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Abstract: In this paper we show some results about estimating the regularity index of fat points and study when the Segre’s
upper bound is sharp for arbitrary fat points in Pn. We show that the Segre’s upper bound is sharp for fat points where the points
are constrained by geometric conditions in Pn (Corollary 2.1 and Proposition 2.1). We show that if s ≤ 4, the Segre’s upper
bound is sharp for s arbitrary fat points in Pn (Theorem 3.1), and the Segre’s upper bound is sharp for 5 equimultiple fat points
in Pn (Theorem 3.2). We also show that if s ≥ 6 and n ≥ 2, then there exists always a set of s fat points in Pn whose the Segre’s
upper bound is not sharp (Proposition 3.1). We predict that Segre’s upper bound is sharp for 5 non-equimultiple fat points, but
we can not prove this prediction nor we can find an example to show that the prediction is incorrect.
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1. Introduction
Let K be an algebraically closed field of characteristic 0,

let Pn be the n-dimensional projective space over K. Let
P1, . . . , Ps be s distinct points in Pn, and let m1, . . . ,ms be s
positive integers. If ℘1, . . . , ℘s are the defining prime ideals in
R = K[X0, . . . , Xn] corresponding to the points P1, . . . , Ps,
we let

Z := {(P1,m1), . . . , (Ps,ms)}

be the zero-scheme defined by the ideal I = ℘m1
1 ∩ · · · ∩℘ms

s .
We may view Z as fat points in Pn, and write Z ⊂ Pn.

The ring R/I is the homogeneous coordinate ring of Z , it
is graded, R/I = ⊕

t≥0
(R/I)t. For each t, the t-th graded part

(R/I)t is a finite dimensional K-vector space. The function

HR/I(t) = dimK(R/I)t

is called the Hilbert function of R/I (or of Z), we also denote
HR/I(t) by HZ(t). The ring R/I has the multiplicity to be

e(R/I) =
s∑
i=1

(
mi+n−1

n

)
. It is well known thatHR/I(t) strictly

increases until it reaches the multiplicity e(R/I), and it keeps
constant thereafter. The number

r(R/I) = min{t ∈ N | HR/I(t) = e(R/I)}

is called the regularity index of R/I (or of Z), we also denote
r(R/I) by r(Z).

It is difficult to estimate r(Z), so one tries to find an upper
bound for it. There have been results in finding upper bounds
for r(Z) (see [1]-[6], [8]-[16]).

For a rational number b, denote by [b] the greatest integer
less than or equal to b. In [12] N.V. Trung (and, independently,
G. Fatabbi and A. Lorenzini in [6]) conjectured that

r(Z) ≤ Seg(Z)

where

Seg(Z) = max{Tj(Z)|j = 1, . . . , n},
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Tj(Z) = max



∑
Pi∈β

mi + j − 2

j

 | β is a linear j-subspace in Pn

 .

The number Seg(Z) is called the Segre’s bound because
Segre [10] proved the conjecture for case where no three points
are collinear in P2. The above conjecture was successfully
proven by Nagel in general case ([11, Theorem 5.3]). The
Segre’s upper bound is called to be sharp if r(Z) = Seg(Z).

In this paper we show some results about estimating the
regularity index r(Z) and study when the Segre’s upper bound
is sharp for arbitrary fat points Z ⊂ Pn.

2. Preliminaries

From now on, denote by ℘j ⊂ R the defining prime ideal of
Pj ∈ Pn.

Lemma 2.1. Let Z = {(P1,m1), . . . , (Ps,ms)} ⊂ Pn be
fat points. Then

T1(Z) ≤ r(Z) ≤ Seg(Z).

Proof. By the result of Nagel and Trok [11, Theorem 5.3]
we have

r(Z) ≤ Seg(Z).

Let γ be the linear 1-subspace of Pn such that

T1(Z) =
∑

Pi∈γ∩X
mi − 1.

