
Machine Learning Research

2025, Vol. 10, No. 1, pp. 14-24

https://doi.org/10.11648/j.mlr.20251001.12

*Corresponding author:

Received: 14 March 2025; Accepted: 25 March 2025; Published: 14 April 2025

Copyright: © The Author(s), 2025. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

XSS-Net: An Intelligent Machine Learning Model for

Detecting Cross-Site Scripting (XSS) Attack in Web

Application

Emmanuel Osaze Oshoiribhor1 , Adetokunbo MacGregor John-Otumu2, *

1Department of Computer Science, Ambrose Alli University, Ekpoma, Nigeria

2Department of Information Technology, Federal University of Technology, Owerri, Nigeria

Abstract

This research paper focuses on detecting Cross-Site Scripting (XSS) attacks, a prevalent web security threat where attackers

inject malicious scripts into web applications to steal sensitive user data, hijack sessions, and execute unauthorized actions.

Traditional rule-based and signature-based detection methods often fail against sophisticated and obfuscated XSS payloads,

necessitating more advanced solutions. To address this, a machine learning-based model is developed to enhance XSS detection

accuracy while minimizing false positives. The proposed approach utilizes feature extraction techniques, including Term

Frequency-Inverse Document Frequency (TF-IDF) and n-grams, to analyze JavaScript payloads, while Principal Component

Analysis (PCA) is employed for feature selection, reducing dimensionality and improving computational efficiency. A Logistic

Regression classifier is trained on an XSS payload dataset from Kaggle, with data split into 80% for training and 20% for testing

to ensure a robust evaluation. Hyperparameter tuning is performed using GridSearchCV, optimizing the model’s predictive

capabilities. Experimental results demonstrate a 99.70% accuracy, with 100% recall and 99.36% precision, highlighting the

model’s effectiveness in detecting XSS attacks while minimizing false alarms. The high recall score ensures all malicious

payloads are identified, while the strong precision rate enhances reliability for real-world deployment. These findings underscore

the potential of machine learning in strengthening web security frameworks, offering a scalable and efficient alternative to

conventional detection systems. Future research should focus on enhancing resilience against adversarial attacks by integrating

deep learning models such as Bidirectional LSTMs (BiLSTMs) and Transformer-based architectures. Additionally, deploying

the model in real-time web security solutions could provide proactive defense mechanisms, ensuring robust protection against

evolving XSS threats.

Keywords

Machine Learning, Intelligent Systems, XSS, Payload Attack, Web Applications, Classification

1. Introduction

The rapid expansion of cyberspace has made web applica-

tions an essential part of everyday life, offering a wide range

of online services, including banking, e-commerce, and

communication. As these applications become more sophis-

http://www.sciencepg.com/journal/mlr
http://www.sciencepg.com/journal/604/archive/6041001
http://www.sciencepg.com/
https://orcid.org/0009-0004-8777-2050
https://orcid.org/0000-0002-3138-4639

Machine Learning Research http://www.sciencepg.com/journal/mlr

15

ticated, they have also become prime targets for cyberattacks.

Hackers exploit vulnerabilities in web applications to steal

private information, manipulate databases, and compromise

sensitive data through various attack methods such as SQL

injection and cross-site scripting (XSS) [1]. The continuous

evolution of attack strategies makes it necessary to adopt

advanced security frameworks capable of detecting anomalies

and alerting users to potential threats.

The increasing accessibility of the internet has led to a sig-

nificant rise in web application usage, with nearly half of the

global population connected online. However, this growth has

also fueled an increase in cyber threats. A survey conducted in

2019 revealed that nine out of ten web applications were vul-

nerable to attacks, with 68% being at risk of sensitive data

breaches. Additionally, 8% of payload attacks were attributed

to weak input validation mechanisms on web application serv-

ers [2]. Cybercriminals often exploit these weaknesses to inject

malicious code, allowing them to bypass security measures and

gain unauthorized access to systems. Some of the most com-

mon attacks include SQL injection, XSS, Cross-Site Request

Forgery (CSRF), command injection, and file inclusion attacks.

These threats highlight the urgent need for more effective and

intelligent security solutions.

Among these cyber threats, XSS attacks remain particularly

dangerous and continue to evolve, making them difficult to

detect using traditional security mechanisms. In an XSS at-

tack, an attacker injects malicious scripts into a web applica-

tion, which then executes in a user's browser without their

knowledge. This can lead to session hijacking, data theft, and

the distribution of harmful content. Conventional detection

methods, such as signature-based techniques, rely on prede-

fined attack patterns and can only identify previously known

threats. As a result, new or zero-day attacks often go unde-

tected, compromising the security of web applications [3].

These limitations call for more adaptive security solutions

capable of identifying emerging attack patterns in real-time.

Advancements in Artificial Intelligence (AI) and Machine

Learning (ML) have opened new possibilities for improving

web application security. ML models can analyze vast

amounts of data, detect hidden patterns, and adapt to dynamic

attack scenarios, providing a more proactive and accurate

defense mechanism [4]. Unlike traditional signature-based

methods, ML-based approaches can learn from evolving

attack techniques and improve over time. These models offer

several advantages, including the ability to:

1) Learn and Adapt – Continuously update and refine de-

tection capabilities based on new attack data.

