
Science Innovation

2025, Vol. 13, No. 3, pp. 26-32

https://doi.org/10.11648/j.si.20251303.12

*Corresponding author:

Received: 17 April 2025; Accepted: 3 June 2025; Published: 11 June 2025

Copyright: © The Author(s), 2025. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

A Full-Stack Systems Engineering Framework for Complex

Systems-of-Systems Simulation

Bo Qin, Wei Ren*

China Academy Electronics and Information Technology, China Electronics Technology Group Corporation, Beijing,

China

Abstract

This paper presents a comprehensive full-stack systems engineering framework designed to enhance the adaptability, scalability,

and interoperability of complex systems across various domains, including defense, transportation, and industrial automation.

The proposed framework is organized into five interconnected layers: the Task Layer, which defines mission objectives and

stakeholder needs; the System Architecture Layer, which captures high-level system behavior and structural decomposition; the

Subsystem Layer, responsible for modeling domain-specific subsystems; the Component Layer, which encapsulates functional

elements and their interactions; and the Hardware and Software Interface Layer, which manages the integration of physical

components with software control logic. A key feature of this framework is its ability to enable seamless transitions from

high-level requirements to detailed component specifications, ensuring traceability and coherence throughout the development

lifecycle. The integration of standardized interfaces, such as the Functional Mock-up Interface (FMI), enables plug-and-play

subsystem integration, promoting modularity and reusability. The framework leverages SysML for architecture modeling,

discrete event simulation for subsystem behavior analysis, and a co-simulation environment for synchronized software-hardware

interaction. This holistic approach supports robust system verification, validation, and iterative optimization in both design and

operational phases. By enabling multi-level abstraction, cross-domain integration, and simulation-based evaluation, this

structured framework provides a scalable and flexible platform for addressing the growing complexity of modern systems. It

serves as a valuable asset for engineers, architects, and decision-makers seeking to accelerate development cycles, reduce

integration risk, and enhance overall system performance.

Keywords

System Engineering, SoS, Simulation System, Framework

1. Introduction

Modern engineering challenges often involve the integra-

tion of multiple autonomous systems, from robotics and

transport networks to communications infrastructure and

control systems [1]. This complexity defines the nature of

systems of systems (SoS), where individual systems must

operate closely to achieve overall goals.

The dynamic nature of contemporary technological ad-

vances requires the rapid development, testing, and deploy-

ment of these integrated systems [2]. Traditional engineering

approaches are often inadequate in dealing with complex SoS,

http://www.sciencepg.com/journal/si
http://www.sciencepg.com/journal/180/archive/1801303
http://www.sciencepg.com/
https://orcid.org/0000-0003-2910-2150

Science Innovation http://www.sciencepg.com/journal/si

27

leading to challenges in interoperability, scalability, and

adaptability [3]. Therefore, there is an urgent need for a

comprehensive framework to facilitate the design, simulation

and validation of SoS throughout its lifecycle.

This paper presents a full-stack system engineering

framework for complex system simulation. By integrating

simulation tools at all layers, from conceptual design to

hardware and software interfaces, the framework aims to

enhance decision making, reduce development time, and

improve system reliability.

2. Background and Related Work

2.1. Systems-of-Systems in Engineering Context

In various engineering domains, SoS refers to the coordinated

integration of multiple autonomous systems to achieve complex

objectives [4]. While these systems can operate independently,

they must work together in a larger operating environment.

Frameworks like the Digital Engineering Framework for Inte-

gration and Interoperability (DEFII) provide guidelines for

modeling such complex architectures, The importance of in-

teroperability and modularity is emphasized [5].

2.2. Simulation in Systems Engineering

Simulation plays a key role in systems engineering, making

it possible to test and verify system behavior in a variety of

situations. Tools like the Multi-Physics Object-oriented Sim-

ulation Environment (MOOSE) provide system modeling and

analysis capabilities across different domains, helping to

make informed decisions during the design and development

phases [6].

2.3. Full-Stack Systems Engineering

Full-stack systems engineering includes the overall inte-

gration of all system layers - from high-level objectives to

low-level hardware and software components [7]. This ap-

proach ensures that changes or issues in one layer can be

effectively tracked and handled throughout the system [8].

