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Abstract 

This paper presents a comprehensive full-stack systems engineering framework designed to enhance the adaptability, scalability, 

and interoperability of complex systems across various domains, including defense, transportation, and industrial automation. 

The proposed framework is organized into five interconnected layers: the Task Layer, which defines mission objectives and 

stakeholder needs; the System Architecture Layer, which captures high-level system behavior and structural decomposition; the 

Subsystem Layer, responsible for modeling domain-specific subsystems; the Component Layer, which encapsulates functional 

elements and their interactions; and the Hardware and Software Interface Layer, which manages the integration of physical 

components with software control logic. A key feature of this framework is its ability to enable seamless transitions from 

high-level requirements to detailed component specifications, ensuring traceability and coherence throughout the development 

lifecycle. The integration of standardized interfaces, such as the Functional Mock-up Interface (FMI), enables plug-and-play 

subsystem integration, promoting modularity and reusability. The framework leverages SysML for architecture modeling, 

discrete event simulation for subsystem behavior analysis, and a co-simulation environment for synchronized software-hardware 

interaction. This holistic approach supports robust system verification, validation, and iterative optimization in both design and 

operational phases. By enabling multi-level abstraction, cross-domain integration, and simulation-based evaluation, this 

structured framework provides a scalable and flexible platform for addressing the growing complexity of modern systems. It 

serves as a valuable asset for engineers, architects, and decision-makers seeking to accelerate development cycles, reduce 

integration risk, and enhance overall system performance. 
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1. Introduction 

Modern engineering challenges often involve the integra-

tion of multiple autonomous systems, from robotics and 

transport networks to communications infrastructure and 

control systems [1]. This complexity defines the nature of 

systems of systems (SoS), where individual systems must 

operate closely to achieve overall goals. 

The dynamic nature of contemporary technological ad-

vances requires the rapid development, testing, and deploy-

ment of these integrated systems [2]. Traditional engineering 

approaches are often inadequate in dealing with complex SoS, 
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leading to challenges in interoperability, scalability, and 

adaptability [3]. Therefore, there is an urgent need for a 

comprehensive framework to facilitate the design, simulation 

and validation of SoS throughout its lifecycle. 

This paper presents a full-stack system engineering 

framework for complex system simulation. By integrating 

simulation tools at all layers, from conceptual design to 

hardware and software interfaces, the framework aims to 

enhance decision making, reduce development time, and 

improve system reliability. 

2. Background and Related Work 

2.1. Systems-of-Systems in Engineering Context 

In various engineering domains, SoS refers to the coordinated 

integration of multiple autonomous systems to achieve complex 

objectives [4]. While these systems can operate independently, 

they must work together in a larger operating environment. 

Frameworks like the Digital Engineering Framework for Inte-

gration and Interoperability (DEFII) provide guidelines for 

modeling such complex architectures, The importance of in-

teroperability and modularity is emphasized [5]. 

2.2. Simulation in Systems Engineering 

Simulation plays a key role in systems engineering, making 

it possible to test and verify system behavior in a variety of 

situations. Tools like the Multi-Physics Object-oriented Sim-

ulation Environment (MOOSE) provide system modeling and 

analysis capabilities across different domains, helping to 

make informed decisions during the design and development 

phases [6]. 

2.3. Full-Stack Systems Engineering 

Full-stack systems engineering includes the overall inte-

gration of all system layers - from high-level objectives to 

low-level hardware and software components [7]. This ap-

proach ensures that changes or issues in one layer can be 

effectively tracked and handled throughout the system [8]. 

Incorporating simulation at each layer enhances the ability to 

predict system performance and identify potential failures 

early in the development process [9]. 

2.4. Existing Frameworks and Limitations 

Current frameworks often focus on specific aspects of 

systems engineering or simulation, lacking a unified approach 

that spans the entire system stack [10]. For instance, while 

Model-Based Systems Engineering (MBSE) provides tools 

for system modeling, it may not fully integrate simulation 

capabilities across all layers [11]. Similarly, traditional sim-

ulation tools might not offer the flexibility required for mod-

eling complex SoS architectures [12]. This fragmentation 

underscores the need for a comprehensive framework that 

bridges these gaps. 

3. Proposed Framework: Full-Stack 

Systems Engineering for SoS 

Simulation 

3.1. Overview 

This section presents a conceptual framework for inte-

grating simulation at all levels of Systems-of-Systems (SoS) 

engineering across systems. The framework leverages a 

full-stack systems engineering approach - in which system 

elements, from task-level requirements to software and 

hardware interfaces, are represented, simulated, and validated. 