2) Analyze Patterns – Identify complex trends and anoma-

lies associated with malicious payloads.

3) Reduce False Rates – Minimize false positives and false

negatives to enhance security reliability.

This study aims to develop an intelligent ML detection

model specifically designed to identify client-side XSS pay-

load attacks in web applications. The research is guided by

two key objectives:

(a) Develop and train a machine learning model capable of

accurately classifying XSS payload inputs as either benign or

malicious while minimizing false positives.

(b) Evaluate the model's performance in real-world envi-

ronments, testing its ability to detect obfuscated XSS pay-

loads and evade attack techniques.

The primary contribution of this research is the design of an

ML-based model using logistic regression for detecting XSS

attacks, providing an effective alternative to traditional secu-

rity methods. By addressing the limitations of conventional

detection approaches, this study lays a strong foundation for

further advancements in machine learning applications for

cybersecurity.

The rest of this paper is structured as follows: Section 2

presents a review of existing literature on machine learning

techniques for detecting XSS attacks and identifies key re-

search gaps. Section 3 details the methodology, including the

dataset used, feature extraction techniques, and the structure

of the proposed model. Section 4 outlines the experimental

setup and results, while Section 5 discusses the findings,

comparing the model’s performance with other approaches.

Finally, Section 6 concludes the paper with a summary of

results and recommendations for future research.

2. Related Works

Various machine learning classifiers, including Random

Forest, XGBoost, KNN, and SVM, have been applied to de-

tect XSS attacks. Using a custom dataset, Random Forest

achieved the highest accuracy of 99.93%, highlighting its

effectiveness in identifying XSS threats [5]. Similarly, re-

search on XSS detection in hybrid Android applications

demonstrated that machine learning algorithms, particularly

Random Forest, attained 99% accuracy when evaluated on a

custom dataset. These findings emphasize the potential of

machine learning in enhancing cybersecurity defenses [6].

Another investigation applied an extensive set of machine

learning models, including RF, LR, SVMs, DTs, XGBoost,

MLP, CNNs, ANNs, and ensemble learning, to detect XSS

attacks. The results showed that the Random Forest model

achieved 99.78% accuracy, while ensemble models exceeded

99.64%, indicating the effectiveness of ensemble techniques

in cybersecurity [7]. In another study, a phishing website

detection system was developed using the Phishtank dataset

consisting of 11,000 records. This approach integrated a

Random Forest classifier with a browser plugin, achieving an

accuracy of 96%, precision of 97%, recall of 99%, and an

F1-score of 98%. The findings demonstrate the effectiveness

of machine learning in identifying phishing threats [8].

Hybrid feature-based machine learning models have also

been utilized for XSS attack detection, relying on custom

datasets for evaluation. However, performance metrics were

not explicitly provided in the study [9]. Another approach

focused on syntactic tagging for XSS detection, utilizing

sn-grams, TF-IDF, Word2Vec, and Doc2Vec for feature ex-

http://www.sciencepg.com/journal/mlr

Machine Learning Research http://www.sciencepg.com/journal/mlr

16

traction. Among these, the sn-gram approach yielded the most

favorable accuracy and precision in classifying malicious

payloads, reinforcing the importance of advanced text analy-

sis techniques in cybersecurity [10].

Deep learning methods such as Bidirectional Long

Short-Term Memory (BiLSTM) have been employed to en-

hance XSS detection. One study applied BiLSTM to the CSIC

2010 HTTP dataset, encoding payloads into numerical matrices

using word embedding techniques to improve model perfor-

mance [11]. Similarly, recurrent neural networks (RNNs) have

been utilized to detect XSS, SQL injection, and shell attacks in

web applications using a dataset comprising 101,840 records.

These Deep Learning (DL) approaches highlight the growing

role of neural networks in cybersecurity [1].

Further advancements in XSS detection involve Bi-LSTM

models, which have demonstrated superior performance

compared to traditional deep learning techniques [12]. Addi-

tionally, research on Software Guard Extensions (SGX)

Dump attacks using Intel SGX has predicted that an SGX

Dump attack can potentially expose the entire enclave

memory if an exploitable vulnerability exists. These studies

underscore the need for robust security frameworks to miti-

gate evolving cyber threats [13].

Cross-site scripting (XSS) attacks have also been examined

using various classification models. A study utilizing Random

Forest, SVM, and k-NN on a public dataset found that com-

bining language syntax and behavioral features enhanced

accuracy and precision [14]. Innovative approaches, such as

integrating Genetic Algorithms (GA) with Reinforcement

Learning (RL), have been proposed for XSS detection.

However, concerns regarding training and runtime complexi-

ties remain a challenge [15]. Additionally, research applying

Random Forest to a simulated public CVE dataset demon-

strated a high recall rate and an average accuracy of 94.9%.

Notably, the study found that maintaining a low false-negative

rate resulted in an increased False-Positive Rate (FPR), high-

lighting the trade-offs in model optimization [16]. Other re-

search efforts have tested multiple machine learning algo-

rithms on custom datasets, focusing on key performance

metrics such as accuracy, precision, recall, and F1-score, to

refine XSS detection capabilities [17].

Table 1. Summary of Comparative Analysis of Machine Learning and Deep Learning Models for XSS Detection.

