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Abstract 

This paper presents an in-depth study of the application of Multi-Agent Deep Deterministic Policy Gradient (MADDPG) 

algorithms with an exploratory strategy for duty cycle scheduling (DCS) in the wireless sensor networks (WSNs). The focus is on 

optimizing the performance of sensor nodes in terms of energy efficiency and event detection rates under varying environmental 

conditions. Through a series of simulations, we investigate the impact of key parameters such as the sensor specificity constant α 

and the Poisson rate of events on the learning and operational efficacy of sensor nodes. Our results demonstrate that the 

MADDPG algorithm with an exploratory strategy outperforms traditional reinforcement learning algorithms, particularly in 

environments characterized by high event rates and the need for precise energy management. The exploratory strategy enables a 

more effective balance between exploration and exploitation, leading to improved policy learning and adaptation in dynamic and 

uncertain environments. Furthermore, we explore the sensitivity of different algorithms to the tuning of the sensor specificity 

constant α, revealing that lower values generally yield better performance by reducing energy consumption without significantly 

compromising event detection. The study also examines the algorithms' robustness against the variability introduced by different 

event Poisson rates, emphasizing the importance of algorithm selection and parameter tuning in practical WSN applications. The 

insights gained from this research provide valuable guidelines for the deployment of sensor networks in real-world scenarios, 

where the trade-off between energy consumption and event detection is critical. Our findings suggest that the integration of 

exploratory strategies in MADDPG algorithms can significantly enhance the performance and reliability of sensor nodes in 

WSNs. 
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1. Introduction 

Wireless sensor networks (WSNs) are pivotal in various 

sectors such as agriculture, environmental monitoring, 

healthcare, and intelligent transportation, thanks to their abil-

ity to monitor and collect environmental data. However, the 

limited resources of sensor nodes, particularly energy, pose 

significant challenges to network efficiency and longevity. 

Effective energy management is crucial for maintaining 

network performance, as sensor nodes, typically bat-

tery-powered, have constrained energy supplies affecting 

their lifespan and functionality. Efficient node scheduling 

strategies are therefore essential to enhance network perfor-

mance and extend node lifetimes. While much research has 

focused on energy-efficient communication, energy-efficient 

sensing is less explored, despite its comparable energy con-

sumption. Since sensing often occurs more frequently than 

communication, it's vital to develop energy-saving strategies 

for sensing activities. Dynamic events, which are unpredict-

able and require continuous monitoring, present additional 

challenges for energy efficiency. Duty cycle scheduling, 

which alternates between sleep and active states for nodes, is a 

promising approach to balance energy efficiency with event 

responsiveness. An adaptive duty cycle scheduling strategy, 

based on the additive increase/multiplicative decrease (AIMD) 

rule, can dynamically adjust node activity in response to re-

al-time event detection and energy usage, optimizing both 

energy consumption and detection capabilities. The 

AIMD-based duty cycle scheduling strategy is significant as it 

ensures efficient energy management and network longevity 

while maintaining detection capabilities. It also offers 

adaptability to dynamic environments and node distributions, 

enhancing the effectiveness of node scheduling strategies. 

In practical WSNs, the vast and varied distribution of 

sensing nodes adds complexity to communication and coop-

eration management. This complexity is intensified by the 

dynamic nature of node distribution, which can shift with time, 

environmental changes, and task requirements. Consequently, 

dynamic node scheduling and optimization are critical. Tra-

ditional scheduling algorithms, often static, assume fixed 

node locations and struggle to adapt to dynamic distributions. 

In real-world scenarios, such as outdoor or mobile sensing 

applications, node locations can change due to external fac-

tors, necessitating scheduling algorithms that are both flexible 

and adaptive. 

