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Abstract 

Channel estimation for millimeter wave (mmWave) hybrid MIMO communications, is challenging because of the complexities 

associated with the large antenna arrays at the transceivers and with the higher propagation lossess of the mmWaves. However, 

with open-loop training and exploiting the inherent sparse nature of the mmWave channel, it becomes easier by formulating the 

channel estimation problem in compressive sensing (CS) theory, and solving the problem using orthogonal matching pursuit 

(OMP) algorithm. In the CS theory, coherence and restricted isometry property (RIP) of sensing matrices, and restricted isometry 

constant (RIC) based k-sparse signal recovery exactly in k iterations, are significant conditions for guaranteed recoverability. 

Most of the earlier works are focused on coherence only, because of the impracticality of computation of RICs for the larger 

dimensional mmWave channel. In this paper, a novel technique, for the first time different from the earlier works, is devised to 

achieve guaranteed open-loop training based channel estimation. As there is hurdle for computation of RIC for the channel, 

smaller dimensional sensing (DFT) matrices are synthesized and are subjected for guaranteed recoverability conditions. From the 

simulation results of recoverability with synthesized and channel matrices, guarantee of the mmWave channel estimation is 

achieved. 
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1. Introduction 

Millimeter wave (mmWave) MIMO cellular systems will 

enable gigabit-per-second data rates, which is required to 

cope up with the dramatic proliferation of data traffic of 5G 

and beyond, future wireless mobile communications [1-5]. 

These systems will employ large antenna arrays at the trans-

ceivers to overcome the large propagation losses of the 

mmWaves [6]. To realize sufficient link margin, high gain 

directional beamforming is required in between the transeiver 

antenna arrays. Hybrid (analog and digital) beamforming is 

proposed for the mmwave MIMO systems, as this reduces the 

hardware cost and power consumption, when compared to 

those of either analog or digital beamforming [7-12]. 

Channel state information (CSI) is required at the trans-

ceivers to perform adaptive beamforming techniques for ef-
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ficient utilisation of the channel. CSI can be accumulated in 

channel training and estimation phases. Channel training and 

estimation, is of two methods: closed loop and Open loop 

methods. Closed loop methods are disadvantageous because 

of large training overhead and increase of overhead with the 

number of users [13-15]. In contrast to these, open loop 

methods are more practical, as these are with less training 

overhead, which does not change with the number of users [9, 

16]. Also these are with low complexity, by performing ex-

plicit channel estimation: the transmitter emits pilot vectors 

for channel estimation, and the receiver estimates the param-

eters of the dominant channel paths from the received pilot 

signals. 

Channel estimation for mmWave hybrid MIMO system, is 

challenging because of the complexities associated with the 

architecture of the system [17, 19, 20]. Eventhough channel 

matrix is of large dimensional, mmWave channel is inherently 

sparse (rank deficient) in nature, as it is experimentally ob-

served that only a few dominant paths in angular domain are 

contributing effectively for mmWave communications 

[21-24]. Exploiting this sparse nature, it becomes easier, when 

sparse channel estimation problem is formulated and solved it 

using compressive sensing (CS) methods. One of the greedy 

CS methods, is orthogonal matching pursuit (OMP), which 

gained popularity, because of its simplicity, efficiency, and 

lower execution time [32]. 

In the CS theory, coherence and restricted isometry prop-

erty (RIP) of sensing matrices, and k-sparse signal recovery 

exactly in k iterations, are significant conditions of guaranteed 

recoverability. In [25], channel is estimated using inverse 

discrete Fourier transform (IDFT) based training sequence 

(TS) andoptimization of the auto-coherence and 

cross-coherence of the blocks of the sensing matrix. Authors 

in [26] designed pilot beam patterns to minimize the overall 

coherence of the equivalent sensing matrix. It is observed that 

reduced coherence of the system enabled better estimation 

accuracy. The authors in [16] proposed an open-loop training 

design, to lower mutual coherence and a better CSI estimation 

accuracy. In [13] an open-loop hybrid analog-digital 

beam-training framework is proposed to improve the recov-

erability guarantee. The proposed training method achieved a 

lower mutual coherence and an improved channel estimation 

accuracy than the methods of [9, 16]. Thus most of these 

works, are focused on coherence only, because of the im-

practicality of computation of RIP and RIC for the larger 

dimensional mmWave channel. 