Put J = ∩
Pi∈γ∩X

℘mi
i . Since the points of γ ∩X lie in a line,

by [4, Corollary 2.3]

r(R/J) =
∑

Pi∈γ∩X
mi − 1.

Put I = ∩
Pi∈X

℘mi
i . By [13, Lemma 3.3] we have

r(R/J) ≤ r(R/I).

Note that r(R/I) = r(Z). From above results we get
T1(Z) ≤ r(Z) ≤ Seg(Z).

Corollary 2.1. Let Z = {(P1,m1), . . . , (Ps,ms)} ⊂ Pn be
fat points such that P1, . . . , Ps are collinear. Then

r(Z) = Seg(Z).

Proof. We have T1(Z) = m1 + · · · +ms − 1 = Seg((Z).
By the above lemma

r(Z) = T1(Z) = Seg((Z).

The points P1, . . . , Ps in Pn are called to be in linearly
general position if no i + 2 points of them lie on a linear i-
subspace for every i < n. If P1, . . . , Pn+3 are in linearly
general position in Pn, then there exists a rational normal curve

of Pn containing these points (see [7, Theorem 1.18]). This
implies the following remark.

Remark 2.1. If s ≤ n + 3 and P1, . . . , Ps are in linearly
general position in Pn, then there exists a rational normal curve
of Pn containing these points.

Proposition 2.1. Let Z = {(P1,m1), . . . , (Ps,ms)} ⊂ Pn
be fat points such that all Pj are on a linear r-subspace α ∼= Pr,
s ≤ r + 3. Consider α as a r-dimensional projective space
containing the points P1α := P1, . . . , Psα := Ps, and consider
Zα = {(P1α,m1), . . . , (Psα,ms)} ⊂ Pr as fat points. Denote
by r(Zα) the regularity of Zα in Pr. If no i + 2 points of
{P1, . . . , Ps} are on a linear i-subspace for every i < r, then

r(Z) = r(Zα) = Seg(Zα) = Seg(Z).

Proof. By [14, Theorem 3.6]

r(Z) = r(Zα).

Since s ≤ r + 3 and no i+ 2 points of {P1, . . . , Ps} are on
a linear i-subspace for every i < r, by Remark 2.1 there exists
a rational normal curve of Pr passing through these points. By
[3, Proposition 7]

r(Zα) = max{T1(Zα), Tr(Zα)}.

In this case we have

Ti(Zα) = Ti(Z), i = 1, . . . , r,

Ti(Zα) < T1(Zα), i = 2, . . . , r − 1,

and

Tr(Z) > Ti(Z), i = r + 1, . . . , n.

So, Seg(Z) = max{T1(Zα), Tr(Zα)} = Seg(Zα) =
r(Zα).

3. Sharpness of the Segre’s Upper
Bound

We see that in Corollary 2.1 and Proposition 2.1,
the Segre’s upper bound is sharp for fat points
{(P1,m1), . . . , (Ps,ms)} ⊂ Pn where the points P1, . . . , Ps
are constrained by geometric conditions in Pn. In this section
we study the sharpness of Segre’s upper bound for fat points
{(P1,m1), . . . , (Ps,ms)} where the points P1, . . . , Ps are
arbitrary.

Theorem 3.1. Let Z = {(P1,m1), . . . , (Ps,ms)} ⊂ Pn be
s arbitrary fat points. If s ≤ 4, then

r(Z) = Seg(Z).
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Proof. There are the following 4 cases for s.
Case s=1. It is well known that r(R/℘m−11 ) = m1 − 1 =

Seg(Z).
Case s=2. Then P1, P2 lie on a line. by Corollary 2.1

r(Z) = m1 +m2 − 1 = T1(Z) = Seg(Z).

Case s=3. If P1, P2, P3 lie on a line, then by Corollary 2.1

r(Z) = m1 +m2 +m3 − 1 = T1(Z) = Seg(Z).

If P1, P2, P3 do not lie on a line, then by Proposition 2.1

r(Z) = Seg(Z).