Reinforcement learning algorithms, known for their au-

tonomous learning and performance improvement capabilities, 

are gaining traction for their adaptability. Their application in 

WSNs presents new avenues for dynamic node scheduling 

and optimization. Through an agent-environment interaction 

model, sensor nodes can autonomously learn and optimize 

scheduling policies based on environmental feedback, leading 

to more efficient and adaptable node scheduling. Multi-agent 

reinforcement learning algorithms are particularly beneficial 

for addressing node cooperation and communication chal-

lenges. Treating each sensor node as an individual agent, 

these nodes can share information and collaborate within a 

multi-agent system to enhance overall performance. This 

approach leverages information sharing for more globally 

optimized scheduling decisions, boosting network efficiency 

and stability. The introduction of multi-agent reinforcement 

learning algorithms enables sensor nodes to make more in-

telligent cooperation and scheduling decisions in dynamic 

environments, optimizing WSN performance. The flexibility 

and intelligence of multi-agent reinforcement learning posi-

tion it as a leading technique for addressing dynamic node 

scheduling challenges. Further exploration and optimization 

of this algorithm are necessary to navigate the complexities of 

WSNs, enhancing sensing efficiency, extending node life-

times, and advancing the application of wireless sensor 

technology across various domains. 

The multi-agent deep deterministic policy gradient 

(MADDPG) method, an advancement of the DDPG algorithm 

for multi-agent contexts, has shown significant improvements 

in cooperative and competitive tasks. In WSNs, MADDPG 

with an exploratory strategy offers several advantages: 

1. Adaptability to dynamic environments: WSNs are in-

herently dynamic, with fluctuating channel conditions, 

data traffic, and network topologies. MADDPG with 

exploratory strategies enables nodes to adapt proac-

tively, optimizing performance amidst these changes. 

2. Enhanced local information sharing: While nodes in 

WSNs typically access only local information, explor-

atory strategies facilitate the sharing of detected infor-

mation, improving collaborative decision-making and 

network performance. 

3. Self-organization: WSNs are self-organizing, with 

nodes autonomously joining or leaving. MADDPG with 

exploratory strategies allows nodes to better adjust to 

these network dynamics. 

4. Robustness in adversarial environments: WSNs may 

encounter adversarial conditions such as jamming or 

attacks. Exploratory strategies equip nodes to adapt to 

such uncertainties, bolstering network robustness. 

The main contribution of this work is the application of 

MADDPG with exploratory strategies in WSNs enhancing 

adaptability, cooperation, self-organization, and robustness, 

making it a promising solution for the complex challenges of 

dynamic node scheduling. 

2. Related Work 

Duty cycle scheduling, which orchestrates active, sleep, 

and idle listening times, is crucial in sensor networks as it 

significantly impacts energy consumption. Most scheduling 

strategies, such as ELECTION [1] and AIMD [2], exploit the 

energy-saving benefits of sleep mode, with AIMD being a 

popular rule in congestion control [3, 4]. DANCE [5] refines 
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AIMD by considering the actions of neighboring nodes, al-

lowing sensors to conserve energy by ceasing activity if the 

task is already completed nearby. Additionally, controlling 

the data sampling rate through Kalman filtering can manage 

the computational and communication demands on the central 

server [6]. However, current duty-cycle optimization algo-

rithms are predominantly static, with limited research on 

dynamic optimization. 

Multi-agent reinforcement learning (MARL) represents an 

innovative shift in reinforcement learning. Stone et al. intro-

duced TPOT-RL in 1999 [7], a paradigm that, despite its 

nonflatness making it incompatible with deep Q-learning's 

experience replay, has been influential. Foerster et al. [8] 

addressed this by using importance sampling and finger-

print-modulated value functions to integrate MARL with 

experience replay. Nguyen et al. [9] explored various MARL 

challenges, such as nonstationarity and partial observability, 

while Samvelyan et al.'s StarCraft Multi-Agent Challenge 

(SMAC) [10] provides a benchmark for progress in the field. 

Chu et al. [11] developed a scalable, decentralized MARL 

algorithm for the actor-critic model, and MADDPG, [12] an 

advancement of DDPG, enables cooperative decision-making 

among multiple agents in a shared environment. 

In the context of WSNs, MARL has been proposed to en-

hance the intelligence and autonomy of nodes in resource 

allocation, as demonstrated by Wang et al. [13] in Cognitive 

Radio-WSNs (CR-WSNs). Zhang et al. [14] provided a se-

lective review of MARL, emphasizing theoretically grounded 

algorithms. The integration of MARL with WSNs promises to 

advance the field by enabling more dynamic, efficient, and 

intelligent sensor networks [15-18]. The investigation into 

active exploration MADDPG and other Multi-Agent Rein-

forcement Learning (MARL) methods is anticipated to con-

tribute significantly to duty cycle scheduling [19, 20]. 