Incorporating simulation at each layer enhances the ability to

predict system performance and identify potential failures

early in the development process [9].

2.4. Existing Frameworks and Limitations

Current frameworks often focus on specific aspects of

systems engineering or simulation, lacking a unified approach

that spans the entire system stack [10]. For instance, while

Model-Based Systems Engineering (MBSE) provides tools

for system modeling, it may not fully integrate simulation

capabilities across all layers [11]. Similarly, traditional sim-

ulation tools might not offer the flexibility required for mod-

eling complex SoS architectures [12]. This fragmentation

underscores the need for a comprehensive framework that

bridges these gaps.

3. Proposed Framework: Full-Stack

Systems Engineering for SoS

Simulation

3.1. Overview

This section presents a conceptual framework for inte-

grating simulation at all levels of Systems-of-Systems (SoS)

engineering across systems. The framework leverages a

full-stack systems engineering approach - in which system

elements, from task-level requirements to software and

hardware interfaces, are represented, simulated, and validated.

The framework is designed to ensure that simulation is not an

isolated effort, but is embedded throughout the engineering

lifecycle, supporting decision making from the strategic to

tactical level.

3.2. Architectural Layers of the Framework

The framework is structured as a five-layer stack, each

representing a level of abstraction and engineering concern:

mission layer, system architecture layer, subsystem layer,

component layer and software/hardware interface layer.

3.2.1. Mission Layer

As the base layer of the full stack system engineering

framework, the task layer establishes the overall goal, theory

and operation scenario to guide the development and integra-

tion of complex SoS. This layer translates high-level strategic

objectives into structured mission scenarios that provide a

clear context for system design and analysis. Key inputs in

this phase include Operational Concepts (CONOPS), which

outline the envisioned use of the system in a combat envi-

ronment, and detailed mission threads that represent the se-

quence of operational activities and interactions between

system components [13]. To model and evaluate these sce-

narios effectively, the mission layer employs tools such as

campaign-level simulations and wargame simulation systems

that enable stakeholders to assess potential outcomes, identify

risks, and make informed decisions early in the system de-

velopment process. This structured approach ensures that

subsequent engineering work is aligned with the intended

mission objectives and operating environment.

3.2.2. System Architecture Layer

The system architecture layer acts as a key intermediary in

full-stack systems engineering, translating high-level mission

objectives into detailed system designs. This layer captures

the structural and behavioral aspects of the system, detailing

how the various subsystems interact, their interdependencies,

http://www.sciencepg.com/journal/si

Science Innovation http://www.sciencepg.com/journal/si

28

and the overall functional architecture. Key components in-

clude command and control (C2) structures, communication

networks, and integrated models of system behavior to ensure

consistent operation throughout the system. To model and

manage these complex interactions effectively, engineers use

a model-based systems engineering (MBSE) approach, using

tools such as SysML to create standardized visual represen-

tations of system architecture. These tools help with system

analysis, design, validation, and validation to ensure that all

components meet planned business objectives and can adapt

to changing requirements [14]. The system architecture layer

achieves seamless integration and coordination among sub-

systems by providing clear and detailed system structure and

behavior diagram, laying the foundation for the successful

implementation and operation of the system.

3.2.3. Subsystem Layer

The subsystem layer is a key component of the entire

framework, focusing on the detailed design and analysis of

individual subsystems such as physical platforms, sensors,

and other important components. This layer pays particular

attention to the internal structure and key performance pa-

rameters of each subsystem to ensure they operate at optimal

performance within the broader system environment. To

achieve this goal, engineers typically employ Discrete Event

Simulation (DES) technology, which models the system's

operation process as a series of discrete independent events in

time to evaluate the behavior of subsystems under various

scenarios [15].

In addition, hardware-in-the-loop (HIL) simulators are also

used in the process of integrating actual hardware components

into the simulation environment, providing an effective plat-

form for subsystem performance testing and verification un-

der real-time conditions [16]. This approach can identify and

solve potential problems at an early stage of the development

process, thereby enhancing the reliability and efficiency of the

entire system. By focusing on the fine modeling of subsys-

tems, this layer ensures that each component meets its speci-

fied standards and can effectively contribute to the system's

task objectives.

