )→ . 

Discretization of the continuous differential equation, or 

beginning instead with a difference equation, we define 
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n 0
t  = t +n t∆ , where t ∆ is a positive step size, and say that 

the discretized version of the function y at time 
n

t is 

n n
y y(t ).≈

 

Then the discretized version of Eq. (1) becomes 

t n n n
D y =F ( ,y ),f∆                               (2) 

where 
t n

D y∆  
represents the discretized version of 

dy(t)

dt
 and

n n
F ( ,y ) f

 
approximates ( y(t))f

 
at time 

n
t . 

 
We define the nonstandard finite-difference method based 

on a definition given by Anguelov and Lubuma [1,2]. 

Definition1. Method (2) is called a nonstandard finite-

difference method if at least one of the following conditions 

is met: 

� In the discrete derivatives t n
D y∆ the traditional 

denominator t ∆ is replaced by a nonnegative function 

 (  t)ϕ ∆ such that 

2( t)= t+O( t ) as 0< t  0,ϕ ∆ ∆ ∆ ∆ →  

for example: 

( t)=1-e(- t), ( t)=tanh( t).ϕ ϕ∆ ∆ ∆ ∆  

� Nonlinear terms in ( y(t))f  are approximated in a 

nonlocal way, i.e. by a suitable function of several 

points of the mesh. For instance, the non-linear terms 

2y
and 3y

 can be modeled as follows [2]: 

� k k+1
 ay +(1-a)y , a Ry ≈ ∈  

� 
2 2

k k k+1y  ay +by y ,  a+b=1,  a,b R,≈ ∈  

� 
3 3 2

k k k+1y  ay +(1-a)y y ,  a R.≈ ∈  

Definition 2. Any constant-vector y ɶ satisfying 

(y)=0 f ɶ  

is called equilibrium point (fixed-point or critical point) of 

the differential equation in (1). 

3. Solution of the Cancer Growth Model 

3.1. Mathematical Model 

As in [6], the relevant PDE system in this study is given 

by: 

1

(1 ) ( ),

,

( ),

u c
u u u

t x x

c
pc

t

p
uc p

t
ε

−

∂ ∂ ∂= − −
∂ ∂ ∂
∂ = −
∂
∂ = −
∂

                   (3) 

where ( , )u u x t= , ( , )c c x t=  and ( , )p p x t= are 

concentrations of invasive cells, connective tissue and 

protease, respectively and invasive cells have an invasive 

flux of C
u

x

∂
∂

into connective tissues and solution domain is 

ma x( , ) [0, ] [0, ]x t x T∈ × . Take a partition of the interval 

0 1
, ,

N
x x x< < <⋯  with 

m
x m x= ∆ , 0,1,2, ,m N= ⋯ , and 

maxx
x

N
∆ =  and divide the time interval of interest [0, ]T  using 

equal time steps of size T
t

M
∆ =  with 

k
t k t= ∆ , 

0,1, ,k M= ⋯ . Let 
k

mu  be the approximation to ( , ).
m k

u x t  

Following Definition 2, system (3) has three types of 

constant steady-state solutions ( , , )E u c p= : 

� the trivial equilibrium (0,0,0)
t

E = ; 

� the fully malignant equilibrium (1,0,0)
m

E = ; 

� the normal healthy equilibrium (0, ,0)
n

E c= , where 

0c >  is any constant. 

3.2. SFD Scheme 

In this subsection, by using forward difference for u

t

∂
∂

, c

t

∂
∂

 

and p

t

∂
∂

, approximations 
1k k

m mp c +−  for pc− , 1( )k k k

m m mu c pε − −  

for 1

( )uc pε
−

−  and 1 1 1 1

2
(1 )

( )

k k k k k k k

k k km m m m m m m
m m m

u u c c c c c
u u u

x x x

+ − + −− − − +
− − × −

∆ ∆ ∆
 

for (1 ) ( )
c

u u u
x x

∂ ∂− −
∂ ∂

 at the grid points ( ),m x k t∆ ∆ , we 

consider a SFD scheme for solving the system (3) as: 

1

1

1

1

1

1 1 1 1

2

,

( ),

(1 ) .
( )

k k

k km m
m m

k k

k k km m

m m m

k k k k k k k k k

k k km m m m m m m m m

m m m

c c
p c

t

p p
u c p

t

u u u u c c c c c
u u u

t x x x

ε

+
+

+
−

+
+ − + −

−
= −

∆
−

= −
∆
− − − − +

= − − × −
∆ ∆ ∆ ∆

 (4) 

The explicit form of the scheme (4) can be written as 

follows: 

1

1 1 1

1

1 1 12

(1 ) ,

( ),

(1 (1 )) ( )( ( ) ( )).

k k k

m m m

k k k k k

m m m m m

k k k k k k k k k

m m m m m m m m m

c tp c

p p t u c p

t
u t u u u c c u c c

x

ε

+

+ − +

+
+ − −

= + ∆

= + ∆ −
∆= + ∆ − − − + −

∆

 (5) 

Figure 1 shows that the scheme (4) is unstable and 

produces negative values. More SFD schemes for solving (3) 

can be find in [6]. 
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Figure 1. Numerical results for (5) with 1,x∆ =  1,t∆ = 0.2ε = . 