Case s=4. We consider the three following cases:
1) If P1, P2, P3, P4 lie on a line, then by Corollary 2.1

r(Z) = m1 +m2 +m3 +m4 − 1 = T1(Z) = Seg(Z).

2) If P1, P2, P3, P4 do not lie on any linear 2-subspace of
Pn, then by Remark 2.1 there exists a rational normal curve of
Pn passing through P1, P2, P3, P4. By [3, Proposition 7]

r(Z) = Seg(Z).

3) If P1, P2, P3, P4 do not lie on a line, but they lie on a
linear 2-subspace α ⊂ Pn. We assume that α ∼= P2. Consider
two following subcases for {P1, . . . , P4}:

Case 3.a). There are 3 points of {P1, . . . , P4} on a line, say
l: Since there is only one point not on l, we have

T1(Z) ≥ max

∑
Pi∈l

mi − 1,
∑
Pi /∈l

mi − 1


and

T2(Z) =

[( s∑
i=1

mi

)
/2

]
.

Then T1(Z) ≥ T2(Z) and T1(Z) = Seg(Z). By Lemma
2.1

r(Z) = T1(Z) = Seg(Z).

Case 3.b). There are not 3 points of {P1, . . . , P4} on a line:
Note that P1, P2, P3, P4 lie on the linear 2-subspace α, so in
this case by Proposition 2.1 we get

r(Z) = Seg(Z).

Fat points {(P1,m1), . . . , (Ps,ms)} is called equimultiple
if m1 = · · · = ms = m.

Theorem 3.2. Let Z = {(P1,m), . . . , (P5,m)} ⊂ Pn be 5
arbitrary equimultiple fat points. Then

r(Z) = Seg(Z).

Proof. Consider the two following cases for {P1, . . . , P5}:
Case 1. {P1, . . . , P5} do not lie any linear 3-subspace of

Pn: Then n ≥ 4 and these points Pi are in linearly general

position of Pn. So, by Proposition 2.1

r(Z) = Seg(Z) = max

{
2m− 1,

[
5m+ n− 2

n

]}
= 2m−1.

Case 2. {P1, . . . , P5} lie on a linear 3-subspace of Pn, say
β: Then we consider three following subcases.

Case 2.1: There are no 4 points of {P1, . . . , P5} on a linear
2-subspace: By Proposition 2.1 we get

r(Z) = r(Zβ) = Seg(Zβ)

= Seg(Z) = max

{
2m− 1,

[
5m+ 1

3

]}
.

Case 2.2. There are 4 points of {P1, . . . , P5} on a linear 2-
subspace, say α, and {P1, . . . , P5} * α: If there are 3 points
of {P1, . . . , P5} on a line, then T1(Z) = 3m − 1 = Seg(Z).
By Lemma 2.1

r(Z) = T1(Z) = Seg(Z).

If there are no 3 points of {P1, . . . , P5} on a line, then
T2(Z) = 2m = Seg(Z). Put

U = {(Pi,m)|Pi ∈ α}.

By Proposition 2.1 we have r(U) = r(Uα) = Seg(Uα) =
Seg(U) = 2m. By [13, Lemma 3.3] we have r(U) ≤ r(Z).
By [11, Theorem 5.3] we have r(Z) ≤ Seg(Z). Therefore

r(Z) = r(U) = 2m = Seg(Z).

Case 2.3. P1, . . . , P5 lie on a linear 2-subspace, say α: If
there are 3 points of {P1, . . . , P5} on a line, then T1(Z) =
3m− 1 = Seg(Z). By Lemma 2.1

r(Z) = T1(Z) = Seg(Z).

If there are no 3 points of {P1, . . . , P5} on a line, then by
Proposition 2.1 we have

r(Z) = r(Zα) = Seg(Zα) = [
5m

2
] = Seg(Z).