3.2.4. Component Layer

The component layer is the key layer in the full-stack sys-

tem engineering framework, which focuses on the modeling,

design and simulation of individual hardware and software

modules. It includes the control logic part, the embedded

system part and the specific function unit, and focuses on the

interface design at the module level and the performance and

characteristics of the components.

To design these components in greater detail and precision,

engineers use a range of proprietary tools. Such as Simulink

and MATLAB, these software are widely used to design

control systems and embedded software, providing a graph-

ical environment foundation for dynamic system modeling.

Another example is Modelica, an object-oriented, equation

based design language for modeling complex physical envi-

ronments and systems. For specific Functional Mock-up Units

(FMUs), the Functional Mock-up Interface (FMI) standard is

followed, which facilitates information exchange and

co-simulation of dynamic models between different platforms.

For example, FMUs can be integrated into Simulink models,

enabling seamless interoperability between tools and en-

hancing modularity of system components [17].

By leveraging these tools and standards, the component

layer ensures that the behavior of each module is thoroughly

validated and optimized, thereby improving the overall relia-

bility and efficiency of complex systems.

3.2.5. Software/Hardware Interface Layer

The software/hardware interface layer is a key component

of the overall framework, and its main role is to facilitate the

integration and interaction between virtual simulation and

physical hardware components. This layer simulates the

firmware state, the firmware running behavior and the inter-

action between the simulated firmware to realize the integra-

tion test of hardware and software. At the same time, this layer

ensures that software and hardware can better work together.

Several technical frameworks are included in this layer,

such as the Co-simulation framework. It allows multiple

simulation tools to operate simultaneously to achieve precise

interactions between different system components. These

frameworks support the synchronization of various models, so

that virtual and physical elements of the system can be tested

synchronously effectively.

Another common technique in this layer is digital twins,

which create real-time digital copies by providing a dynamic

model of a real-world physical system. These digital copies

support predictive analytics and operational optimization,

enabling engineers to monitor system performance and pre-

dict the likelihood of problems before they arise [18]. By

integrating digital twin technology into an analog environ-

ment, engineers can gain a deeper understanding of system

behavior and make more appropriate decisions throughout the

development lifecycle.

By utilizing these tools and methods, the soft-

ware/hardware interface layer ensures tight integration of

virtual models and real-world physical components, ensuring

system robustness and reducing the risk of integration issues

during deployment.

http://www.sciencepg.com/journal/si

Science Innovation http://www.sciencepg.com/journal/si

29

Table 1. Five Layers Framework.

Layers Defines Inputs Tools

Mission
Defines operational goals, doctrine, and mission

scenarios.
CONOPS mission threads

Campaign simulation

wargaming systems

System Architec-

ture

Captures system interactions, interdependencies,

and high-level functions.

C2

communication networks sys-

tem behavior models

SysML models

MBSE platforms

Subsystem
Represents physical platforms, sensors, and

subsystems.
/

DES

HIL

Component
Models hardware and software modules includ-

ing control logic and embedded systems.
Module-level Interfaces

Simulink

MATLAB

Modelica

FMUs

Soft-

ware/Hardware

Interface

Enables integration testing, communication

between virtual and physical components.

Emulates firmware

Real-time behavior

Device-level interactions

Co-simulation frameworks

Digital twins

RTOS

Each layer is integrated with simulation tools aligned with specific SE lifecycle phases:

Table 2. Layers vs. SE Lifecycle.

SE Phase Simulation Focus Tool Examples

Requirements Analysis Mission and scenario validation Wargaming tools

Design
Architectural modeling

Functional verification

SysML

MBSE

Implementation
Module-level simulation

Interface testing
Simulink

Testing & V&V System-level & end-to-end simulation HLA

Maintenance
Runtime monitoring

Digital twins
Cloud-based simulation dashboards

3.3. Interoperability and Modularity

In a complex SoS environment, ensuring that the system is

modular in design and has good interoperability is an im-

portant prerequisite to ensure that the system components can

be effectively developed, integrated and evolved. The fol-

lowing framework can help SoS achieve these prerequisites:

Standard Interfaces: The framework leverage established

standards such as Advanced Architecture (HLA) and Func-

tional Simulation Interface (FMI) to improve interoperability

between different simulation tools and platforms. HLA is a

general architecture of countermeasures for distributed

computer simulation systems, enabling seamless interaction

between different simulation components. On the other hand,

FMI improves the interoperability of simulation tools and the

ability to reuse models by allowing the exchange and joint

simulation of dynamic models [19].

