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Abstract 

This research paper focuses on detecting Cross-Site Scripting (XSS) attacks, a prevalent web security threat where attackers 

inject malicious scripts into web applications to steal sensitive user data, hijack sessions, and execute unauthorized actions. 

Traditional rule-based and signature-based detection methods often fail against sophisticated and obfuscated XSS payloads, 

necessitating more advanced solutions. To address this, a machine learning-based model is developed to enhance XSS detection 

accuracy while minimizing false positives. The proposed approach utilizes feature extraction techniques, including Term 

Frequency-Inverse Document Frequency (TF-IDF) and n-grams, to analyze JavaScript payloads, while Principal Component 

Analysis (PCA) is employed for feature selection, reducing dimensionality and improving computational efficiency. A Logistic 

Regression classifier is trained on an XSS payload dataset from Kaggle, with data split into 80% for training and 20% for testing 

to ensure a robust evaluation. Hyperparameter tuning is performed using GridSearchCV, optimizing the model’s predictive 

capabilities. Experimental results demonstrate a 99.70% accuracy, with 100% recall and 99.36% precision, highlighting the 

model’s effectiveness in detecting XSS attacks while minimizing false alarms. The high recall score ensures all malicious 

payloads are identified, while the strong precision rate enhances reliability for real-world deployment. These findings underscore 

the potential of machine learning in strengthening web security frameworks, offering a scalable and efficient alternative to 

conventional detection systems. Future research should focus on enhancing resilience against adversarial attacks by integrating 

deep learning models such as Bidirectional LSTMs (BiLSTMs) and Transformer-based architectures. Additionally, deploying 

the model in real-time web security solutions could provide proactive defense mechanisms, ensuring robust protection against 

evolving XSS threats. 
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1. Introduction 

The rapid expansion of cyberspace has made web applica-

tions an essential part of everyday life, offering a wide range 

of online services, including banking, e-commerce, and 

communication. As these applications become more sophis-
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ticated, they have also become prime targets for cyberattacks. 

Hackers exploit vulnerabilities in web applications to steal 

private information, manipulate databases, and compromise 

sensitive data through various attack methods such as SQL 

injection and cross-site scripting (XSS) [1]. The continuous 

evolution of attack strategies makes it necessary to adopt 

advanced security frameworks capable of detecting anomalies 

and alerting users to potential threats. 

The increasing accessibility of the internet has led to a sig-

nificant rise in web application usage, with nearly half of the 

global population connected online. However, this growth has 

also fueled an increase in cyber threats. A survey conducted in 

2019 revealed that nine out of ten web applications were vul-

nerable to attacks, with 68% being at risk of sensitive data 

breaches. Additionally, 8% of payload attacks were attributed 

to weak input validation mechanisms on web application serv-

ers [2]. Cybercriminals often exploit these weaknesses to inject 

malicious code, allowing them to bypass security measures and 

gain unauthorized access to systems. Some of the most com-

mon attacks include SQL injection, XSS, Cross-Site Request 

Forgery (CSRF), command injection, and file inclusion attacks. 

These threats highlight the urgent need for more effective and 

intelligent security solutions. 

Among these cyber threats, XSS attacks remain particularly 

dangerous and continue to evolve, making them difficult to 

detect using traditional security mechanisms. In an XSS at-

tack, an attacker injects malicious scripts into a web applica-

tion, which then executes in a user's browser without their 

knowledge. This can lead to session hijacking, data theft, and 

the distribution of harmful content. Conventional detection 

methods, such as signature-based techniques, rely on prede-

fined attack patterns and can only identify previously known 

threats. As a result, new or zero-day attacks often go unde-

tected, compromising the security of web applications [3]. 

These limitations call for more adaptive security solutions 

capable of identifying emerging attack patterns in real-time. 

Advancements in Artificial Intelligence (AI) and Machine 

Learning (ML) have opened new possibilities for improving 

web application security. ML models can analyze vast 

amounts of data, detect hidden patterns, and adapt to dynamic 

attack scenarios, providing a more proactive and accurate 

defense mechanism [4]. Unlike traditional signature-based 

methods, ML-based approaches can learn from evolving 

attack techniques and improve over time. These models offer 

several advantages, including the ability to: 

1) Learn and Adapt – Continuously update and refine de-

tection capabilities based on new attack data. 