3. System Model 

Table 1 lists the essential notations used in the model. 

Table 1. T Notations and symbols. 

Symbol Description 

   Total working duration 

   Total sleep duration 

    The  -th working interval 

    The k-th sleep interval 

   The number of intervals 

    The initial sleep interval (fixed) 

   The average sleep duration per duty cycle 

   The average working duration per duty cycle 

Symbol Description 

   The interested 2-D square region 

    The length of   

    The width of   

 ( )  The counting process of events in ,   - 

 ̑|,   -  The expected number of events processed in ,   - 

    
The average number of missed events in sleep 

duration 

    
The average number of missed events in working 

duration 

   Event space 

   Poisson rate 

   The distance between the sensor and the event 

   The sensing radius 

           The minimum and maximum sensing radius 

   The detection accuracy 

       The metrics of detection ability 

   The energy consumption for sensing 

    The energy consumption of sensing in sleep duration 

    
The energy consumption of sensing in working dura-

tion 

    The static energy consumption in sleep mode 

    The static energy consumption in working mode 

   
The coefficient of energy depletion growing with 

distance 

   
The changeable power scaling parameter for the 

sensing circuit 

   Step-size increasing factor 

   Step-size diminishing factor 

   The number of sensors 

Sgn( )  The sign function 

 ( )  The logistic sigmoid function 

3.1. Basic Assumptions 

The model functions within a two-dimensional grid where 

numerous devices perform various activities. The architecture 

of the network is non-hierarchical, with each node possessing 

an identical energy allowance and being of the same type. The 

placement of the sensor nodes is uniform. The range of their 

detection can be adjusted. The sensors operate on an inde-

pendent schedule, with each one deciding its own operational 

intervals without the need for coordinated timing. While the 

sensor nodes have the capability to move, their positions and 
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the distances between them are not ascertainable. 

3.2. Node Distribution 

It is presumed that the nodes are evenly dispersed across the 

area. The sensor can adjust its communication range, denoted 

by  , which falls within the minimum and maximum limits 

,         -. This adjustment to the sensing radius is typically 

achieved by changing the power of the transmission. 

3.3. Event Arrival 

It is assumed that occurrences within the set   are 

random and independent, conforming to a Poisson distri-

bution with a rate of  . The expectation is that measure-

ments will be precise, allowing for the immediate identi-

fication of all incidents. The likelihood of a sensor with a 

detection radius   processing   events over a time period 

  is as follows: 

  ( ( )   )  
   {     

  }(    
  )

 

  
 
   *   +(  ) 

  
  (1) 

where  ( )  is the counting process and       
  repre-

sents the mean Poisson rate within the peripheral area covered 

by the sensor. In line with the characteristics of the Poisson 

process, it is established that 

 , ( )-   ̑|,   -               (2) 

where  ̑|,   - denotes the expected number of events handled 

in ,   -. 

An event at a distance of   has the following probability of 

being detected: 

  ( )  {

  

   {   (      )
  }  

  

         
              
         

  (3) 

where the sensor's physical features determine    and   , 

which reflects the feature of attenuation with distance. All 

events during SLEEP mode are regarded as absent. Let    be 

the average number of missed events, then 

    , ( )-                  (4) 

The average number of missed events during working 

hours,   , is 

    , ( )-(    ( ))    (    ( ))   (5) 

The event space is 

   , (   )-   (   )      (6) 

The detection accuracy   is now defined as a measurable 

value 

    
     

 
                (7) 

It follows from (3) to (6) that 

  {

 

   
       

 

   
   {   (      )

  }            

        

  (8) 

3.4. Energy Depletion 

We introduce the model in [16] that: 

    (      )
               (9) 

where   and   are sensor-specific constants; in exemplary 

cases,   ,   -;    specifies the static power, and    is 

intrinsically linked to scheduling techniques. Eq. (9) indicates 

that the operational energy consumption of the sensors is 

influenced by their distance from each other. When in sleep 

mode, only the timer and other critical components remain 

active, viz. 