Plug-and-play modules: In order to adapt to the dynamic

nature of SoS, the framework supports plug-and-play func-

tionality, allowing the subsystem to be replaced and upgraded

at any time without the need to reconfigure various parame-

ters. This modular approach allows components to be added,

removed, or replaced with minimal impact on the overall

system, enhancing the flexibility and maintainability of the

system.

Multi-Resolution Modeling: Recognizing the varying lev-

els of detail required across different system layers, the

http://www.sciencepg.com/journal/si

Science Innovation http://www.sciencepg.com/journal/si

30

framework incorporates multi-resolution modeling. This

approach allows simulations to operate at different levels of

fidelity, enabling high-level abstractions for system-wide

analysis and detailed models for specific subsystems. Such

flexibility ensures that resources are allocated efficiently, and

simulations remain scalable and relevant to the analysis ob-

jectives [20].

By integrating these strategies, the framework ensures that

complex systems can be developed and evolved efficiently,

with components interacting seamlessly and simulations tai-

lored to the specific needs of each analysis.

4. Enabling Technologies

The successful implementation of a full-stack systems en-

gineering framework for Systems-of-Systems (SoS) simula-

tion relies on a suite of advanced technologies. These enabling

technologies facilitate the integration, interoperability, and

scalability required to model complex military operations

effectively. Below are key technologies that underpin the

proposed framework.

4.1. Digital Twins

A digital twin is a virtual copy of a physical system that can

be monitored, simulated, and analyzed in real time. In military

applications, digital twins can model platforms such as air-

craft, vehicles, and weapon systems, and validate the digital

models to provide improvements in performance, mainte-

nance needs, and potential failures for deployment. The

USAF's Model One program enhances decision correctness

and AI training of decision strategies in Digital Warfare [21]

by integrating multiple live simulations into a highly aggre-

gated digital twin environment.

4.2. Agent-Based Modeling (ABM)

Agent-Based Modeling involves simulating the actions and

interactions of autonomous agents to assess their effects on

the system as a whole. In defense scenarios, ABM is used to

model complex behaviors of individual units, such as soldiers

or vehicles, within a larger operational context. This approach

aids in understanding emergent behaviors and testing strate-

gies under various conditions [22].

4.3. Cloud-Based Simulation Platforms

Cloud computing provides scalable resources for running

complex simulation systems without the need for extensive

infrastructure build-out on premises. Platforms such as Re-

scale provide high performance computing platforms for

military simulation applications, enabling them to quickly

implement simulation modeling and modeling analysis. This

approach of cloud computing can reduce the development

time and cost of simulation systems, while allowing the

construction of a wider range of simulation test scenarios

[23].

4.4. Integrated Modeling Environments (IME)

Integrated Modeling Environments facilitate the collabo-

ration of various modeling and simulation tools within a uni-

fied framework. The U.S. Navy's adoption of IME supports

Model-Based Systems Engineering (MBSE) and allows for

the seamless integration of different simulation models, en-

hancing the efficiency and effectiveness of system develop-

ment processes [11].

5. Discussion

The full-stack system engineering framework based on SoS

simulation system proposed in this paper can effectively im-

prove the adaptability and scalability of complex systems. This

section discusses the benefits of the framework, its potential

limitations, and its positioning relative to existing approaches.

With respect to advantages, by covering all layers - from

mission objectives to hardware and software interfaces - the

framework ensures that each component and subsystem is

aligned with the overall system's building objectives. This

consistency ensures the consistency of the system behavior

and improves the efficiency of the task. The framework also

emphasizes the use of unified standard interfaces, such as

HLA and RPR FOM, to improve interoperability between

different systems. The framework integrates digital twins and

continuous simulation to support system evaluation and

maintenance throughout the life cycle. This capability ensures

continuous performance and adaptability in dynamic operat-

ing environments.