2) Analyze Patterns – Identify complex trends and anoma-

lies associated with malicious payloads. 

3) Reduce False Rates – Minimize false positives and false 

negatives to enhance security reliability. 

This study aims to develop an intelligent ML detection 

model specifically designed to identify client-side XSS pay-

load attacks in web applications. The research is guided by 

two key objectives:  

(a) Develop and train a machine learning model capable of 

accurately classifying XSS payload inputs as either benign or 

malicious while minimizing false positives. 

(b) Evaluate the model's performance in real-world envi-

ronments, testing its ability to detect obfuscated XSS pay-

loads and evade attack techniques. 

The primary contribution of this research is the design of an 

ML-based model using logistic regression for detecting XSS 

attacks, providing an effective alternative to traditional secu-

rity methods. By addressing the limitations of conventional 

detection approaches, this study lays a strong foundation for 

further advancements in machine learning applications for 

cybersecurity. 

The rest of this paper is structured as follows: Section 2 

presents a review of existing literature on machine learning 

techniques for detecting XSS attacks and identifies key re-

search gaps. Section 3 details the methodology, including the 

dataset used, feature extraction techniques, and the structure 

of the proposed model. Section 4 outlines the experimental 

setup and results, while Section 5 discusses the findings, 

comparing the model’s performance with other approaches. 

Finally, Section 6 concludes the paper with a summary of 

results and recommendations for future research. 

2. Related Works 

Various machine learning classifiers, including Random 

Forest, XGBoost, KNN, and SVM, have been applied to de-

tect XSS attacks. Using a custom dataset, Random Forest 

achieved the highest accuracy of 99.93%, highlighting its 

effectiveness in identifying XSS threats [5]. Similarly, re-

search on XSS detection in hybrid Android applications 

demonstrated that machine learning algorithms, particularly 

Random Forest, attained 99% accuracy when evaluated on a 

custom dataset. These findings emphasize the potential of 

machine learning in enhancing cybersecurity defenses [6]. 

Another investigation applied an extensive set of machine 

learning models, including RF, LR, SVMs, DTs, XGBoost, 

MLP, CNNs, ANNs, and ensemble learning, to detect XSS 

attacks. The results showed that the Random Forest model 

achieved 99.78% accuracy, while ensemble models exceeded 

99.64%, indicating the effectiveness of ensemble techniques 

in cybersecurity [7]. In another study, a phishing website 

detection system was developed using the Phishtank dataset 

consisting of 11,000 records. This approach integrated a 

Random Forest classifier with a browser plugin, achieving an 

accuracy of 96%, precision of 97%, recall of 99%, and an 

F1-score of 98%. The findings demonstrate the effectiveness 

of machine learning in identifying phishing threats [8]. 

Hybrid feature-based machine learning models have also 

been utilized for XSS attack detection, relying on custom 

datasets for evaluation. However, performance metrics were 

not explicitly provided in the study [9]. Another approach 

focused on syntactic tagging for XSS detection, utilizing 

sn-grams, TF-IDF, Word2Vec, and Doc2Vec for feature ex-
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traction. Among these, the sn-gram approach yielded the most 

favorable accuracy and precision in classifying malicious 

payloads, reinforcing the importance of advanced text analy-

sis techniques in cybersecurity [10]. 

Deep learning methods such as Bidirectional Long 

Short-Term Memory (BiLSTM) have been employed to en-

hance XSS detection. One study applied BiLSTM to the CSIC 

2010 HTTP dataset, encoding payloads into numerical matrices 

using word embedding techniques to improve model perfor-

mance [11]. Similarly, recurrent neural networks (RNNs) have 

been utilized to detect XSS, SQL injection, and shell attacks in 

web applications using a dataset comprising 101,840 records. 

These Deep Learning (DL) approaches highlight the growing 

role of neural networks in cybersecurity [1]. 