                      (10) 

   represents the static energy consumption. Regular in-

terruptions for waking up and entering sleep mode can in-

fluence the static energy consumption, thus    should also be 

considered a variable dependent on the scheduling strategy 

employed. 

It is presumed that    and    remain fixed, signifying 

that the static energy usage does not fluctuate. The static 

energy expenditure while active is generally considered to be 

higher than during dormant periods, meaning      . This 

is due to the necessity of running the watchdog and other 

system applications when the device is operational. The total 

energy consumption of the sensing circuit is calculated by the 

weighted sum of these two constants. 

                       (11) 

where   and   represent working and sleeping durations. 

Then 

 , -    
 

   
   

 

   
         (12) 

Assign (9) and (10) to (11), we have: 

 , -    
 

   
 ( (      )

    )
 

   
    (13) 
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3.5. Scheduling Model 

In DCS, the length of time the sensor remains in sleep mode 

is adjusted dynamically, taking into account the frequency of 

events from the previous cycle. Upon transitioning to an ac-

tive state, the sensor activates its detection unit and then de-

activates it when it's time to enter sleep mode again. Although 

DCS is commonly implemented, fine-tuning the duration of 

these states remains a complex challenge. 

We propose an adaptive approach that AIMD strategy, 

where the time intervals are adjusted dynamically in response 

to the observed event data. The equation for this adjustment is 

as follows: 

   {
              (    )   

              (    )   
         (14) 

where   and   denote the step-size increasing/diminishing 

factor,      ,      , and    ( ) is defined as: 

   ( )  {
                         
           

       (15) 

There is a maintainable balance between event detection 

and energy usage. For instance, increasing   can lead to 

greater energy conservation, yet it also heightens the risk of 

failing to detect an event. 

3.6. Problem Formulation 

An optimization problem serves as the final form of the 

model: 

        2
 

 
(   )  
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/3        (16) 

We list all the constraints: 

s.t. 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  ∑   

 
   

   {
              (    )   

              (    )   

  ∑   
 
   

  {

 

   
       

 

   
   {   (      )
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 ( (      )
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 (17) 

The optimization objective has shifted from maximizing µ 

to minimizing    .  ( )  denotes the logistic sigmoid 

function,  ( ), which reduces the entire number line to a 

narrow range ,   -.  

4. MADDPG Solution with Exploratory 

Strategy 

4.1. Markov Decision Process 

To design a Markov Decision Process (MDP) for opti-

mizing DCS in WSNs, we must define the state space, action 

space, and reward function for each sensor node agent. Here's 

a refined description of these components: 

4.1.1. State Space 

The state space encapsulates the variables that characterize 

the current environment and system conditions pertinent to 

AIMD scheduling decisions. For a sensor node, the state 

space includes: 

1) Current energy level of the sensor node    

2) Event space at the time step    

3) Distance to the event    

4) Time step index, indicating the current decision epoch 

Thus, the state space is defined as   *          +. 

4.1.2. Action Space 

The action space defines the set of possible actions an 

agent can take at each time step. For sensor nodes employing 

AIMD rules, the action space comprises the step in-

crease/decrease factors, (δ) and (θ), which adjust sleep and 

work times. The action space is thus represented as 

  *   +, where       and      . 

4.1.3. Reward Function 

The reward function assesses the quality of an agent's ac-

tions within a given state. The optimization objective func-

tion,  , integrates two components: energy consumption and 

event detection rate. The reward function is designed to bal-

ance the trade-off between these two aspects and is ex-

pressed as: 

𝑅(          |   )   ∗ 𝛥  (   ) ∗ 𝛥     (18) 

Here, 𝛥  represents the gain of energy consumption, 𝛥  

denotes the gain in event capture rate due to the agent's ac-

tion, and   is a weighting factor that prioritizes one objec-

tive over the other. This weight can be dynamically adjusted 

to ensure the agent learns an effective policy for the specific 

optimization challenge at hand. 

With these definitions, the MDP can be modeled, and re-

inforcement learning algorithms such as Q-learning, DDPG, 

or MADDPG can be employed to discover the optimal poli-
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cy. The goal is to maximize the reward function, identifying 

the values of   and   that best balance energy efficiency 

with a high event capture rate. 