In this paper a novel technique, for the first time, is devised 

to achieve guaranteed open-loop training channel estimation 

based on signal recoverability conditions. As there is hurdle 

for computation of RIP for the channel, smaller dimensional 

sensing (DFT) matrices are synthesized. Coherence and RIP 

parameters of these matrices are computed for evaluation of 

the conditions for guaranteed recoverability.Many authors 

proposed conditions based on RIC for k-spares signal recov-

ery exactly in k-iterations using OMP algorithm [35-40]. In 

the present paper, from the simulation results of (i) signal 

recovery from both the synthesized and the channel sensing 

matrices, (ii) recovery success rate of more than 98%, and (iii) 

a linear relation in between smaller and larger dimensional 

matrices, guarantee of the channel estimation is achieved. 

This paper is organized as follows: A single user, uplink 

hybrid MIMO System is presented in Section-2. Formulation 

of CS based sparse channel estimation and conditions for 

guaranteed recoverability are presented in Section-3. In the 

same section, synthesized matrices, and their analysis are 

presented. Simulation results demonstrating the guaranteed 

mmWave channel estimation are presented in Section-4 and 

finally, conclusions are drawn in the subsequent Section-5. 

2. System Model and Channel Estimation 

2.1. System Model 

A single user uplink mmWave massive hybrid MIMO 

system [16, 18] is shown in Figure 1. In the system, the 

transmitter is equipped with a digital baseband processor 

(denoted by BBF ) and an analog RF precoder(denoted by 

RFF ) with RFN chains, connected to tN transmitting anten-

nas, and the receiver is equipped with rN receiving antennas 

connected to an analog RF combiner (denoted by RFW ) with

RFN  chains and a digital baseband processor (denoted by 

BBW ), for communication of sN  data streams, such that sN

≤ RFN ≤ tN at the transmitter and sN ≤ RFN ≤ rN  at the re-

ceiver respectively. 

At the transmitter, RFN chains are capable of generating 

Beam
TxN  ( Beam

TxN ≤ tN ), denoted by mf (1,..... )Beam
Txm N , 

and at the receiver, the RFN  chains are capable of receiving 

Beam
RxN , denoted by nw (1,..... )Beam

Rxn N . During the train-

ing period, Beam
TxN  are sent successively, one after the other, 

and in the receiver each transmitted beam is received as 
Beam
RxN simultaneously through Nr antennas. Beam

TxN and

Beam
RxN are chosen as multiples of RFN chains and hence rf 

chains generate transmitter blocks as
     Beam

Block Tx
Tx

RF

N
N

N
 and 

receiver blocks as, 
     Beam

Block Rx
Rx

RF

N
N

N
 . 
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Figure 1. A Block diagram of single user mmWave Hybrid MIMO System. 

The received vector for a single (m th) transmitted beam and 

for a single (nth) received block is denoted as ,n my .Collecting 

all Beam
RxN  the received vector for a single (mth) transmitted 

beam is denoted as my . With the training pilot symbols, X, 

representing the received signal vector in matrix form for all 

the transmitted beams, (1,..... )Beam
Txm N , it is given as 

H
nsY W HFX N                  (1) 

Where hybrid precoding ( RF BBF F F ), combining ma-

trices ( RF BBW W W ), channel, (H), and noise ( nsN ) are 

parameters of Y, in (1). When, X is assumed as 

Beam
TxN

X PI , where P is the pilot power, the received signal 

vector is represented as 

( ) ( )H
RF BB RF BB nsY P W W H F F N        (2) 

2.2. Sparse Channel formulation and estimation 

Adopting channel model from [16], the channel H is given 

as 

, ,

1

( ) ( )

L
Ht r

l R R l T T l

l

N N
H a a

L
  



     (3) 

Where 1( .......... )L  are complex gains and L are propa-

gation paths.And assuming uniform linear array (ULA) at 

both the transmitter and receiver, the antenna steering vectors, 

( )a  are represented as 

2 2
cos ( 1) cos

( ) [1, ,...... ]
j d j N d

Ta e e

 
 

 
  

     (4) 

where, tN N  and 
1

,( ) tN x
T T la C  is the steering vector, 

at the transmitter and, rN N , and 
1

,( ) rN x
R R la C   is the 

steering vector at the receiving antenna. 