3.3. A NSFD Scheme 

To overcome the above defects some NSFD schemes have 

been proposed in [6], for example:  

1

1

1

1 1 1

1

1

1 1 1 1 1

2

,

( ),
( )

( )
(1 ) ,

( ) ( )

k k

k km m

m m

k k

k k km m

m m m

k k k k k k k k k

k km m m m m m m m m

m m

c c
p c

t

p p
u c p

t

u u u c u u c u c
u u

t x

ε
εϕ ε

ϕ ψ

+
+

+
− + +

−

+
+ + − − −

−
= −

∆
−

= −
∆

− − + +
= − −

∆ ∆

 (6) 

where 
2( ) 1, ( ) 2 ( )tt e x tϕ ψ ϕ∆∆ = − ∆ = ∆ , and after 

simplifying we have 

1

1 1

1

1

1 1 1 1 1

,
1 ( )

( )
,

1 ( )

2 [1 ( )] [ ( ) ]
,

2[1 ( ) ]

k

k m

m k

m

k k k

k m m m

m

k k k k k k k k

k m m m m m m m m

m k

m

c
c

t p

p t u c
p

t

u t u c u u c u c
u

t u

ϕ
ϕ ε

ϕ ε
ϕ

ϕ

+

− +
+

−

+ + − − −

=
+ ∆

+ ∆
=

+ ∆
+ ∆ − − + +

=
+ ∆

 (7) 

Figure 2, shows that the numerical results obtained from 

the scheme (7). We observe that method (7) has better 

behavior than the scheme (4) with the same value of the step-

size, but still positivity is not guaranteed. 

 

 

 

 

Figure 2. Numerical results for (6) with 1,x∆ =  1,t∆ = 0.2ε = . 
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4. Construction of the New NSFD 

Schemes 

In this section, our main aim is to apply nonstandard 

discretization rules to construct two positive NSFDs for 

solving the system (3). Furthermore, we present the 

numerical results to confirm the properties of our new 

schemes and compare the performance of them with (4) and 

(6). What we shall be attempting to do, is to show the 

superior performance of new schemes for over (4) and (6). 

We do not claim that our numerical results demonstrate the 

superiority of our approach over any of the more nonstandard 

finite difference approaches. However, we do feel that our 

results indicate that a properly implemented version of our 

algorithm should be useful for the numerical integration of 

cancer growth model. We have programmed new schemes in 

MATLAB. 

4.1. Scheme 1 

Here by using the strategy of nonstandard discretization 

methods (using values at different time levels for 

discretization of u

t

∂
∂

, 
c

t

∂
∂

 and 
p

t

∂
∂

, approximations 

1
(2 )

k k k

m m mp c c
+− −  for pc− , 

1

1 1 3
( )

2

k k

k k m m

m m

p p
u cε

+
− + −

−  for 

1

( )uc pε
−

−  and 

1 1 1

1 1 1 1 1

2
(1 )

( ) ( ) ( )

k k k k k k k

k k km m m m m m m

m m m

u u c c c c c
u u u

x x xψ ψ ψ

+ + +
+ − − + −− − − +

− − × −
∆ ∆ ∆

 

for (1 ) ( )
c

u u u
x x

∂ ∂− −
∂ ∂

, 

we propose our first scheme as: 

1

1

1 1

1 1

1

1 1 1 1

11 1 1 1 1

2

(2 ),
( )

3
( ),

2( )

(1 ) ,
( ) ( ) ( ) ( )

k k

k k km m

m m m

k k k k

k km m m m

m m

k k k k k k k k k

k k km m m m m m m m m

m m m

c c
p c c

t

p p p p
u c

t

u u u u c c c c c
u u u

t x x x

ϕ

ε
εϕ ε

ϕ ψ ψ ψ

+
+

+ +
− +

−

+ + + +
+− − − + −

−
= − −

∆
− −

= −
∆

− − − − +
= − − × −

∆ ∆ ∆ ∆

                                         (8) 

by taking 
2 ( ) 2( )x tψ ∆ = ∆  and after simplifying we have: 

1 1 ( )
,

1 2 ( )

k
k km
m mk

m

t p
c c

t p

ϕ
ϕ

+ + ∆
=

+ ∆
                                                                   (9) 

1 1

1

1

2 ( )[2 ]
,

2 3 ( )

k k k k

k m m m m

m

p t u c p
p

t

ϕ ε
ϕ ε

− +
+

−

+ ∆ +
=

+ ∆
                                                         (10)  

1 1

1 1 1 1 1( ( ) (1 2) ) (1 (1 2) ) (1 2)( )
,

(1 ( ) )

k k k k k k k

k m m m m m m m

m k

m

u t c u c u u c
u

t u

ϕ
ϕ

+ +
+ + − − −∆ − + − + +

=
+ ∆

                                         (11) 

Comparing with the method (5) the new proposed scheme 

performs well for larger time steps but the main advantage of 

this is that positive and stable(these results will be discussed 

in the following). 