Model(s) Used Dataset Model Performance Metrics

Random Forest, XGBoost, KNN, SVM [5] Custom dataset RF: 99.93% Accuracy

Random Forest [6]
Hybrid Android Applications (Cus-

tom dataset)
RF: 99% Accuracy

RF, LR, SVMs, DTs, XGBoost, MLP, CNNs,

ANNs, Ensemble Learning [7]
Custom dataset

RF: 99.78% Accuracy, Ensemble: >99.64% Ac-

curacy

Random Forest (with browser plugin) [8] Phishtank dataset (11,000 records)
96% Accuracy, 97% Precision, 99% Recall, 98%

F1-score

Hybrid feature-based ML models [9] Custom dataset Performance metrics not provided

sn-grams, TF-IDF, Word2Vec, Doc2Vec [10] Custom dataset sn-grams had the highest accuracy & precision

BiLSTM [11] CSIC 2010 HTTP dataset Word embedding used for payload encoding

RNNs [1]
Web attack dataset (101,840 rec-

ords)
Applied to XSS, SQL injection, and shell attacks

BiLSTM [12] Various datasets Superior to traditional DL techniques

Intel SGX-based security analysis [13] Simulated Intel SGX dataset Exposed enclave memory vulnerabilities

Random Forest, SVM, k-NN [14] Public dataset
Combining syntax & behavior improved accuracy

& precision

Genetic Algorithm + Reinforcement Learning

[15]
Custom dataset Challenges in training and runtime complexity

Random Forest [16] Simulated CVE dataset 94.9% Accuracy, high recall, FPR trade-off

Multiple ML models [17] Custom datasets Focused on accuracy, precision, recall, F1-score

These studies demonstrate significant advancements in using machine learning for XSS detection, emphasizing the

http://www.sciencepg.com/journal/mlr

Machine Learning Research http://www.sciencepg.com/journal/mlr

17

importance of diverse classifiers, feature selection methods,

and evaluation metrics. The success of algorithms like Ran-

dom Forest and k-NN in achieving high accuracy highlights

their potential for web security. However, the evolving nature

of attack vectors calls for continuous model refinement to

enhance adaptability and real-world effectiveness.

3. Materials and Methods

This section outlines the materials and methodologies em-

ployed in conducting the experimental Machine Learning

(ML) research. It details the experimental setup, data sources,

preprocessing techniques, feature extraction methods, model

selection, training process, evaluation metrics, and deploy-

ment strategies. The study follows a structured approach,

incorporating dimensionality reduction, cross-validation, and

hyperparameter tuning to enhance model performance. Fi-

nally, the optimized model is integrated into a security

framework for real-time detection, ensuring a comprehensive

and effective ML-based solution for identifying XSS attacks.

3.1. Experimental Setup

Table 2 presents the experimental setup used for the Ma-

chine Learning research. The system runs on an Intel Core

i7-7300U processor with a 64-bit architecture, 16 GB RAM,

and a 256 GB SSD, ensuring efficient data processing. Mi-

crosoft Windows 10 serves as the operating system, while

Google Colab and Jupyter Notebook are used as development

environments. The implementation is done in Python 3.11,

utilizing essential libraries such as Pandas, NumPy,

Scikit-learn, Joblib, Matplotlib, and Seaborn for data pro-

cessing, modeling, and visualization.

Table 2. Experimental Setup.

Configuration Parameters

CPU Intel(R) Core (TM) i7-7300U

System Type 64-bit Operating System, x64-based processor

Memory (RAM) 16 GB

Harddisk 256 GB SSD

Operating System (OS) Microsoft Windows 10

Development IDE Google Colab, Jupyter Notebook

Programming Language Python 3.11

Package/Library Pandas, Numpy, Scikit-learn, Joblib, Matplotlib, Seaborn

3.2. Proposed System Architecture

This section discusses the proposed machine learning sys-

tem architecture.

Figure 1 illustrates the proposed system for detecting

Cross-Site Scripting (XSS) attacks using Machine Learning

(ML), outlining the key phases from data collection to de-

ployment. The process begins with collecting malicious XSS

payloads and benign inputs, followed by data preprocessing,

which involves text cleaning, tokenization, and stopword

removal. Feature extraction is performed using TF-IDF,

converting textual data into numerical form, while Principal

Component Analysis (PCA) is employed for feature selection

to reduce dimensionality by identifying the most significant

features while eliminating redundancy. PCA was chosen over

other feature selection methods, such as Chi-square and Re-

cursive Feature Elimination (RFE), due to its ability to

transform correlated features into orthogonal components,

thereby improving computational efficiency and preventing

multicollinearity. Unlike Chi-square, which is mainly useful

for categorical data, or Ridge Regression (RR), which relies

on penalization rather than transformation, PCA ensures that

the selected features capture maximum variance while pre-

serving model interpretability. After feature selection, the

dataset is split into 80% for training and 20% for testing, with

Logistic Regression (LR) selected for its efficiency in han-

dling high-dimensional sparse data. Random Forest (RF) was

also considered due to its ability to handle complex patterns,

while SVM and XGBoost were avoided due to their higher

computational costs and longer training times, making them

less suitable for real-time applications. Model evaluation is

conducted using accuracy, precision, recall, F1-score, confu-

sion matrices, and the ROC-AUC curve to measure its clas-

sification effectiveness. To further optimize performance,

GridSearchCV is applied for hyperparameter tuning, ensuring

http://www.sciencepg.com/journal/mlr

Machine Learning Research http://www.sciencepg.com/journal/mlr

18

the best parameter selection. Once finalized, the trained model

is deployed within a Web Application Firewall (WAF) or

integrated via a Flask-based API, allowing for real-time XSS

detection and enhancing web security against malicious script

injections.