To apply CS techniques to the channel estimation, with 

virtual channel representation, when angular domain (AOA, 

AOD) is discretized into points called as grid, such that the 

azimuth angle (Ѳ) in the range 0 to π, is divided into G grid 

points, then the channel in matrix form is given as 

   b
H

R TH HA A       (5) 

where the AOD and AOA steering matrices are represented in 

terms of grid points as 

,1 ,2 ,[ ( ), ( ),......  . ( )] TN G
T T T T T T T Ga a a CA   


        (6) 

,1 ,2 ,[ ( ), ( ),...... ( )]  . RN G
R R R R R R R Ga CA a a  


        (7) 

Vectorizing the channel, H, and using the identity, 

vec(ABC) = 
  TC A

.vec(B),                 (8) 

equation (5) is rewritten as 

vec(H) = 
 .D bA vec H

= 
DA .

bh ,             (9) 

where *    TD RA A A and ( )b bh vec H . 

To formulate the sparse channel estimation, vectorizing the 

received signal, Y, in (2), and usingequation (8), it is given as 

vec(Y)= ( ) ( ). ( )T T H H
v BB RF BB RF Qy P F F W W vec H n    

using equation (9), vec(Y) is represented as 

vec(Y) ( ) ( ).T T H H
BB RF BB RF D b QP F F W W A h n    

. b QQ h n                          (10) 

where Qn  is resultant noise term after vectorization, and  
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( ) ( ).T T H H
BB RF BB RF DQ P F F W W A           (11) 

Rest of the paper, it is assumed that Q as the channel 

sensing matrix given by (11). In the CS theory under noiseless 

case, equation (10) is of the form y=A.x, where y (vec(Y)) is 

measuring vector, A (Q) is sensing matrix, and x ( bh ), is the 

sparse signal (channel) to be recovered. 

As it is acknowledged that the minimum coherence of the 

sensing matrix results, guaranteedrecoverability, components 

of, Q, viz., rf beamformer/combiner, baseband processor, and 

antenna steering dictionaries are accordingly designed for 

training and estimation. Since properly designed DFT matri-

ces are nearly orthonormal bases and as suggested by [16], rf 

beamformer/combiner, and baseband processor are designed 

in DFT matrices. And in ULA, because of the array response 

matrices, are fixed for a fixed spacing in between the antenna 

elements, for minimum coherence, grid resolution, G, is 

chosen as equal to rN  and ad nearlyequal to tN to reduce 

the redundant dictionaries ( ,R TA A ) to approximately or-

thogonal dictionaries, as shown by [16]. With these diction-

aries, using ray tracing method, a channel, H, is simulated and 

measurements, y, from this channel are obtained. Then, ap-

plying, y, Q, and channel sparsity, L, as inputs to the OMP 

algorithm, dominant paths of the mmWave channel are esti-

mated, as shown in simulations section. 

3. Guaranteed Channel Estimation from 

K-sparse Signal Recovery Using OMP 

Algorithm 

3.1. Conditions for Sparse Signal Recovery 

In the compressive sampling theory [27], coherence (  ) 

and restricted isometry property (RIP) of any sensing matrix, 

are significant parameters for sparse signal recovery. Lower 

coherence, and fulfilling RIP are wellness conditions of ma-

trices, for guaranteed recoverability. 

Definition-1: Coherence index of sensing matrix A ( ( )A ) 

The coherence index ( )A , of matrixA, is defined as the 

largest absolute inner product between any two columns, iA , 

jA , and is given as 

1

2 2

,
( ) max

,

i j

i j N
i j

A A
A

A A


  

 
                (12) 

Where .
p

, is pl -norm for respective p (p=0,1,2,  ). Let 

a matrix, A, of size MxN, and M<N, (N>2), whose columns 

are normalized, i.e.
2iA =1, i , then the bounds of the co-

herence index of A, satisfies, 

( ) 1
( 1)

N M
A

M N



 


          (13) 

Lower bound is called as Welch bound. 

Definition-2: Restricted isometry Property (RIP) and Re-

stricted isometry constants (RICs) 

A matrix MxNA C , is said to satisfy the RIP of order k 

with a constant k (0,1) if the following holds: 

2 2 2

2 2 2
(1 ) (1 )k kx Ax x         (14) 

for every
k

x , where 
0

{ : }N

k
x C x k   is the 

set of all k-sparse vectors in 
NC . Constants k (0,1) satisfy-

ing the above equation for sparsity levels k are called as restricted 

isometry constants (RICs).In particular, the minimum of all 

constants δ satisfying the above equation is called the s‐order 

Restricted Isometry Constant (RIC) and denoted by δs. 

For any sparsity order, k, the constant ( k ) satisfy 

(0 1)k  and for sparsity levels, k=1,2,3……. it satisfy

1 2 ........ .....k N       . 

A sensing matrix, A, (M x N, M <N), that satisfies RIP acts 

almost like an orthonormal system for sparse linear combi-

nations of its columns [28]. Random matrices with i.i.d. 