4.2. MADDPG Algorithm 

MADDPG is an algorithm designed for solving problems 

in multi-agent environments. It is an extension of the DDPG 

algorithm tailored for multiple interacting agents. MADDPG 

combines ideas from actor-critic architectures and central-

ized training with decentralized execution. 

4.2.1. Critic Network Update 

The critic network aims to estimate the action-value func-

tion. The update rule for the critic network is given by: 

 (  )   0(    (        ))
 
1          (19) 

where    is the target value and  (        ) is the critic's 

prediction. 

4.2.2. Actor Network Update 

The actor network is responsible for determining the op-

timal policy. The update rule for the actor network is based 

on the deterministic policy gradient: 

    (  )   0   (      )|        (     )
    (    )1  (20) 

where  (  ) is the expected return,  (    ) is the actor's 

output, and    are the parameters of the critic network. 

4.2.3. Target Network Updates 

Both the actor and critic networks use target networks to 

stabilize training. Target networks are updated with a soft 

update rule: 

 
target 

    (   ) 
target           (21) 

where   is a small constant. 

4.2.4. Action Selection 

The action selection is done by adding exploration noise to 

the output of the actor network: 

    (     )                 (22) 

4.3. MADDPG Algorithm with an Exploratory 

Strategy 

A MADDPG algorithm with an exploratory strategy in-

volves incorporating mechanisms that allow agents to explore 

their environment effectively while still exploiting their 

learned policies (see Figure 1). The steps are as follows: 

4.3.1. Initialize the Multi-Agent Environment 

Define the number of agents, state space, and action space. 

Initialize the critic and actor networks for each agent (WSN 

node) with random weights. 

4.3.2. Exploratory Strategies 

We provide two exploratory strategies: 

Deterministic Policy with Noise: Each agent's action is 

determined by its current policy plus some noise for explora-

tion. This noise can be reduced over time as the agent learns. 

For example, add Ornstein-Uhlenbeck noise to the action 

output for exploration, which provides temporally correlated 

exploration suitable for physical control problems. 

 -greedy Policy: With a probability ε, select a random ac-

tion for exploration, and with a probability 1-  , select the 

best action according to the current policy. The value of   

can be set to decay over episodes to shift from exploration to 

exploitation gradually. 

4.3.3. Training Loop 

For each episode: 

Initialize the environment and get the initial state. 

For each time step: 

Each agent selects an action based on the current policy 

and exploration strategy. 

Execute actions in the environment and observe the next 

state and reward. 

Store the experience (state, action, reward, next state) in a 

replay buffer. 

Sample a random minibatch of experiences from the re-

play buffer. 

For each agent: 

Update the critic by minimizing the loss with the action 

from the target actor network for the next state. 

Update the actor using the sampled policy gradient. 

Update the target networks for both the actor and critic 

using soft updates. 

Reduce the exploration noise (for deterministic policy) or 

ε (for ε-greedy policy) as the agent learns to balance explora-

tion and exploitation. 

Continue training for a predetermined number of episodes 

or until the performance metric reaches a satisfactory level. 

4.3.4. Post-Training 

Evaluate the performance of the trained policy with re-

duced or no exploration. Fine-tune the policy if necessary. 

This MADDPG with exploratory strategy allows agents to 

learn from their environment while ensuring sufficient ex-

ploration. The balance between exploration (learning about 

the environment) and exploitation (using the learned 

knowledge) is crucial for the success of the algorithm. 
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Figure 1. The diagram of MADDPG model with an exploratory strategy. 

5. Experiments 

5.1. Experimental Setup 

5.1.1. Hardware Platform 

The software environment for the simulation is configured 

with Python 3.7, PyCharm 2021, and TensorFlow 1.14. The 

hardware setup includes a 12th generation Intel(R) Core (TM) 

i9-12900K processor with a clock speed of 3.19 GHz and 

32GB of RAM. 

5.1.2. Parameters Setting 

The simulation assumes that sensor nodes adjust their sleep 

intervals using a duty-cycle scheduling model governed by 

AIMD rule. The parameters   and   are within the range 

[0,1]. Events are modeled to occur following a Poisson pro-

cess, with the event located at a distance of     meters 

from the sensor node. The specific model parameters em-

ployed in the experiments are detailed in Table 2. 