Figure 1. Proposed ML Architecture for Detection of XSS Attack.

3.2.1. Data Source and Description

Table 3 provides an overview of the dataset used for de-

tecting Cross-Site Scripting (XSS) attacks. The dataset,

named "Cross-Site Scripting XSS Dataset for Deep Learn-

ing," is sourced from the Kaggle repository and has a file size

of 1.67 MB. It consists of 13,686 instances with three cate-

gorical features, and no missing values are present. The da-

taset is imbalanced, with 6,313 benign samples and 7,373

malicious samples, meaning there are slightly more malicious

cases than benign ones. This imbalance can affect the model’s

performance by making it biased towards the majority class.

Therefore, the Synthetic Minority Over-sampling Technique

(SMOTE) was used to balance the dataset and improve model

accuracy.

Table 3. Data Source/Description.

Parameters Input

Dataset Name Cross site scripting XSS dataset for Deep learning

Dataset File Size 1.67 MB

Source Kaggle dataset repository

Link to dataset https://www.kaggle.com/datasets/syedsaqlainhussain/cross-site-scripting-xss-dataset-for-deep-learning

Feature Type Categorical

Number of Instances 13,686

Number of Features 3

http://www.sciencepg.com/journal/mlr

Machine Learning Research http://www.sciencepg.com/journal/mlr

19

Parameters Input

Missing Values None

Benign 6313

Malicious 7373

Comments The classes are imbalanced

3.2.2. Data Preprocessing

Dataset Representation

The dataset D consists of 13,686 instances with 3 features,

represented as:

D = {(xi, yi)}
n

i=1, xi ∈ Rd, yi ∈ {0, 1} (1)

where yi=0 represents benign instances (6,313 samples) and

yi=1 represents malicious instances (7,373 samples). The

dataset is imbalanced, requiring synthetic oversampling

techniques to balance the classes.

Text Cleaning

To normalize input data, unnecessary characters, HTML

tags, and JavaScript code are removed using a cleaning func-

tion fclean, defined as:

xi′ = fclean(xi) (2)

Tokenization

The cleaned input xi′ is tokenized into meaningful units

(words, characters, or code snippets) using:

T(xi′) = {t1,t2,...,tm} (3)

Stopword Removal

Common words that do not contribute to detection are re-

moved using a predefined stopword set S:

T′(xi′) = T(xi′) ∖S (4)

Synthetic Minority Over-Sampling Technique (SMOTE)

To address class imbalance, SMOTE is applied to generate

synthetic samples for the minority class:

xnew = xminority + λ (xnearest−xminority), λ ∼ U(0,1) (5)

where xnearest is the nearest neighbor of xminority, and λ is a

random value between 0 and 1.

Feature Engineering

Lexical features are extracted from the processed input,

including the length of input, number of script occurrences,

and count of special characters:

flex(xi′) = [length(xi′), countscripts(xi′), countspecial(xi′)] (6)

Vectorization using TF-IDF

To convert text into numerical form, Term Frequen-

cy-Inverse Document Frequency (TF-IDF) is applied:

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = TF(t, d). Log
N

DF(t)
 (7)

where TF(t,d) is the term frequency of t in document d, DF(t)

is the number of documents containing t, and N is the total

number of documents.

This preprocessing pipeline ensures that the dataset is

cleaned, tokenized, balanced, and transformed into a suitable

format for training a robust XSS attack detection model.

3.2.3. Feature Selection & Transformation

To enhance model efficiency and reduce computational

complexity, Principal Component Analysis (PCA) is applied

for dimensionality reduction. This technique transforms the

original feature matrix X ∈ Rnxd into a lower-dimensional

representation X′ ∈ Rn×k, where k < d. The transformation is

mathematically expressed in Equation (8):

X′ = XW (8)

Here, W is a matrix containing the top k eigenvectors of the

covariance matrix Σ, which captures the most significant

variance in the data. The covariance matrix is computed as

shown in Equation (9):

Σ =
1

2
XT X (9)

By selecting the principal components with the highest

variance, PCA ensures that the most informative features are

retained while eliminating redundancy, ultimately improving

the model's performance.

3.2.4. Model Selection and Training

For detecting XSS attacks, Logistic Regression (LR) is

chosen as the classification model due to its simplicity and

effectiveness in binary classification tasks. The model's hy-

pothesis function, which estimates the probability of an in-

stance belonging to the malicious or benign class, is defined in

Equation (10):

http://www.sciencepg.com/journal/mlr

Machine Learning Research http://www.sciencepg.com/journal/mlr

20

hθ(x) =
1

1 + 𝑒−θTx (10)

To optimize the model parameters, the Binary

Cross-Entropy loss function is used, which quantifies the

error between predicted and actual labels. This function is

mathematically expressed in Equation (11) as:

J(θ) = −
1

2
 ∑ 𝑛

𝑖=1 [yi log hθ(xi) + (1 – yi) log (1 - hθ(xi))] (11)

The model is trained using 80% of the dataset, while the

remaining 20% is used for testing. To further refine perfor-

mance, k-fold cross-validation is applied, ensuring a more

reliable evaluation of the model.