Gaussian or Bernoulli entries and matrices randomly selected 

from the discrete Fourier transform were shown to satisfy the 

RIP with high probabilities, when they satisfy some specific 

conditions on K, M and N [29, 30]. In the present analysis, a 

set of DFT matrices, are synthesized and are analysed in the 

following steps: 

Step-1: Each synthesized matrix, A, (M x N, M <N) is 

normalized using Gram-Schmidth procedure. 

Step-2: Coherence index, (  ), and restricted isometry 

constants (RICs), are computed. From the RICs, (0 1)k  , 

sparsity level, k is obtained. 

Step-3: Matrices, which satisfy, signal recovery in exactly 

k-iterations, and recovery success rate of more than 98%, are 

only subjected for further graphical analysis, which is shown 

in the subsequent simulations section. 

Also in the present paper, compression ratio (  ) for a 

matrix, A of size, (MxN) is taken as ratio of M to N, i.e. ( 

=M/N), for representation of specific properties of sensing 

matrices. 

3.2. K-Sparse Signal Recovery, Exactly in k 

Iterations Based on RIC, Using OMP 

Algorithm 

RIP has been utilized for proving theoretical guarantees of 
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exact recovery for many algorithms in the CS literature. One 

of the algorithms is orthogonal matching pursuit (OMP). It is 

a simple, yet empirically competitive algorithm for sparse 

recovery. It aims at finding the support, i.e. the set of nonzero 

indices, of x one by one. At each iteration, OMP identifies the 

index corresponding to the column of sensing matrix, A, 

which has maximum correlation to the residue of y. OMP and 

its variants have been frequently used in sparse recovery and 

approximation problems, due to their simplicity and empiri-

cally competitive performance, [31-33]. Initial contributions 

on the theoretical analysis of OMP have concentrated on 

coherence [33] or probability analysis [32, 34]. Davenport 

and Wakin [35] have presented a straight forward K-step 

analysis of OMP based on RIP. Their work states that OMP 

guarantees exact recovery of any K-sparse signal from 

noise-free measurements in K iterations if A, fulfills RIP with 

RIC satisfying 

1 1/ 3k k                   (15) 

Wang and Shim [36] have proven a less restricted bound for 

OMP, which perfectly recovers any K-sparse signal from 

noise-free measurements in K iterations if matrix- A, satisfies 

RIP and RIC with 

1 1/ ( 1)k k                 (16) 

Later, the conditions have been improved to in [37]. 

Moreover, there are a few works concerning sufficient con-

ditions for recovering restricted classes of K-sparse signals 

with a more relaxed bounds on RIC [38, 39]. A further im-

provement over all these is given by Liu et.al., [40]. The au-

thor proves that under some constraints 

( 2
1 1( ) ( 1 / )k kR x     , where 

1 2
( ) /s sR x x x ), on the 

signal, x, OMP can also exactly recover the signal if RIC, 

satisfies 

1 ( 2 / 2)k   = 0.707            (17) 

In the present analysis, from the computational results, RIC 

value of a matrix, A1 (14x18), is obtained as 0.387, which is 

sufficiently far less than the given limit of 0.707 [40] and thus 

satisfying the condition for recovery exactly in k-iterations. A 

notable feature of both the sensing matrices, A and Q, is 

sparse signal recovery exactly in k-iterations. This recovery 

indicates the wellness condition of the sensing matrix, which 

satisfy RIP and RIC. Thus even though RIC is not available 

for Q, recovery is guaranteed on par with, A, whose RIP and 

RICs are satisfying the conditions for guaranteed recovery, 

which is shown in the following simulations section. 

 

4. Numerical Simulation Results 

It is assumed that the transmitter and receiver antennas, are 

as, tN =28, and rN =36 respectively, for a single uplink 

mmwave hybrid MIMO communication. For input, sN =4, 

data streams, Rf chains at the transmitter and receiver are as: 

RFN =4.As described in section-II, for each transmitted beam, 

the number of receive beams and the blocks developed by the 

rf chains, are with the selection of Beam
TxN = tN , Beam

RxN = rN . 

The number of propagation paths, L= 11, (sufficiently more 

than the experimentally observed sparsity, (3 to 5), of the 

mmWave channel) and the angular space grid resolution, G, is 

taken as 36. With these parameters, as described in section-II, 

precoder, and combiner matrices are designed in DFT matri-

ces and by formulating the channel estimation problem in CS 

theory, the resulted sensing matrix, Q, (eq.9) of dimension 

(1008x1296), is obtained. As described at the end of Sec-

tion-II, channel is estimated for sparsity level, k=11, using 

OMP algorithm and the estimation ofdominant paths of the 

mmWave channel, is shown in Figure 2. 