The framework is designed to ensure that simulation is not an 

isolated effort, but is embedded throughout the engineering 

lifecycle, supporting decision making from the strategic to 

tactical level. 

3.2. Architectural Layers of the Framework 

The framework is structured as a five-layer stack, each 

representing a level of abstraction and engineering concern: 

mission layer, system architecture layer, subsystem layer, 

component layer and software/hardware interface layer. 

3.2.1. Mission Layer 

As the base layer of the full stack system engineering 

framework, the task layer establishes the overall goal, theory 

and operation scenario to guide the development and integra-

tion of complex SoS. This layer translates high-level strategic 

objectives into structured mission scenarios that provide a 

clear context for system design and analysis. Key inputs in 

this phase include Operational Concepts (CONOPS), which 

outline the envisioned use of the system in a combat envi-

ronment, and detailed mission threads that represent the se-

quence of operational activities and interactions between 

system components [13]. To model and evaluate these sce-

narios effectively, the mission layer employs tools such as 

campaign-level simulations and wargame simulation systems 

that enable stakeholders to assess potential outcomes, identify 

risks, and make informed decisions early in the system de-

velopment process. This structured approach ensures that 

subsequent engineering work is aligned with the intended 

mission objectives and operating environment. 

3.2.2. System Architecture Layer 

The system architecture layer acts as a key intermediary in 

full-stack systems engineering, translating high-level mission 

objectives into detailed system designs. This layer captures 

the structural and behavioral aspects of the system, detailing 

how the various subsystems interact, their interdependencies, 
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and the overall functional architecture. Key components in-

clude command and control (C2) structures, communication 

networks, and integrated models of system behavior to ensure 

consistent operation throughout the system. To model and 

manage these complex interactions effectively, engineers use 

a model-based systems engineering (MBSE) approach, using 

tools such as SysML to create standardized visual represen-

tations of system architecture. These tools help with system 

analysis, design, validation, and validation to ensure that all 

components meet planned business objectives and can adapt 

to changing requirements [14]. The system architecture layer 

achieves seamless integration and coordination among sub-

systems by providing clear and detailed system structure and 

behavior diagram, laying the foundation for the successful 

implementation and operation of the system. 

3.2.3. Subsystem Layer 

The subsystem layer is a key component of the entire 

framework, focusing on the detailed design and analysis of 

individual subsystems such as physical platforms, sensors, 

and other important components. This layer pays particular 

attention to the internal structure and key performance pa-

rameters of each subsystem to ensure they operate at optimal 

performance within the broader system environment. To 

achieve this goal, engineers typically employ Discrete Event 

Simulation (DES) technology, which models the system's 

operation process as a series of discrete independent events in 

time to evaluate the behavior of subsystems under various 

scenarios [15]. 

In addition, hardware-in-the-loop (HIL) simulators are also 

used in the process of integrating actual hardware components 

into the simulation environment, providing an effective plat-

form for subsystem performance testing and verification un-

der real-time conditions [16]. This approach can identify and 

solve potential problems at an early stage of the development 

process, thereby enhancing the reliability and efficiency of the 

entire system. By focusing on the fine modeling of subsys-

tems, this layer ensures that each component meets its speci-

fied standards and can effectively contribute to the system's 

task objectives. 

3.2.4. Component Layer 

The component layer is the key layer in the full-stack sys-

tem engineering framework, which focuses on the modeling, 

design and simulation of individual hardware and software 

modules. It includes the control logic part, the embedded 

system part and the specific function unit, and focuses on the 

interface design at the module level and the performance and 

characteristics of the components. 

To design these components in greater detail and precision, 

engineers use a range of proprietary tools. Such as Simulink 

and MATLAB, these software are widely used to design 

control systems and embedded software, providing a graph-

ical environment foundation for dynamic system modeling. 

Another example is Modelica, an object-oriented, equation 

based design language for modeling complex physical envi-

ronments and systems. For specific Functional Mock-up Units 

(FMUs), the Functional Mock-up Interface (FMI) standard is 

followed, which facilitates information exchange and 

co-simulation of dynamic models between different platforms. 

For example, FMUs can be integrated into Simulink models, 

enabling seamless interoperability between tools and en-

hancing modularity of system components [17]. 

By leveraging these tools and standards, the component 

layer ensures that the behavior of each module is thoroughly 

validated and optimized, thereby improving the overall relia-

bility and efficiency of complex systems. 

3.2.5. Software/Hardware Interface Layer 

The software/hardware interface layer is a key component 

of the overall framework, and its main role is to facilitate the 

integration and interaction between virtual simulation and 

physical hardware components. This layer simulates the 

firmware state, the firmware running behavior and the inter-

action between the simulated firmware to realize the integra-

tion test of hardware and software. At the same time, this layer 

ensures that software and hardware can better work together. 