Further advancements in XSS detection involve Bi-LSTM 

models, which have demonstrated superior performance 

compared to traditional deep learning techniques [12]. Addi-

tionally, research on Software Guard Extensions (SGX) 

Dump attacks using Intel SGX has predicted that an SGX 

Dump attack can potentially expose the entire enclave 

memory if an exploitable vulnerability exists. These studies 

underscore the need for robust security frameworks to miti-

gate evolving cyber threats [13]. 

Cross-site scripting (XSS) attacks have also been examined 

using various classification models. A study utilizing Random 

Forest, SVM, and k-NN on a public dataset found that com-

bining language syntax and behavioral features enhanced 

accuracy and precision [14]. Innovative approaches, such as 

integrating Genetic Algorithms (GA) with Reinforcement 

Learning (RL), have been proposed for XSS detection. 

However, concerns regarding training and runtime complexi-

ties remain a challenge [15]. Additionally, research applying 

Random Forest to a simulated public CVE dataset demon-

strated a high recall rate and an average accuracy of 94.9%. 

Notably, the study found that maintaining a low false-negative 

rate resulted in an increased False-Positive Rate (FPR), high-

lighting the trade-offs in model optimization [16]. Other re-

search efforts have tested multiple machine learning algo-

rithms on custom datasets, focusing on key performance 

metrics such as accuracy, precision, recall, and F1-score, to 

refine XSS detection capabilities [17]. 

Table 1. Summary of Comparative Analysis of Machine Learning and Deep Learning Models for XSS Detection. 

Model(s) Used Dataset Model Performance Metrics 

Random Forest, XGBoost, KNN, SVM [5] Custom dataset RF: 99.93% Accuracy 

Random Forest [6] 
Hybrid Android Applications (Cus-

tom dataset) 
RF: 99% Accuracy 

RF, LR, SVMs, DTs, XGBoost, MLP, CNNs, 

ANNs, Ensemble Learning [7] 
Custom dataset 

RF: 99.78% Accuracy, Ensemble: >99.64% Ac-

curacy 

Random Forest (with browser plugin) [8] Phishtank dataset (11,000 records) 
96% Accuracy, 97% Precision, 99% Recall, 98% 

F1-score 

Hybrid feature-based ML models [9] Custom dataset Performance metrics not provided 

sn-grams, TF-IDF, Word2Vec, Doc2Vec [10] Custom dataset sn-grams had the highest accuracy & precision 

BiLSTM [11] CSIC 2010 HTTP dataset Word embedding used for payload encoding 

RNNs [1] 
Web attack dataset (101,840 rec-

ords) 
Applied to XSS, SQL injection, and shell attacks 

BiLSTM [12] Various datasets Superior to traditional DL techniques 

Intel SGX-based security analysis [13] Simulated Intel SGX dataset Exposed enclave memory vulnerabilities 

Random Forest, SVM, k-NN [14] Public dataset 
Combining syntax & behavior improved accuracy 

& precision 

Genetic Algorithm + Reinforcement Learning 

[15] 
Custom dataset Challenges in training and runtime complexity 

Random Forest [16] Simulated CVE dataset 94.9% Accuracy, high recall, FPR trade-off 

Multiple ML models [17] Custom datasets Focused on accuracy, precision, recall, F1-score 

 

These studies demonstrate significant advancements in using machine learning for XSS detection, emphasizing the 
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importance of diverse classifiers, feature selection methods, 

and evaluation metrics. The success of algorithms like Ran-

dom Forest and k-NN in achieving high accuracy highlights 

their potential for web security. However, the evolving nature 

of attack vectors calls for continuous model refinement to 

enhance adaptability and real-world effectiveness. 

3. Materials and Methods 

This section outlines the materials and methodologies em-

ployed in conducting the experimental Machine Learning 

(ML) research. It details the experimental setup, data sources, 

preprocessing techniques, feature extraction methods, model 

selection, training process, evaluation metrics, and deploy-

ment strategies. The study follows a structured approach, 

incorporating dimensionality reduction, cross-validation, and 

hyperparameter tuning to enhance model performance. Fi-

nally, the optimized model is integrated into a security 

framework for real-time detection, ensuring a comprehensive 

and effective ML-based solution for identifying XSS attacks. 