 
Figure 2. Recovered channel dominant paths (k=11) using OMP 

algorithm. 

Guarantee of the channel estimation is achieved from the 

following results of the graphical analysis of the selected 

matrices (specified in section-3). 

4.1. K-Sparse Signal Recovery, Exactly in k 

Iterations 

Based on conditions of RIC and k of the sensing matrix, 

some earlier works [35-39] showed conditions forguaranteed 

sparse signal recovery exactly in k-iterations using OMP 

algorithm. An improvement over these bounds is given by Liu 

et. al., [40], i.e., that RIC ( 1k  ) should be less than ( 2 / 2) , 

http://www.sciencepg.com/journal/wcmc


International Journal of Wireless Communications and Mobile Computing http://www.sciencepg.com/journal/wcmc 

 

51 

i.e 0.707. In our analysis, for a matrix, A1, of size, (14x18), 

having a sparsity, k=11, rho=0.7777, and RIC value obtained 

is 0.387. It satisfies the limit given by [40] for guaranteed 

recovery condition. This recovery indicates the wellness 

condition of the sensing matrix, which satisfies RIP and RIC. 

Eventhough RIC is not available for, Q (with normalized 

columns), sparse channel is recovered exactly in k-iterations. 

Evolution of recovery for both the sensing matrices (A, and Q) 

is shown in Figure 3. Also it is observed that the recovery 

success rate is more than 98% in both the cases. 

 
(a) 

 
(b) 

Figure 3. Recovered k-sparse signal in k-iterations. (a) with matrix A1 (b) with channel matrix, Q. 

In this context, it is to be mentioned that if we consider 

number of measurements (M) required for recovery as another 

evaluation parameter, it is found that in our analysis, M (re-

lated to k, and N), also satisfies the guaranteed recovery, for 

both the matrices, A and Q. This result is not incorporated 

here, since it will also support same guarantee, conveyed by 

the already presented (three) results in the current simulations 

section. 

4.2. Relation in Between a Primitive Size (A1) 

and Larger Size (Q) Matrices 

A set of matrices, A, of sizes, A1 (6x8) to A5 (18x24), 

which are having sparsity level, k=4, are selected. This set is 

selected, because of the possibility for computation of RIP 

and RIC, and coherence parameters for these matrices. Nota-

ble features observed common to all these matrices are: k=4, 
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 =0.75, satisfying conditions for recovery in k-iterations and 

success rate of more than 98%. 

A plot of row index (M) versus column index (N), of these 

matrices is shown in the Figure 4. The plot shows, that a linear 

regression in between A1 and A5. From this regression, it can 

reasonably be argued that the curve can be extended further, 

beyond A5, to any large size matrix, which is a multiple of 

primitive size, A1, since A3 and A5, are multiples of A1. All 

these matrices lying on this regression will satisfy, same 

conditions: k=4,  =0.75, success rate and guaranteed re-

covery in k-iterations. 

 
Figure 4. Relation between smaller (A) and larger dimensional (Q) size matrices. 

The above argument can be applied for matrices in another 

set with primitive size, A1, (14x18), having sparsity level of 

k=11, when regression curve is extended from A1 to any 

larger size matrix, Q (1008x1296). Since Q is a multiple of A1, 

both A1, Q are having same: k=11,  =-.7777, recovery 

success rate and sparse recovery in k-iterations, the specified 

guaranteed conditions, are applicable for both A1 and Q in 

this set. Thus from Figure 3, and Figure 4, guarantee of the 

mmWave channel is achieved. 

5. Conclusions 

Open-loop training based mmWave hybrid MIMO channel 

is estimated using OMP algorithm. From the simulation re-

sults of k-sparse signal recovery exactly in k-iterations, and 

recovery success rate of more than 98%, with both synthe-

sized and channel sensing matrices, it can be concluded that, 

even though RICs are not available for Q, and since the 

specified sparse recovery conditions are satisfied by both the 

matrices (Aand Q), recovery with Q is guaranteed, on par with 

that of A. Thus the guaranteed mmWave channel estimation is 

achieved. Applicability of the result, for broadband wireless 

systems, audio, and image and data processingsystems, is 

proposed for future research work. 

Abbreviations 

MIMO Multiple Input and Multiple Output 

DFT Discrete Fourier Transform 
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