Theorem 3.1 and Theorem 3.2 show that if s ≤ 5, the
Segre’s upper bound is sharp for any set of s equimultiple fat
points in Pn. But this is not still true for s ≥ 6.

Proposition 3.1. Let n ≥ 2. If s ≥ 6, then there exists
always s equimultiple fat points Z ⊂ Pn such that

r(Z) < Seg(Z).

Proof.
Let α be a linear 2-subspace of Pn and let l1, l2 be two

distinct lines on α. Let Z = {(P1,m), . . . , , (Ps,m)} ⊂ Pn
be s equimultiple fat points such that P1, . . . , P[ s2 ]

∈ l1,
P[ s2 ]+1, . . . , Ps−1 ∈ l2 \ l1, and Ps /∈ l1 ∪ l2. We have
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T1(Z) =
∑
Pi∈l1

mi − 1 =
[sm

2

]
− 1,

T2(Z) =
[sm

2

]
> Ti(Z), i = 3, . . . , n.

So,

Seg(Z) =
[sm

2

]
. (1)

Put Ps = (1, 0, . . . , 0), J = ∩s−1i=1℘
m
i . For j = 1, 2, since

Ps /∈ lj , there is a hyperplane of Pn, sayLj , containing the line
lj and avoiding Ps. We coincide the hyperplane Lj with the
linear form in K[X0, . . . , Xn] defining it. Since L1 contains
P1, . . . , P[ s2 ]

, we have

Lm1 ∈ ∩
[ s2 ]
i=1℘

m
i .

Since L2 contains P[ s2 ]+1, . . . , Ps−1, we have

Lm2 ∈ ∩s−1i=[ s2 ]+1℘
m
i .

These imply that for every monomial M in X1, . . . , Xn,
deg(M) = i, i = 0, . . . ,m− 1, we have

Lm1 L
m
2 M ∈ J.

Since Lj does not contain Ps, we can write Lj = X0 +Hj

for some Hj ∈ (X1, . . . , Xn) = ℘s, j = 1, 2. Therefore,

(X0 +H1)
m(X0 +H2)

mM ∈ J.

This implies X3m−1−i
0 M ∈ J + ℘i+1

s , i = 0, . . . ,m − 1,
because H1, H2 ∈ ℘s and M ∈ ℘is. By [12, Lemma 2.2]

r(R/(J + ℘ms )) ≤ 3m− 1. (2)

Put Y = {(P1,m), . . . , , (Ps−1,m)}. Then r(R/J) =
r(Y),

T1(Y) =
∑
Pi∈l1

mi − 1 =
[sm

2

]
− 1,

T2(Y) =
[
(s− 1)m

2

]
> Ti(Y), i = 3, . . . , n.

So, Seg(Y) =
[
sm
2

]
− 1. By [11, Theorem 5.3] we have

r(Y) ≤ Seg(Y). Hence

r(R/J) = r(Y) ≤ Seg(Y) =
[sm

2

]
− 1. (3)

Put I = J ∩ ℘ms . Then r(Z) = r(R/I). By [3, Lemma 1]

r(R/I) = max{m− 1, r(R/J), r(R/(J + ℘ms ))}. (4)

Since s ≥ 6 and m ≥ 1, from (2), (3), (4) and (1) we get

r(Z) ≤
[sm

2

]
− 1 < Seg(Z).

Now we consider 5 fat points V = {(P1,m1), . . . , (P5,m5)}

⊂ Pn, n ≥ 2, and V is not equimultiple. If P1, . . . , P5 are in
linearly general position in Pn, then by Proposition 2.1 we
get r(V) = Seg(V). If P1, . . . , P5 are not in linearly general
position in Pn and T1(V) = Seg(V), then by Lemma 2.1 we
get r(V) = Seg(V). In case of P1, . . . , P5 are not in linearly
general position in Pn and T1(V) < Seg(V) we predict that

r(V) = Seg(V),

but we cannot prove that the prediction is correct, nor can we
find an example to prove that the prediction is wrong.
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