3.1. Experimental Setup 

Table 2 presents the experimental setup used for the Ma-

chine Learning research. The system runs on an Intel Core 

i7-7300U processor with a 64-bit architecture, 16 GB RAM, 

and a 256 GB SSD, ensuring efficient data processing. Mi-

crosoft Windows 10 serves as the operating system, while 

Google Colab and Jupyter Notebook are used as development 

environments. The implementation is done in Python 3.11, 

utilizing essential libraries such as Pandas, NumPy, 

Scikit-learn, Joblib, Matplotlib, and Seaborn for data pro-

cessing, modeling, and visualization. 

Table 2. Experimental Setup. 

Configuration Parameters 

CPU Intel(R) Core (TM) i7-7300U 

System Type 64-bit Operating System, x64-based processor 

Memory (RAM) 16 GB 

Harddisk 256 GB SSD 

Operating System (OS) Microsoft Windows 10 

Development IDE Google Colab, Jupyter Notebook 

Programming Language Python 3.11 

Package/Library Pandas, Numpy, Scikit-learn, Joblib, Matplotlib, Seaborn 

 

3.2. Proposed System Architecture 

This section discusses the proposed machine learning sys-

tem architecture. 

Figure 1 illustrates the proposed system for detecting 

Cross-Site Scripting (XSS) attacks using Machine Learning 

(ML), outlining the key phases from data collection to de-

ployment. The process begins with collecting malicious XSS 

payloads and benign inputs, followed by data preprocessing, 

which involves text cleaning, tokenization, and stopword 

removal. Feature extraction is performed using TF-IDF, 

converting textual data into numerical form, while Principal 

Component Analysis (PCA) is employed for feature selection 

to reduce dimensionality by identifying the most significant 

features while eliminating redundancy. PCA was chosen over 

other feature selection methods, such as Chi-square and Re-

cursive Feature Elimination (RFE), due to its ability to 

transform correlated features into orthogonal components, 

thereby improving computational efficiency and preventing 

multicollinearity. Unlike Chi-square, which is mainly useful 

for categorical data, or Ridge Regression (RR), which relies 

on penalization rather than transformation, PCA ensures that 

the selected features capture maximum variance while pre-

serving model interpretability. After feature selection, the 

dataset is split into 80% for training and 20% for testing, with 

Logistic Regression (LR) selected for its efficiency in han-

dling high-dimensional sparse data. Random Forest (RF) was 

also considered due to its ability to handle complex patterns, 

while SVM and XGBoost were avoided due to their higher 

computational costs and longer training times, making them 

less suitable for real-time applications. Model evaluation is 

conducted using accuracy, precision, recall, F1-score, confu-

sion matrices, and the ROC-AUC curve to measure its clas-

sification effectiveness. To further optimize performance, 

GridSearchCV is applied for hyperparameter tuning, ensuring 
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the best parameter selection. Once finalized, the trained model 

is deployed within a Web Application Firewall (WAF) or 

integrated via a Flask-based API, allowing for real-time XSS 

detection and enhancing web security against malicious script 

injections. 

 
Figure 1. Proposed ML Architecture for Detection of XSS Attack. 

3.2.1. Data Source and Description 

Table 3 provides an overview of the dataset used for de-

tecting Cross-Site Scripting (XSS) attacks. The dataset, 

named "Cross-Site Scripting XSS Dataset for Deep Learn-

ing," is sourced from the Kaggle repository and has a file size 

of 1.67 MB. It consists of 13,686 instances with three cate-

gorical features, and no missing values are present. The da-

taset is imbalanced, with 6,313 benign samples and 7,373 

malicious samples, meaning there are slightly more malicious 

cases than benign ones. This imbalance can affect the model’s 

performance by making it biased towards the majority class. 

Therefore, the Synthetic Minority Over-sampling Technique 

(SMOTE) was used to balance the dataset and improve model 

accuracy. 

Table 3. Data Source/Description. 