Cross-Validation Strategy

The dataset is split into 80% for training and 20% for test-

ing to evaluate the model's generalization ability. To further

improve robustness, k-fold cross-validation is applied, where

the dataset is divided into k subsets, and the model is trained

and validated iteratively on different folds. The overall per-

formance is computed as the average loss across all folds, as

represented in Equation (12):

1

𝑘
∑ 𝑘

𝑗=1 Loss(Dj) (12)

This ensures that the model is evaluated on multiple data

partitions, reducing the risk of overfitting and improving its

reliability.

3.2.5. Model Evaluation

The performance of the model is assessed using standard

evaluation metrics, including accuracy, precision, recall,

F1-score, and ROC-AUC. These metrics, mathematically

represented in Equations (13) to (17), provide a comprehen-

sive understanding of the model's effectiveness in distin-

guishing between benign and malicious XSS inputs. Accuracy

measures the overall correctness of predictions, precision

evaluates the proportion of correctly identified malicious

cases, recall determines the model's ability to detect all actual

malicious cases, and the F1-score balances precision and

recall. Lastly, the ROC-AUC score quantifies the model's

ability to distinguish between classes across different thresh-

old values.

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 (13)

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (14)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15)

F1-score = 2𝑥
(Pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

(Pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (16)

ROCAUC = ∫ 𝑇𝑃𝑅 𝑑(𝐹𝑃𝑅)
1

0
 (17)

3.2.6. Hyperparameter Tuning

Grid Search Optimization

To enhance model performance, Grid Search is employed

to find the optimal hyperparameters λ and Cover a predefined

search space. This process involves selecting the best param-

eter set Θ∗ that minimizes the objective function J(Θ), as

expressed in Equation (18):

Θ∗ = arg min
Θ ∈ Θ

 𝐽 (Θ) (18)

4. Results

This section presents a clear and concise summary of the

experimental findings, as illustrated in Table 3 and Figures 2–

4 respectively.

4.1. Visualization of the Dataset

Figure 2. Visual Representation of the XSS Dataset.

Figure 2 presents a visual representation of the original

XSS dataset, illustrating the distribution of benign and mali-

cious samples in both the training and test sets. The dataset is

imbalanced, with more malicious samples compared to be-

nign ones. In the training set, there are 5,050 benign instances

and 5,898 malicious instances, while the test set contains

1,263 benign and 1,475 malicious samples. This imbalance

highlights the need for techniques such as oversampling or

weighting adjustments during model training to prevent bias

toward the majority class and ensure fair classification per-

formance.

Table 4 presents the classification results of the machine

learning models used for XSS attack detection, evaluating

their performance based on accuracy, precision, recall,

F1-score, and ROC_AUC. The Logistic Regression (LR)

model outperforms the Random Forest (RF) model, achieving

an accuracy of 99.70%, a precision of 99.36%, a recall of

100%, an F1-score of 99.67%, and a perfect ROC_AUC score

http://www.sciencepg.com/journal/mlr

Machine Learning Research http://www.sciencepg.com/journal/mlr

21

of 1.00. In contrast, the RF model records an accuracy of

96.34%, a precision of 95.60%, a recall of 97.00%, an

F1-score of 97.76%, and a ROC_AUC of 0.97. These results

indicate that the LR model exhibits superior classification

performance, particularly in recall, suggesting that it effec-

tively identifies all malicious instances without false nega-

tives.

4.2. Model Performance Classification Results

Table 4. Classification Result.

ML Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) ROC_AUC

LR 99.70 99.36 100 99.67 1.00

RF 96.34 95.60 97.00 97.76 0.97

Figure 3. Confusion Matrix Heatmap.

Figure 3 presents the confusion matrix for XSS detection,

illustrating the model’s classification performance in differ-

entiating between malicious and benign instances. The matrix

indicates that 8 benign samples were misclassified as mali-

cious, leading to false positives, which may cause unneces-

sary security alerts and potential disruptions to legitimate user

activities. While the model demonstrates strong predictive

accuracy, the occurrence of false positives suggests a need for

further optimization. Additionally, the AUC score of 1.00

raises concerns about overfitting, as perfect classification may

indicate that the model has learned patterns specific to the

training dataset rather than generalizable features. This could

reduce its effectiveness when deployed in real-world envi-

ronments with varying attack strategies. To mitigate these

concerns, techniques such as k-fold cross-validation can help

evaluate model generalization across different data splits,

while regularization methods like L1 (Lasso) or L2 (Ridge)

can prevent excessive reliance on specific features. Further-

more, alternative feature selection approaches, such as mutual

information or recursive feature elimination (RFE), can refine

the input space for improved performance. Expanding the

dataset with diverse and adversarial examples can enhance

robustness, and threshold tuning can help balance precision

and recall to reduce false positives. These refinements can

improve the model’s adaptability, ensuring more reliable and

effective XSS detection in real-world scenarios.

Figure 4. Graphical representation of the ROC_AUC Result.