In terms of limitations, implementing a full-stack simu-

lation framework requires significant resources, including

professionals, tools, and infrastructure. Therefore, the ra-

tional allocation of resources and the necessary investment

are a major challenge to realize the mine construction. In

addition, the framework relies on extensive data exchange

and cross-layer integration, and therefore requires a strong

data management strategy to ensure data consistency, secu-

rity, and accessibility. In addition, while the framework

promotes the use of standard interfaces, integrating inter-

faces with various simulation tools and models remains a

challenge. Differences in tool functionality and formats can

hinder interoperability, which requires additional coordina-

tion. The proposed framework builds on established meth-

odologies such as MBSE. By extending these methods,

comprehensive modeling and requirements analysis can be

carried out across layers.

6. Conclusion

The complexity of modern systems is increasing, so engi-

http://www.sciencepg.com/journal/si

Science Innovation http://www.sciencepg.com/journal/si

31

neers need a comprehensive systems engineering approach to

address complex system design, especially for SoS simulation

systems. The full-stack systems engineering framework pro-

posed in this paper aims to meet this need by integrating

modeling and simulation across all system layers, from mis-

sion planning to hardware and software interfaces. This

full-stack system engineering framework ensures that each

component and subsystem is aligned with the overall objec-

tives to enhance the consistency of system objectives and the

effectiveness of system functions.

By leveraging technologies such as digital twins, advanced

architecture (HLA), cloud-based simulation platforms, and

integrated modeling environments, the framework enables

enhanced simulation system interoperability, system modu-

larity, and lifecycle management.

Although this framework can bring significant advantages to

simulation system design, challenges coexist. These challenges

include the complexity of implementing the framework, data

management challenges, and harmonizing tool integration and

interface standardization. Addressing these challenges is critical

to the successful implementation of the framework.

In short, the full stack system engineering framework pro-

vides a solid foundation for the development of complex

simulation systems. By building a comprehensive approach, it

can effectively enhance the reliability, adaptability and ef-

fectiveness of simulation systems in dynamic operating en-

vironments. Future work will focus on refining the framework,

addressing the many challenges faced during implementation,

and exploring its application in various scenarios to further

validate the effectiveness of the framework.

Abbreviations

MBSE Model-Based Systems Engineering

SysML Systems Modeling Language

DEFII Digital Engineering Framework for Integration

and Interoperability

MOOSE Multi-Physics Object-oriented Simulation

Environment

CONOPS Operational Concepts

SoS Systems-of-Systems

C2 Command and Control

DES Discrete Event Simulation

HIL Hardware-in-the-loop

FMUs Mock-up Units

FMI Functional Mock-up Interface

HLA Advanced Architecture

ABM Agent-Based Modeling

IME Integrated Modeling Environments

Author Contributions

Qin Bo: Conceptualization, Methodology, Investigation

Wei Ren: Validation, Project administration

Funding

This work is supported by CETC.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Gorod, A., Sauser, B., & Boardman, J. (2008). Sys-

tem-of-systems engineering management: A review of modern

history and a path forward. IEEE Systems Journal, 2(4),

484-499.

[2] Hirshorn, S. R., Voss, L. D., & Bromley, L. K. (2017). NASA

systems engineering handbook (No. HQ-E-DAA-TN38707).

[3] Kossiakoff, A., Sweet, W. N., Seymour, S. J., & Biemer, S. M.

(2011). Systems engineering principles and practice (Vol. 83).

John Wiley & Sons.

[4] Nielsen, C. B., Larsen, P. G., Fitzgerald, J., Woodcock, J., &

Peleska, J. (2015). Systems of systems engineering: basic

concepts, model-based techniques, and research directions.

ACM Computing Surveys (CSUR), 48(2), 1-41.

[5] Dunbar, D., Hagedorn, T., Blackburn, M., Dzielski, J.,

Hespelt, S., Kruse, B.,... & Yu, Z. (2023). Driving digital

engineering integration and interoperability through semantic

integration of models with ontologies. Systems Engineering,

26(4), 365-378.

[6] Icenhour, C., Keniley, S., DeChant, C., Permann, C., Lindsay,

A., Martineau, R.,... & Shannon, S. (2018). Multi-physics ob-

ject oriented simulation environment (moose) (No.