Parameters Input 

Dataset Name Cross site scripting XSS dataset for Deep learning 

Dataset File Size 1.67 MB 

Source Kaggle dataset repository 

Link to dataset https://www.kaggle.com/datasets/syedsaqlainhussain/cross-site-scripting-xss-dataset-for-deep-learning 

Feature Type Categorical 

Number of Instances 13,686 

Number of Features 3 
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Parameters Input 

Missing Values None 

Benign 6313 

Malicious 7373 

Comments The classes are imbalanced 

 

3.2.2. Data Preprocessing 

Dataset Representation 

The dataset D consists of 13,686 instances with 3 features, 

represented as: 

D = {(xi, yi)} 
n

i=1, xi ∈ Rd, yi ∈ {0, 1}     (1) 

where yi=0 represents benign instances (6,313 samples) and 

yi=1 represents malicious instances (7,373 samples). The 

dataset is imbalanced, requiring synthetic oversampling 

techniques to balance the classes. 

Text Cleaning 

To normalize input data, unnecessary characters, HTML 

tags, and JavaScript code are removed using a cleaning func-

tion fclean, defined as: 

xi′ = fclean(xi)                  (2) 

Tokenization 

The cleaned input xi′ is tokenized into meaningful units 

(words, characters, or code snippets) using: 

T(xi′) = {t1,t2,...,tm}            (3) 

Stopword Removal 

Common words that do not contribute to detection are re-

moved using a predefined stopword set S: 

T′(xi′) = T(xi′) ∖S            (4) 

Synthetic Minority Over-Sampling Technique (SMOTE) 

To address class imbalance, SMOTE is applied to generate 

synthetic samples for the minority class: 

xnew = xminority + λ (xnearest−xminority), λ ∼ U(0,1)   (5) 

where xnearest is the nearest neighbor of xminority, and λ is a 

random value between 0 and 1. 

Feature Engineering 

Lexical features are extracted from the processed input, 

including the length of input, number of script occurrences, 

and count of special characters: 

flex(xi′) = [length(xi′), countscripts(xi′), countspecial(xi′)]  (6) 

Vectorization using TF-IDF 

To convert text into numerical form, Term Frequen-

cy-Inverse Document Frequency (TF-IDF) is applied: 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = TF(t, d). Log
N

DF(t)
       (7) 

where TF(t,d) is the term frequency of t in document d, DF(t) 

is the number of documents containing t, and N is the total 

number of documents. 

This preprocessing pipeline ensures that the dataset is 

cleaned, tokenized, balanced, and transformed into a suitable 

format for training a robust XSS attack detection model. 

3.2.3. Feature Selection & Transformation 

To enhance model efficiency and reduce computational 

complexity, Principal Component Analysis (PCA) is applied 

for dimensionality reduction. This technique transforms the 

original feature matrix X ∈ Rnxd into a lower-dimensional 

representation X′ ∈ Rn×k, where k < d. The transformation is 

mathematically expressed in Equation (8): 

X′ = XW                  (8) 

Here, W is a matrix containing the top k eigenvectors of the 

covariance matrix Σ, which captures the most significant 

variance in the data. The covariance matrix is computed as 

shown in Equation (9): 

Σ =
1

2
XT X                 (9) 

By selecting the principal components with the highest 

variance, PCA ensures that the most informative features are 

retained while eliminating redundancy, ultimately improving 

the model's performance. 

3.2.4. Model Selection and Training 

For detecting XSS attacks, Logistic Regression (LR) is 

chosen as the classification model due to its simplicity and 

effectiveness in binary classification tasks. The model's hy-

pothesis function, which estimates the probability of an in-

stance belonging to the malicious or benign class, is defined in 

Equation (10): 
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hθ(x) =
1

1 + 𝑒−θTx             (10) 

To optimize the model parameters, the Binary 

Cross-Entropy loss function is used, which quantifies the 

error between predicted and actual labels. This function is 

mathematically expressed in Equation (11) as: 

J(θ) = −
1

2
 ∑  𝑛

𝑖=1 [yi log hθ(xi) + (1 – yi) log (1 - hθ(xi))] (11) 

The model is trained using 80% of the dataset, while the 

remaining 20% is used for testing. To further refine perfor-

mance, k-fold cross-validation is applied, ensuring a more 

reliable evaluation of the model. 