Several technical frameworks are included in this layer, 

such as the Co-simulation framework. It allows multiple 

simulation tools to operate simultaneously to achieve precise 

interactions between different system components. These 

frameworks support the synchronization of various models, so 

that virtual and physical elements of the system can be tested 

synchronously effectively. 

Another common technique in this layer is digital twins, 

which create real-time digital copies by providing a dynamic 

model of a real-world physical system. These digital copies 

support predictive analytics and operational optimization, 

enabling engineers to monitor system performance and pre-

dict the likelihood of problems before they arise [18]. By 

integrating digital twin technology into an analog environ-

ment, engineers can gain a deeper understanding of system 

behavior and make more appropriate decisions throughout the 

development lifecycle. 

By utilizing these tools and methods, the soft-

ware/hardware interface layer ensures tight integration of 

virtual models and real-world physical components, ensuring 

system robustness and reducing the risk of integration issues 

during deployment. 
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Table 1. Five Layers Framework. 

Layers Defines Inputs Tools 

Mission 
Defines operational goals, doctrine, and mission 

scenarios. 
CONOPS mission threads 

Campaign simulation 

wargaming systems 

System Architec-

ture 

Captures system interactions, interdependencies, 

and high-level functions. 

C2 

communication networks sys-

tem behavior models 

SysML models 

MBSE platforms 

Subsystem 
Represents physical platforms, sensors, and 

subsystems. 
/ 

DES 

HIL 

Component 
Models hardware and software modules includ-

ing control logic and embedded systems. 
Module-level Interfaces 

Simulink 

MATLAB 

Modelica 

FMUs 

Soft-

ware/Hardware 

Interface 

Enables integration testing, communication 

between virtual and physical components. 

Emulates firmware 

Real-time behavior 

Device-level interactions 

Co-simulation frameworks 

Digital twins 

RTOS 

Each layer is integrated with simulation tools aligned with specific SE lifecycle phases: 

Table 2. Layers vs. SE Lifecycle. 

SE Phase Simulation Focus Tool Examples 

Requirements Analysis Mission and scenario validation Wargaming tools 

Design 
Architectural modeling 

Functional verification 

SysML 

MBSE 

Implementation 
Module-level simulation 

Interface testing 
Simulink 

Testing & V&V System-level & end-to-end simulation HLA 

Maintenance 
Runtime monitoring 

Digital twins 
Cloud-based simulation dashboards 

 

3.3. Interoperability and Modularity 

In a complex SoS environment, ensuring that the system is 

modular in design and has good interoperability is an im-

portant prerequisite to ensure that the system components can 

be effectively developed, integrated and evolved. The fol-

lowing framework can help SoS achieve these prerequisites: 

Standard Interfaces: The framework leverage established 

standards such as Advanced Architecture (HLA) and Func-

tional Simulation Interface (FMI) to improve interoperability 

between different simulation tools and platforms. HLA is a 

general architecture of countermeasures for distributed 

computer simulation systems, enabling seamless interaction 

between different simulation components. On the other hand, 

FMI improves the interoperability of simulation tools and the 

ability to reuse models by allowing the exchange and joint 

simulation of dynamic models [19]. 

Plug-and-play modules: In order to adapt to the dynamic 

nature of SoS, the framework supports plug-and-play func-

tionality, allowing the subsystem to be replaced and upgraded 

at any time without the need to reconfigure various parame-

ters. This modular approach allows components to be added, 

removed, or replaced with minimal impact on the overall 

system, enhancing the flexibility and maintainability of the 

system. 

Multi-Resolution Modeling: Recognizing the varying lev-

els of detail required across different system layers, the 
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framework incorporates multi-resolution modeling. This 

approach allows simulations to operate at different levels of 

fidelity, enabling high-level abstractions for system-wide 

analysis and detailed models for specific subsystems. Such 

flexibility ensures that resources are allocated efficiently, and 

simulations remain scalable and relevant to the analysis ob-

jectives [20]. 

By integrating these strategies, the framework ensures that 

complex systems can be developed and evolved efficiently, 

with components interacting seamlessly and simulations tai-

lored to the specific needs of each analysis. 

4. Enabling Technologies 

The successful implementation of a full-stack systems en-

gineering framework for Systems-of-Systems (SoS) simula-

tion relies on a suite of advanced technologies. These enabling 

technologies facilitate the integration, interoperability, and 

scalability required to model complex military operations 

effectively. Below are key technologies that underpin the 

proposed framework. 