Figure 4 presents the Receiver Operating Characteristic

(ROC) curve for the XSS detection model, demonstrating its

ability to differentiate between malicious and benign in-

stances. The ROC curve follows the upper-left boundary,

indicating a perfect classification performance. The Area

Under the Curve (AUC) value of 1.00 confirms that the model

achieves an ideal balance between sensitivity and specificity,

meaning it correctly identifies all positive and negative cases

without errors. The model's performance is significantly su-

perior, as indicated by the complete separation from the di-

agonal baseline, which represents random guessing. This

result highlights the robustness and reliability of the model in

detecting XSS attacks with zero compromise in classification

http://www.sciencepg.com/journal/mlr

Machine Learning Research http://www.sciencepg.com/journal/mlr

22

accuracy.

5. Discussion

This section provides a comparative analysis of the pro-

posed research findings and related works in terms of dataset

characteristics, classification performance, model effective-

ness, and emerging trends in XSS detection.

5.1. Dataset Characteristics

In the proposed research, the dataset used for XSS attack

detection exhibits a class imbalance, with malicious instances

slightly outnumbering benign ones. Specifically, the training

set contains 5,050 benign and 5,898 malicious samples, while

the test set consists of 1,263 benign and 1,475 malicious in-

stances. This imbalance necessitates techniques such as

oversampling or weighting adjustments to improve model

fairness and classification accuracy.

Previous studies have used diverse datasets for XSS detec-

tion. For instance, research involving hybrid Android appli-

cations relied on a custom dataset with balanced class distri-

butions, achieving an accuracy of 99% using the Random

Forest classifier [6]. Additionally, deep learning-based studies

often employ benchmark datasets such as CSIC 2010 HTTP

logs to analyze web-based attacks, including XSS and SQL

injection [11]. The diversity of datasets in previous research

highlights the need for comparative evaluations to determine

the generalizability of different models.

5.2. Classification Performance Comparison

Table 3 presents the classification performance of the

models in the proposed research. Logistic Regression (LR)

outperforms other models, achieving an accuracy of 99.70%,

a recall of 100%, and an F1-score of 99.67%, with a perfect

ROC_AUC of 1.00. In contrast, the Random Forest (RF)

model records a lower accuracy of 96.34% but maintains high

precision (95.60%) and recall (97.00%). The superior recall of

LR suggests its robustness in detecting all malicious instances

without false negatives.

In comparison, previous studies have demonstrated var-

ying performance metrics based on model selection. One

study reported Random Forest achieving 99.93% accuracy in

XSS detection [5], while another research involving multiple

classifiers, including SVM, DT, XGBoost, and MLP, found

Random Forest and ensemble models to be among the top

performers with 99.78% and 99.64% accuracy, respectively

[7]. However, deep learning models, such as BiLSTM, have

demonstrated further performance improvements, particu-

larly when integrated with word embedding techniques [11].

These comparisons suggest that while traditional machine

learning models perform well, deep learning approaches

may offer additional benefits in handling complex attack

patterns.

5.3. Model Effectiveness and Interpretability

The effectiveness of the proposed research models is fur-

ther validated through confusion matrix analysis. Figure 3

illustrates that the LR model correctly classifies all malicious

instances (zero false negatives), while only 8 benign samples

are misclassified as malicious, leading to a minimal false

positive rate. Additionally, the ROC curve (Figure 4) confirms

the model’s ability to differentiate between benign and mali-

cious instances with an AUC score of 1.00.

Related studies have also evaluated model effectiveness

using confusion matrices and AUC scores. Research com-

paring Random Forest, SVM, and k-NN found that Random

Forest exhibited the best trade-off between sensitivity and

specificity for XSS detection [14]. Another study introduced

Genetic Algorithms (GA) integrated with Reinforcement

Learning (RL) to optimize XSS detection, but training com-

plexity remained a challenge [15]. Similarly, an investigation

into the application of Random Forest for public CVE datasets

reported a trade-off between recall optimization and false

positive reduction, achieving an accuracy of 94.9% [16].

These findings highlight the continuous need to balance de-

tection accuracy with model interpretability and computa-

tional efficiency.

5.4. Emerging Trends and Future Directions

The evolving landscape of XSS detection emphasizes the

integration of advanced machine learning techniques and

hybrid models. Several studies have explored hybrid fea-

ture-based detection mechanisms, incorporating TF-IDF,

Word2Vec, and Doc2Vec for enhanced text analysis [10].

Additionally, BiLSTM-based models have demonstrated

superior performance compared to traditional deep learning

architectures, reinforcing the potential of recurrent neural

networks in web security [12].

Given these advancements, future research should explore

hybrid deep learning approaches that combine autoencoders

and transformer networks for improved XSS detection. Fur-

thermore, integrating explainable AI (XAI) techniques could

enhance model interpretability, allowing cybersecurity ana-

lysts to better understand and trust machine learning-driven

security solutions.

6. Conclusions

This study presents an effective machine learning-based

approach for detecting XSS attacks, demonstrating superior

classification performance compared to traditional models.

The proposed Logistic Regression model achieves

near-perfect accuracy, precision, recall, and F1-score, signif-

icantly outperforming Random Forest. The model’s ability to

correctly classify all malicious instances without false nega-

tives underscores its reliability in real-world cybersecurity

applications. Additionally, the study highlights the im-

http://www.sciencepg.com/journal/mlr

Machine Learning Research http://www.sciencepg.com/journal/mlr

23

portance of dataset-balancing techniques to mitigate bias and

improve classification fairness.