Cross-Validation Strategy 

The dataset is split into 80% for training and 20% for test-

ing to evaluate the model's generalization ability. To further 

improve robustness, k-fold cross-validation is applied, where 

the dataset is divided into k subsets, and the model is trained 

and validated iteratively on different folds. The overall per-

formance is computed as the average loss across all folds, as 

represented in Equation (12): 

1

𝑘
∑  𝑘

𝑗=1 Loss(Dj)               (12) 

This ensures that the model is evaluated on multiple data 

partitions, reducing the risk of overfitting and improving its 

reliability. 

3.2.5. Model Evaluation 

The performance of the model is assessed using standard 

evaluation metrics, including accuracy, precision, recall, 

F1-score, and ROC-AUC. These metrics, mathematically 

represented in Equations (13) to (17), provide a comprehen-

sive understanding of the model's effectiveness in distin-

guishing between benign and malicious XSS inputs. Accuracy 

measures the overall correctness of predictions, precision 

evaluates the proportion of correctly identified malicious 

cases, recall determines the model's ability to detect all actual 

malicious cases, and the F1-score balances precision and 

recall. Lastly, the ROC-AUC score quantifies the model's 

ability to distinguish between classes across different thresh-

old values. 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
           (13) 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
               (14) 

Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                (15) 

F1-score = 2𝑥
(Pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

(Pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
           (16) 

ROCAUC = ∫ 𝑇𝑃𝑅 𝑑(𝐹𝑃𝑅)
1

0
            (17) 

3.2.6. Hyperparameter Tuning 

Grid Search Optimization 

To enhance model performance, Grid Search is employed 

to find the optimal hyperparameters λ and Cover a predefined 

search space. This process involves selecting the best param-

eter set Θ∗ that minimizes the objective function J(Θ), as 

expressed in Equation (18): 

Θ∗ = arg min
Θ ∈ Θ

 𝐽 (Θ)        (18) 

4. Results 

This section presents a clear and concise summary of the 

experimental findings, as illustrated in Table 3 and Figures 2–

4 respectively. 

4.1. Visualization of the Dataset 

 
Figure 2. Visual Representation of the XSS Dataset. 

Figure 2 presents a visual representation of the original 

XSS dataset, illustrating the distribution of benign and mali-

cious samples in both the training and test sets. The dataset is 

imbalanced, with more malicious samples compared to be-

nign ones. In the training set, there are 5,050 benign instances 

and 5,898 malicious instances, while the test set contains 

1,263 benign and 1,475 malicious samples. This imbalance 

highlights the need for techniques such as oversampling or 

weighting adjustments during model training to prevent bias 

toward the majority class and ensure fair classification per-

formance. 

Table 4 presents the classification results of the machine 

learning models used for XSS attack detection, evaluating 

their performance based on accuracy, precision, recall, 

F1-score, and ROC_AUC. The Logistic Regression (LR) 

model outperforms the Random Forest (RF) model, achieving 

an accuracy of 99.70%, a precision of 99.36%, a recall of 

100%, an F1-score of 99.67%, and a perfect ROC_AUC score 
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of 1.00. In contrast, the RF model records an accuracy of 

96.34%, a precision of 95.60%, a recall of 97.00%, an 

F1-score of 97.76%, and a ROC_AUC of 0.97. These results 

indicate that the LR model exhibits superior classification 

performance, particularly in recall, suggesting that it effec-

tively identifies all malicious instances without false nega-

tives. 

4.2. Model Performance Classification Results 

Table 4. Classification Result. 

ML Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) ROC_AUC 

LR 99.70 99.36 100 99.67 1.00 

RF 96.34 95.60 97.00 97.76 0.97 

 

 
Figure 3. Confusion Matrix Heatmap. 