4.1. Digital Twins 

A digital twin is a virtual copy of a physical system that can 

be monitored, simulated, and analyzed in real time. In military 

applications, digital twins can model platforms such as air-

craft, vehicles, and weapon systems, and validate the digital 

models to provide improvements in performance, mainte-

nance needs, and potential failures for deployment. The 

USAF's Model One program enhances decision correctness 

and AI training of decision strategies in Digital Warfare [21] 

by integrating multiple live simulations into a highly aggre-

gated digital twin environment. 

4.2. Agent-Based Modeling (ABM) 

Agent-Based Modeling involves simulating the actions and 

interactions of autonomous agents to assess their effects on 

the system as a whole. In defense scenarios, ABM is used to 

model complex behaviors of individual units, such as soldiers 

or vehicles, within a larger operational context. This approach 

aids in understanding emergent behaviors and testing strate-

gies under various conditions [22]. 

4.3. Cloud-Based Simulation Platforms 

Cloud computing provides scalable resources for running 

complex simulation systems without the need for extensive 

infrastructure build-out on premises. Platforms such as Re-

scale provide high performance computing platforms for 

military simulation applications, enabling them to quickly 

implement simulation modeling and modeling analysis. This 

approach of cloud computing can reduce the development 

time and cost of simulation systems, while allowing the 

construction of a wider range of simulation test scenarios 

[23]. 

4.4. Integrated Modeling Environments (IME) 

Integrated Modeling Environments facilitate the collabo-

ration of various modeling and simulation tools within a uni-

fied framework. The U.S. Navy's adoption of IME supports 

Model-Based Systems Engineering (MBSE) and allows for 

the seamless integration of different simulation models, en-

hancing the efficiency and effectiveness of system develop-

ment processes [11]. 

5. Discussion 

The full-stack system engineering framework based on SoS 

simulation system proposed in this paper can effectively im-

prove the adaptability and scalability of complex systems. This 

section discusses the benefits of the framework, its potential 

limitations, and its positioning relative to existing approaches. 

With respect to advantages, by covering all layers - from 

mission objectives to hardware and software interfaces - the 

framework ensures that each component and subsystem is 

aligned with the overall system's building objectives. This 

consistency ensures the consistency of the system behavior 

and improves the efficiency of the task. The framework also 

emphasizes the use of unified standard interfaces, such as 

HLA and RPR FOM, to improve interoperability between 

different systems. The framework integrates digital twins and 

continuous simulation to support system evaluation and 

maintenance throughout the life cycle. This capability ensures 

continuous performance and adaptability in dynamic operat-

ing environments. 

In terms of limitations, implementing a full-stack simu-

lation framework requires significant resources, including 

professionals, tools, and infrastructure. Therefore, the ra-

tional allocation of resources and the necessary investment 

are a major challenge to realize the mine construction. In 

addition, the framework relies on extensive data exchange 

and cross-layer integration, and therefore requires a strong 

data management strategy to ensure data consistency, secu-

rity, and accessibility. In addition, while the framework 

promotes the use of standard interfaces, integrating inter-

faces with various simulation tools and models remains a 

challenge. Differences in tool functionality and formats can 

hinder interoperability, which requires additional coordina-

tion. The proposed framework builds on established meth-

odologies such as MBSE. By extending these methods, 

comprehensive modeling and requirements analysis can be 

carried out across layers. 

6. Conclusion 

The complexity of modern systems is increasing, so engi-
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neers need a comprehensive systems engineering approach to 

address complex system design, especially for SoS simulation 

systems. The full-stack systems engineering framework pro-

posed in this paper aims to meet this need by integrating 

modeling and simulation across all system layers, from mis-

sion planning to hardware and software interfaces. This 

full-stack system engineering framework ensures that each 

component and subsystem is aligned with the overall objec-

tives to enhance the consistency of system objectives and the 

effectiveness of system functions. 

By leveraging technologies such as digital twins, advanced 

architecture (HLA), cloud-based simulation platforms, and 

integrated modeling environments, the framework enables 

enhanced simulation system interoperability, system modu-

larity, and lifecycle management. 

Although this framework can bring significant advantages to 

simulation system design, challenges coexist. These challenges 

include the complexity of implementing the framework, data 

management challenges, and harmonizing tool integration and 

interface standardization. Addressing these challenges is critical 

to the successful implementation of the framework. 

In short, the full stack system engineering framework pro-

vides a solid foundation for the development of complex 

simulation systems. By building a comprehensive approach, it 

can effectively enhance the reliability, adaptability and ef-

fectiveness of simulation systems in dynamic operating en-

vironments. Future work will focus on refining the framework, 

addressing the many challenges faced during implementation, 

and exploring its application in various scenarios to further 

validate the effectiveness of the framework. 
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