Comparative analysis with existing research shows that

while previous studies have achieved high accuracy using

Random Forest and ensemble models, the proposed approach

provides an enhanced detection capability with a perfect

ROC_AUC score, ensuring optimal sensitivity and specificity.

Future work should focus on integrating hybrid deep learning

models, such as BiLSTM, Transformer networks, and atten-

tion-based architectures, with explainability techniques like

SHAP (SHapley Additive Explanations) and LIME (Local In-

terpretable Model-Agnostic Explanations) to improve interpret-

ability and trustworthiness. The lack of transparency in complex

machine learning models poses a challenge for security analysts,

making it essential to incorporate explainable AI (XAI) tech-

niques to enhance human understanding of detection decisions.

Furthermore, expanding the dataset to include real-world, ad-

versarial, and evolving attack patterns will improve model gen-

eralizability and robustness against sophisticated evasion tactics

used by attackers. Data augmentation techniques, such as gener-

ative adversarial networks (GANs) and synthetic data generation,

can be explored to create more diverse training samples,

strengthening the model’s ability to detect previously unseen

XSS payloads. Additionally, integrating the model into real-time

intrusion detection systems (IDS) or web application firewalls

(WAFs) will provide proactive protection by blocking attacks

before they compromise web applications. Optimizing the model

for low-latency detection is crucial to ensure minimal perfor-

mance impact on web servers while maintaining high accuracy.

Another promising direction is leveraging federated learning

approaches, enabling collaborative model training across multi-

ple organizations without sharing sensitive data, thus preserving

privacy while improving detection performance. Lastly, future

studies should explore the ethical implications and regulatory

compliance of AI-driven security solutions to ensure responsible

and unbiased threat detection. By addressing these areas, the

research can significantly contribute to the development of

scalable, transparent, and adaptive security frameworks, rein-

forcing web applications against the ever-evolving landscape of

XSS attacks.

Abbreviations

ML Machine Learning

AI Artificial Intelligence

IS Intelligent Systems

XSS Cross Site Scripting

CSRF Cross-Site Request Forgery

DL Deep Learning

SGX Software Guard Extensions

LR Logistic Regression

RF Random Forest

GA Genetic Algorithm

CV Cross Validation

HTTP Hypertext Transfer Protocol

ANN Artificial Neural Network

CNN Convolutional Neural Networks

RNN Recurrent Neural Networks

MLP Multi-Layer Perceptron

LSTM Long Short-Term Memory

SVM Support Vector Machine

DT Decision Tree

KNN K-Nearest Neighbor

PCA Principal Component Analysis

TF-IDF Term Frequency-Inverse Document Frequency

SQL Structured Query Language

Author Contributions

Emmanuel Osaze Oshoiribhor: Conceptualization, Re-

sources, Methodology, Formal Analysis, Validation, review

& editing

Adetokunbo MacGregor John-Otumu: Data curation,

Methodology, Formal Analysis, Software, Validation, Visu-

alization, original draft, review & editing

Data Availability Statement

The data that support the findings of this study can be

found at:

https://www.kaggle.com/datasets/syedsaqlainhussain/cross-si

te-scripting-xss-dataset-for-deep-learning. (a publicly availa-

ble repository url)

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Taylor O. E. and Ezekiel P. S. (2022) A Robust System for De-

tecting and Preventing Payloads Attacks on Web-Applications

Using Recurrent Neural Network (RNN), European Journal of

Computer Science and Information Technology, 10(4), 1-13.

https://doi.org/10.37745/ejcsit.2013/vol10n4113

[2] Schalk, A., & Brown, D. (2023, March). Detection and miti-

gation of vulnerabilities in space network software bus archi-

tectures. In 2023 IEEE Aerospace Conference (pp. 1-10). IEEE.

https://doi.org/10.1109/aero55745.2023.10115986

[3] Lee, H. S., & Kim, K. (2018). Simultaneous traffic sign de-

tection and boundary estimation using convolutional neural

network. IEEE Transactions on Intelligent Transportation

Systems, 19(5), 1652-1663.

https://doi.org/10.1109/TITS.2018.2801560

[4] Li, Y., Hua, J., Wang, H., Chen, C., & Liu, Y. (2021). Deep-

Payload: Black-box backdoor attack on deep learning models

through neural payload injection. Proceedings - International

Conference on Software Engineering.

https://doi.org/10.1109/ICSE43902.2021.00035

http://www.sciencepg.com/journal/mlr

Machine Learning Research http://www.sciencepg.com/journal/mlr

24

[5] Hamzah, K. H., Osman, M. Z., Anthony, T., Ismail, M. A.,

Abdullah, Z., & Alanda, A. (2024). Comparative Analysis of

Machine Learning Algorithms for Cross-Site Scripting (XSS)

Attack Detection. JOIV: International Journal on Informatics

Visualization, 8(3-2), 1678-1685.

http://dx.doi.org/10.62527/joiv.8.3-2.3451

[6] Khalid, U., Abdullah, M., & Inayat, K. (2020). Exploiting ML

algorithms for Efficient Detection and Prevention of JavaS-

cript-XSS Attacks in Android Based Hybrid Applications.