Table 2. Simulation parameters. 

Parameters Value 

 ̅ 30 s 

      0.5 m 

      10 m 

    100 m 

Parameters Value 

    100 m 

   0.7 

   3 

    50 mW 

    30 mW 

   4 

   5 m 

Table 3 shows the specific hyperparameter values used in 

the implementation of MADDPG algorithm. The parameters 

in question are pivotal in sculpting the learning trajectory 

and decision-making capabilities of the MADDPG algorithm. 

The values that are meticulously chosen and assigned to each 

parameter throughout the training phase have a profound 

impact on the algorithm's efficacy and its ability to converge. 

Table 3. Hyperparameters of MADDPG. 

Parameters Value 

Learning rate of critic network       

Learning rate of actor network       

Decay factor   0.66 

Size of replay buffer 50000 

Batch size 200 
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5.1.3. Baselines 

We evaluate the performance of the MADDPG algorithm 

using an exploratory strategy against several benchmark al-

gorithms: 

1. MADDPG: We utilize a variant of the MADDPG al-

gorithm that does not incorporate an exploratory train-

ing mechanism. 

2. MADQN: This stands for multi-agent Deep 

Q-Network, which is tailored for environments with 

discrete action spaces. Each agent within the proposed 

framework adheres to the principles of the DQN algo-

rithm, selecting discrete actions from a predefined set 

based on the current state of the WSN environment. 

Unlike the DDPG algorithm, which employs ac-

tor-critic architecture, the DQN algorithm utilizes a 

singular neural network, the Q-network. The DQN al-

gorithm also benefits from an experience replay 

mechanism and a dual-network architecture, consisting 

of an evaluation network and a target network. It 

shares the same hyperparameters for the learning rate 

and decay factor with the DDPG algorithm. Further-

more, MADQN adopts a centralized training with de-

centralized execution approach. 

3. (SA) DDPG: This is the single-agent version of the 

Deep Deterministic Policy Gradient algorithm, de-

signed for scenarios with continuous action spaces. 

The algorithm features a single agent with a du-

al-network architecture, comprising an evaluation 

network and a target network. The agent processes on-

ly the local observations and rewards pertaining to a 

single WSN node. 

4. Random: The Random benchmark represents a base-

line where the agent selects actions randomly at each 

timestep. 

5.1.4. Performance Metrics 

To assess the efficacy of the proposed algorithm, we em-

ploy the following performance metrics: 

1. Average Reward: This metric quantifies the mean re-

ward that the agent accrues over a specified duration or 

a set number of episodes. An elevated average reward 

is indicative of superior algorithmic performance. 

2. Convergence: Convergence denotes the juncture at 

which the algorithm successfully acquires an optimal 

policy and achieves a steady state in terms of perfor-

mance. This is a critical indicator of the algorithm's 

learning efficiency and stability. 

3. Q-value or Value Function: The Q-value, or value 

function, provides an estimation of the expected ag-

gregate reward for selecting a certain action within a 

specific state. Tracking the Q-value offers valuable in-

sights into the effectiveness of the policy that has been 

learned, as well as the agent's comprehension of the 

environmental dynamics. 

5.1.5. Experimental Procedures 

We constructed a WSN environment (see Figure 2) within 

a monitoring area, denoted by  , measuring 100×100 square 

meters. Events within this area are simulated using a Poisson 

process, which randomly disperses objects throughout the 

region. 

The environment is composed of 16 stationary sensor nodes 

and 80 mobile sensor nodes, all configured with the following 

parameters: a sensing radius (𝑅 ) of 10 meters, a sensing error 

margin (𝑅 ) of 2 meters, and a communication radius (𝑅 ) that 

is three times the sensing radius, equating to 30 meters. The 

simulation parameters   and   are both set to 100. 

To ensure the robustness of our findings, the simulation 

environment was subjected to multiple runs for each algo-

rithm, testing various parameter configurations. We meticu-

lously collected experimental data, which included the re-

wards obtained at each timestep, the fluctuations in the 

Q-value or value function, and the convergence metrics of the 

algorithms under scrutiny. 

 
Figure 2. WSN environment for simulation. 