Theorem 1. For chosen ( )tϕ ∆ , sufficiency condition on 

t∆  which scheme (8) to be positive is 

1
( ) ,

2
tϕ ∆ ≥

 

Proof. Assume that 0, 0k k

m mu p> >  and 0 1k

mc≤ ≤  

according to (9) since 

1 ( )
0 1,

1 2 ( )

k

km

mk

m

t p
c

t p

ϕ
ϕ

+ ∆
≤ ≤

+ ∆
 

then 
10 1k

mc +≤ ≤ , also from (10) we have 
1 0k

mp + > . Now for 

positivity of the u  we have to put 

1

1

1
( ) 0,

2

k

mt cϕ +
+∆ − ≥

 

from which 

1

1

1
( ) ,

2

k

mt cϕ +
+∆ ≥

 

then the last inequality shows sufficiency of 
1

( )
2

tϕ ∆ ≥  for 

positivity of proposed scheme, and this completes the proof. 

In Figure 3 we observe that the solution of the new scheme 

for system (3) tend to (1,0,0), that is the same fully malignant 

equilibrium. Comparing the new proposed scheme with (4) 

and (6), we observe that the new scheme is positivity 

preserving, while approximations obtained by (4) and (6) 

gives negative values with initial conditions 

0 2 0 0 0 0( ) exp( ), ( ) 1 0.5 ( ), ( ) 0.5 ( )u x x c x u x p x u x= = − =  

and ( ) 1tt eϕ ∆∆ = − . 
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Figure 3. Numerical results of the new scheme (6) with 1,x∆ =  1,t∆ =
0.2ε = , ( ) 1tt eϕ ∆∆ = − . 

4.2. Scheme 2 

We construct our second new NSFD method as: 

1

1

1

1 1 1

1

1 1 1 1 1 1

1 11 1 1 1 1

1 2

,
( )

( 2 ),
( )

2
( ) ( ) ( ) ( )

k k

k km m

m m

k k

k k k km m

m m m m

k k k k k k k k k

k k k k km m m m m m m m m

m m m m m

c c
p c

t

p p
u c p p

t

u u u u c c c c c
u u u u u

t x x x

ϕ

ε
εϕ ε

ϕ ψ ψ ψ

+
+

+
− + +

−

+ + + + + +
+ +− − + + −

−

−
= −

∆
−

= − +
∆

− − − − +
= − − − × −

∆ ∆ ∆ ∆

                         (12) 

after simplifying, the new NSFD scheme can be written as: 

1

1 1

1

1

1 1 1 1

1 1 1 1

,
1 ( )

( )[ ]
,

1 2 ( )

(1 2 ( ) (1 2)( )) (1 2)( )
.

(1 ( ) ( ) )

k

k m

m k

m

k k k k

k m m m m

m

k k k k k k

k m m m m m m

m k

m

c
c

t p

p t u c p
p

t

u t c c c c u
u

t t u

ϕ
ϕ ε

ϕ ε
ϕ

ϕ ϕ

+

− +
+

−

+ + + +
+ + − −

=
+ ∆

+ ∆ +
=

+ ∆
+ ∆ + + + +

=
+ ∆ + ∆

                                         (13) 

We have no formal proof for positivity of (13) (our interest 

for future) but, the numerical results obtained by the Math 

Toolbox software of MATLAB show that the new scheme is 

positivity preserving. It is evident that the new NSFD scheme 

improves the accuracy, giving better numerical results than 

the SFD scheme (4) and the NSFD scheme (6), see Figure 4.
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Figure 4. Numerical results of the scheme (13) with 1,x∆ =  1,t∆ = 0.2ε = , 

( ) 1tt eϕ ∆∆ = − . 

5. Conclusion 

In this article, we proposed new NSFD schemes for 

solving the cancer growth model by renormalization of 

denominator of the discrete derivative and nonlocal 

approximation of the nonlinear terms. The power of our 

schemes over the standard ones is that they are reliable 

numerical simulations that preserve the stability and 

positivity properties of the exact solution. Solutions to the 

cancer growth model were presented to demonstrate the 

efficiency of the new scheme. Our interest, for future is to 

applying the proposed new positive nonstandard finite 

difference methods to other multi-dimensional dynamical 

systems. Also, construction of similar nonstandard schemes 

for the general case of biological systems and models with 

more nonlinear terms is our favorite. Here, all computations 

are performed by using MATLAB. 
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