INL/CON-18-51061-Rev000). Idaho National Lab.(INL),

Idaho Falls, ID (United States).

[7] Taivalsaari, A., Mikkonen, T., Pautasso, C., & Systä, K. (2021,

May). Full stack is not what it used to be. In International

conference on web engineering (pp. 363-371). Cham: Springer

International Publishing.

[8] Blanchard, B. S. (2004). System engineering management.

John Wiley & Sons.

[9] Rainey, L. B., & Tolk, A. (2015). Modeling and Simulation

Support for System of Systems Engineering Applications.

[10] Gregory, J., & Salado, A. (2024, July). Towards a Systems

Engineering Ontology Stack. In INCOSE International Sym-

posium (Vol. 34, No. 1, pp. 1304-1318).

[11] Riva, M., Zanutta, A., Genoni, M., Scalera, M. A., & Balestra,

A. (2024, August). MBSE or no MBSE: is MBSE the final

answer to system engineering?. In Modeling, Systems Engi-

neering, and Project Management for Astronomy XI (Vol.

13099, pp. 115-120). SPIE.

[12] Sinha, R., Paredis, C. J., Liang, V. C., & Khosla, P. K. (2001).

Modeling and simulation methods for design of engineering

systems. J. Comput. Inf. Sci. Eng., 1(1), 84-91.

http://www.sciencepg.com/journal/si

Science Innovation http://www.sciencepg.com/journal/si

32

[13] DoD, D. I. (2008). 5000.02: Operation of the defense acquisi-

tion system. US Department of Defense, Washington, DC.

[14] Hart, L. E. (2015, July). Introduction to model-based system

engineering (MBSE) and SysML. In Delaware Valley INCOSE

Chapter Meeting (Vol. 30). Mount Laurel, New Jersey: Ram-

blewood Country Club.

[15] Babulak, E., & Wang, M. (2010). Discrete event simulation.

Aitor Goti (Hg.): Discrete Event Simulations. Rijeka, Kroatien:

Sciyo, 1.

[16] Bullock, D., Johnson, B., Wells, R. B., Kyte, M., & Li, Z.

(2004). Hardware-in-the-loop simulation. Transportation Re-

search Part C: Emerging Technologies, 12(1), 73-89.

[17] Broman, D., Brooks, C., Greenberg, L., Lee, E. A., Masin, M.,

Tripakis, S., & Wetter, M. (2013, September). Determinate

composition of FMUs for co-simulation. In 2013 Proceedings

of the International Conference on Embedded Software

(EMSOFT) (pp. 1-12). IEEE.

[18] Kannapinn, M., Schäfer, M., & Weeger, O. (2024). TwinLab: a

framework for data-efficient training of non-intrusive re-

duced-order models for digital twins. Engineering Computa-

tions.

[19] Hällqvist, R., Munjulury, R. C., Braun, R., Eek, M., & Krus, P.

(2022). Realizing interoperability between mbse domains in

aircraft system development. Electronics, 11(18), 2901.

[20] Shanks, G. (2003). Real-time Platform Reference Federation

Object Model (RPR FOM) Version 2.0 D17. Simulation In-

teroperability Standards Organization.

[21] Singh, M., Fuenmayor, E., Hinchy, E. P., Qiao, Y., Murray, N.,

& Devine, D. (2021). Digital twin: Origin to future. Applied

System Innovation, 4(2), 36.

[22] Sabzian, H., Shafia, M. A., Bonyadi Naeini, A., Jandaghi, G.,

& Sheikh, M. J. (2018). A review of agent-based modeling

(ABM) concepts and some of its main applications in man-

agement science. Interdisciplinary Journal of Management

Studies (Formerly known as Iranian Journal of Management

Studies), 11(4), 659-692.

[23] Taylor, S. J., Kiss, T., Anagnostou, A., Terstyanszky, G.,

Kacsuk, P., Costes, J., & Fantini, N. (2018). The CloudSME

simulation platform and its applications: A generic multi-cloud

platform for developing and executing commercial

cloud-based simulations. Future Generation Computer Sys-

tems, 88, 524-539.

http://www.sciencepg.com/journal/si