arXiv preprint arXiv: 2006. 07350.

https://doi.org/10.48550/arXiv.2006.07350

[7] Alhamyani, R., & Alshammari, M. (2024). Machine learn-

ing-driven detection of cross-site scripting attacks. Information,

15(7), 420. https://doi.org/10.3390/info15070420

[8] Aliga, A. P., John-Otumu, A. M., Imhanhahimi, R. E., & Akpe,

A. C. (2018). Cross site scripting attacks in web-based appli-

cations. Journal of Advances in Science and Engineering, 1(2),

25-35. https://doi.org/10.37121/jase.v1i2.19

[9] Prasetio, D., Kusrini, K., & Arief, M. R. (2021). Cross-site

scripting attack detection using machine learning with hybrid

features. INFOTEL, 13(1), 1–6.

https://doi.org/10.20895/infotel.v13i1.606

[10] Talib, N. A., & Kyung-Goo Doh, K, (2022). Run-time Detec-

tion of Cross-site Scripting: A Machine-Learning Approach

Using Syntactic-Tagging N-Gram Features, International

Journal of Computer Science and Security (IJCSS), 16(2), 9 -

27.

[11] Farea, A. A. R., Amran, G. A., Farea, E., Alabrah, A., Ab-

dulraheem, A. A., Mursil, M., & Al-Qaness, M. A. A. (2023).

Injections Attacks Efficient and Secure Techniques Based on

Bidirectional Long Short Time Memory Model. Computers,

Materials and Continua, 76(3).

https://doi.org/10.32604/cmc.2023.040121

[12] Hao, S., Long, J., & Yang, Y. (2019). BL-IDS: Detecting Web

Attacks Using Bi-LSTM Model Based on Deep Learn-

ing. Lecture Notes of the Institute for Computer Sciences, So-

cial Informatics and Telecommunications Engineering.

https://doi.org/10.1007/978-3-030-21373-2_45

[13] Sovet, Y. G., & Kоkkoz, М. М. (2022). Detection of xss attacks

in web applications using machine learning. Вестник

Алматинского Университета Энергетики и Связи, (2).

https://doi.org/10.51775/2790-0886_2022_57_2_157

[14] Howe, J. M., & Mereani, F. A. (2018, January). Detecting

cross-site scripting attacks using machine learning. In Interna-

tional conference on advanced machine learning technologies

and applications (pp. 200-210). Cham: Springer International

Publishing. https://doi.org/10.1007/978-3-319-74690-6_20

[15] Tariq, I., Sindhu, M. A., Abbasi, R. A., Khattak, A. S.,

Maqbool, O., & Siddiqui, G. F. (2021). Resolving cross-site

scripting attacks through genetic algorithm and reinforcement

learning. Expert Systems with Applications, 168, 114386.

https://doi.org/10.1016/j.eswa.2020.114386

[16] Lu, J., Wei, Z., Qin, Z., Chang, Y., & Zhang, S. (2022). Re-

solving cross-site scripting attacks through fusion verification

and machine learning. Mathematics, 10(20), 3787.

https://doi.org/10.3390/math10203787

[17] Kumar, A., & Sharma, I. (2023, April). Performance evaluation

of machine learning techniques for detecting cross-site script-

ing attacks. In 2023 11th International Conference on Emerg-

ing Trends in Engineering & Technology-Signal and Infor-

mation Processing (ICETET-SIP) (pp. 1-5). IEEE.

https://doi.org/10.1109/icetet-sip58143.2023.10151468

Biography

Emmanuel Osaze Oshoiribhor is a Senior

Lecturer in the Department of Computer

Science at Ambrose Alli University. He

earned his PhD in Computer Science from

Ambrose Alli University in 2017, following

his Master of Science and Bachelor of Sci-

ence degrees from the University of Benin.

As an active member of several professional organizations, in-

cluding the Nigeria Computer Society (NCS), he has contributed

to the academic community through participation in multiple in-

ternational conferences. His research interests focus on Investiga-

tive Data Mining, Data Science, and Machine Learning.

Adetokunbo MacGregor John-Otumu is a

Lecturer and Researcher in the Department

of Information Technology at the Federal

University of Technology Owerri (FUTO).

He was a Postdoctoral Research Fellow at

Morgan State University, USA, from 2021

to 2022. He earned a Ph.D. in Computer

Science (AI) from Ebonyi State University in 2018, along with

master’s degrees in Computer Science (Ambrose Alli University)

and Information Technology (National Open University of Nige-

ria). Dr. John-Otumu is a member of professional bodies such as

NCS, CPN, IEEE, ACM, AAAI, and the Internet Society. He

leads the Machine Learning Research Group in his Department, at

FUTO and contributes to global research collaborations. In 2024,

he was a Keynote Speaker at the Climate Change Summit (NCS,

Imo State) and served as a Technical Committee Member and

Session Chair at FUTO’s first International Conference on ICT.

He is also an editorial board member for several academic publi-

cations.

Research Field

Emmanuel Osaze Oshoiribhor: Investigative Data Mining,

Machine Learning, Data Science, Intelligent Software Engineering

Adetokunbo MacGregor John-Otumu: Computer Vision, Deep

Learning, Machine Learning, NLP, Multi-Agent Systems

http://www.sciencepg.com/journal/mlr