Figure 3 presents the confusion matrix for XSS detection, 

illustrating the model’s classification performance in differ-

entiating between malicious and benign instances. The matrix 

indicates that 8 benign samples were misclassified as mali-

cious, leading to false positives, which may cause unneces-

sary security alerts and potential disruptions to legitimate user 

activities. While the model demonstrates strong predictive 

accuracy, the occurrence of false positives suggests a need for 

further optimization. Additionally, the AUC score of 1.00 

raises concerns about overfitting, as perfect classification may 

indicate that the model has learned patterns specific to the 

training dataset rather than generalizable features. This could 

reduce its effectiveness when deployed in real-world envi-

ronments with varying attack strategies. To mitigate these 

concerns, techniques such as k-fold cross-validation can help 

evaluate model generalization across different data splits, 

while regularization methods like L1 (Lasso) or L2 (Ridge) 

can prevent excessive reliance on specific features. Further-

more, alternative feature selection approaches, such as mutual 

information or recursive feature elimination (RFE), can refine 

the input space for improved performance. Expanding the 

dataset with diverse and adversarial examples can enhance 

robustness, and threshold tuning can help balance precision 

and recall to reduce false positives. These refinements can 

improve the model’s adaptability, ensuring more reliable and 

effective XSS detection in real-world scenarios. 

 
Figure 4. Graphical representation of the ROC_AUC Result. 

Figure 4 presents the Receiver Operating Characteristic 

(ROC) curve for the XSS detection model, demonstrating its 

ability to differentiate between malicious and benign in-

stances. The ROC curve follows the upper-left boundary, 

indicating a perfect classification performance. The Area 

Under the Curve (AUC) value of 1.00 confirms that the model 

achieves an ideal balance between sensitivity and specificity, 

meaning it correctly identifies all positive and negative cases 

without errors. The model's performance is significantly su-

perior, as indicated by the complete separation from the di-

agonal baseline, which represents random guessing. This 

result highlights the robustness and reliability of the model in 

detecting XSS attacks with zero compromise in classification 
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accuracy. 

5. Discussion 

This section provides a comparative analysis of the pro-

posed research findings and related works in terms of dataset 

characteristics, classification performance, model effective-

ness, and emerging trends in XSS detection. 

5.1. Dataset Characteristics 

In the proposed research, the dataset used for XSS attack 

detection exhibits a class imbalance, with malicious instances 

slightly outnumbering benign ones. Specifically, the training 

set contains 5,050 benign and 5,898 malicious samples, while 

the test set consists of 1,263 benign and 1,475 malicious in-

stances. This imbalance necessitates techniques such as 

oversampling or weighting adjustments to improve model 

fairness and classification accuracy. 

Previous studies have used diverse datasets for XSS detec-

tion. For instance, research involving hybrid Android appli-

cations relied on a custom dataset with balanced class distri-

butions, achieving an accuracy of 99% using the Random 

Forest classifier [6]. Additionally, deep learning-based studies 

often employ benchmark datasets such as CSIC 2010 HTTP 

logs to analyze web-based attacks, including XSS and SQL 

injection [11]. The diversity of datasets in previous research 

highlights the need for comparative evaluations to determine 

the generalizability of different models. 

5.2. Classification Performance Comparison 

Table 3 presents the classification performance of the 

models in the proposed research. Logistic Regression (LR) 

outperforms other models, achieving an accuracy of 99.70%, 

a recall of 100%, and an F1-score of 99.67%, with a perfect 

ROC_AUC of 1.00. In contrast, the Random Forest (RF) 

model records a lower accuracy of 96.34% but maintains high 

precision (95.60%) and recall (97.00%). The superior recall of 

LR suggests its robustness in detecting all malicious instances 

without false negatives. 

In comparison, previous studies have demonstrated var-

ying performance metrics based on model selection. One 

study reported Random Forest achieving 99.93% accuracy in 

XSS detection [5], while another research involving multiple 

classifiers, including SVM, DT, XGBoost, and MLP, found 

Random Forest and ensemble models to be among the top 

performers with 99.78% and 99.64% accuracy, respectively 

[7]. However, deep learning models, such as BiLSTM, have 

demonstrated further performance improvements, particu-

larly when integrated with word embedding techniques [11]. 

These comparisons suggest that while traditional machine 

learning models perform well, deep learning approaches 

may offer additional benefits in handling complex attack 

patterns. 

5.3. Model Effectiveness and Interpretability 

The effectiveness of the proposed research models is fur-

ther validated through confusion matrix analysis. Figure 3 

illustrates that the LR model correctly classifies all malicious 

instances (zero false negatives), while only 8 benign samples 

are misclassified as malicious, leading to a minimal false 

positive rate. Additionally, the ROC curve (Figure 4) confirms 

the model’s ability to differentiate between benign and mali-

cious instances with an AUC score of 1.00. 

Related studies have also evaluated model effectiveness 

using confusion matrices and AUC scores. Research com-

paring Random Forest, SVM, and k-NN found that Random 

Forest exhibited the best trade-off between sensitivity and 

specificity for XSS detection [14]. Another study introduced 

Genetic Algorithms (GA) integrated with Reinforcement 

Learning (RL) to optimize XSS detection, but training com-

plexity remained a challenge [15]. Similarly, an investigation 

into the application of Random Forest for public CVE datasets 

reported a trade-off between recall optimization and false 

positive reduction, achieving an accuracy of 94.9% [16]. 

These findings highlight the continuous need to balance de-

tection accuracy with model interpretability and computa-

tional efficiency. 

5.4. Emerging Trends and Future Directions 

The evolving landscape of XSS detection emphasizes the 

integration of advanced machine learning techniques and 

hybrid models. Several studies have explored hybrid fea-

ture-based detection mechanisms, incorporating TF-IDF, 

Word2Vec, and Doc2Vec for enhanced text analysis [10]. 

Additionally, BiLSTM-based models have demonstrated 

superior performance compared to traditional deep learning 

architectures, reinforcing the potential of recurrent neural 

networks in web security [12]. 

Given these advancements, future research should explore 

hybrid deep learning approaches that combine autoencoders 

and transformer networks for improved XSS detection. Fur-

thermore, integrating explainable AI (XAI) techniques could 

enhance model interpretability, allowing cybersecurity ana-

lysts to better understand and trust machine learning-driven 

security solutions. 

6. Conclusions 

This study presents an effective machine learning-based 

approach for detecting XSS attacks, demonstrating superior 

classification performance compared to traditional models. 

The proposed Logistic Regression model achieves 

near-perfect accuracy, precision, recall, and F1-score, signif-

icantly outperforming Random Forest. The model’s ability to 

correctly classify all malicious instances without false nega-

tives underscores its reliability in real-world cybersecurity 

applications. Additionally, the study highlights the im-
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portance of dataset-balancing techniques to mitigate bias and 

improve classification fairness. 

Comparative analysis with existing research shows that 

while previous studies have achieved high accuracy using 

Random Forest and ensemble models, the proposed approach 

provides an enhanced detection capability with a perfect 

ROC_AUC score, ensuring optimal sensitivity and specificity. 

Future work should focus on integrating hybrid deep learning 

models, such as BiLSTM, Transformer networks, and atten-

tion-based architectures, with explainability techniques like 

SHAP (SHapley Additive Explanations) and LIME (Local In-

terpretable Model-Agnostic Explanations) to improve interpret-

ability and trustworthiness. The lack of transparency in complex 

machine learning models poses a challenge for security analysts, 

making it essential to incorporate explainable AI (XAI) tech-

niques to enhance human understanding of detection decisions. 

Furthermore, expanding the dataset to include real-world, ad-

versarial, and evolving attack patterns will improve model gen-

eralizability and robustness against sophisticated evasion tactics 

used by attackers. Data augmentation techniques, such as gener-

ative adversarial networks (GANs) and synthetic data generation, 

can be explored to create more diverse training samples, 

strengthening the model’s ability to detect previously unseen 

XSS payloads. Additionally, integrating the model into real-time 

intrusion detection systems (IDS) or web application firewalls 

(WAFs) will provide proactive protection by blocking attacks 

before they compromise web applications. Optimizing the model 

for low-latency detection is crucial to ensure minimal perfor-

mance impact on web servers while maintaining high accuracy. 

Another promising direction is leveraging federated learning 

approaches, enabling collaborative model training across multi-

ple organizations without sharing sensitive data, thus preserving 

privacy while improving detection performance. Lastly, future 

studies should explore the ethical implications and regulatory 

compliance of AI-driven security solutions to ensure responsible 

and unbiased threat detection. By addressing these areas, the 

research can significantly contribute to the development of 

scalable, transparent, and adaptive security frameworks, rein-

forcing web applications against the ever-evolving landscape of 

XSS attacks. 
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