5.2. Results 

5.2.1. Convergence 

The Figure 3 compares the cumulative rewards over 1000 

episodes for MADDPG with exploratory strategy, MADDPG, 

MADQN, DDPG, and a Random algorithm. It displays sim-

ulated performance data for various reinforcement learning 

algorithms. 

1. MADDPG with exploratory strategy shows rapid ini-

tial gains, suggesting effective early exploration. 

2. Standard MADDPG progresses steadily, but without 

the exploratory boost. 
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3. MADQN exhibits volatility, indicating potential insta-

bility in learning. 

4. DDPG increases consistently, though less sharply than 

MADDPG with exploration, hinting at slower conver-

gence. 

5. The Random algorithm provides a baseline with no 

learning, fluctuating around a central value. 

 
Figure 3. Convergence curves of multi-agent reinforcement learn-

ing algorithms. 

5.2.2. Impact of Model Parameters on Training 

Outcomes 

Figures 4-6 illustrates how varying model parameters af-

fect the average Q-value, which is a composite measure of 

sensor nodes' energy consumption and event detection rate. 

A higher average Q-value denotes lower energy usage and 

enhanced event capture efficiency. 

 
Figure 4. Q-value across varying sensor specificity constants α. 

Figure 3 presents the experimental outcomes across vary-

ing sensor specificity constants α. The findings reveal that: a) 

The MADDPG with Exploratory Strategy consistently out-

performs other algorithms at all tested α values, achieving a 

higher average Q-value. This indicates its superior energy 

efficiency and robust event detection capabilities. b) Sensi-

tivity to α: The experimental data demonstrate that the per-

formance of different algorithms varies with α values. Se-

lecting the most suitable algorithm and parameter settings is 

crucial and can significantly influence performance in vari-

ous application contexts. c) Optimal α Value: The results 

suggest that a lower α value, such as 2, tends to enhance 

performance across most algorithms. This is likely due to 

reduced energy consumption by the agents over the same 

operational period. Conversely, as α increases—taking val-

ues between 3.375 and 3.75—the sensor nodes prioritize 

event detection, which leads to higher energy use and a con-

sequent decrease in the average Q-value. 

 
Figure 5. Q-value across varying sensing radii. 

Figure 4 shows that the MADDPG with Exploratory 

Strategy consistently outperforms other algorithms across all 

sensing radii, indicating superior energy efficiency and event 

detection. As the sensing radius increases, all algorithms 

improve in performance, with the MADDPG with Explora-

tory Strategy showing the greatest gains. The performance of 

all algorithms begins to plateau at larger radii, suggesting a 

point of diminishing returns. The Random algorithm lags 

behind, serving as a baseline that underscores the advantages 

of more sophisticated approaches. 

The simulation results with added noise demonstrate that 

all algorithms experience a decline in average Q-value as the 

event Poisson rate increases, indicating that more frequent 

events lead to higher energy consumption and potentially 

compromise event capture efficiency. The MADDPG with 
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Exploratory Strategy algorithm exhibits the highest average 

Q-values across increasing event rates, suggesting it is the 

most robust and efficient under these conditions. 

 
Figure 6. Q-value across varying Poisson rates. 

5.3. Discussion 

The results reveal that in the context of multi-agent rein-

forcement learning (MARL), the MADDPG algorithm with 

an exploratory strategy often outperforms other algorithms 

due to several key factors: 

1. Exploration-Exploitation Balance: The exploratory 

strategy in MADDPG is designed to balance explora-

tion of the environment with the exploitation of known 

information. This balance is crucial in complex envi-

ronments where agents must discover new strategies to 

optimize their performance. The exploratory strategy 

encourages agents to try out new actions that may lead 

to higher rewards, rather than only exploiting their 

current knowledge, which may be suboptimal. 

2. Centralized Training with Decentralized Execution**: 

MADDPG operates on the principle of centralized 

training with decentralized execution. This means that 

during the training phase, the algorithm has access to 

the actions and states of all agents, which allows it to 

learn more about the environment and how different 

agents' actions affect each other. However, during ex-

ecution, each agent makes decisions based on its own 

observations, allowing for scalability and robustness in 

diverse environments. 

3. Policy Enrichment: The exploratory strategy enriches 

the policy search space by introducing stochasticity, 

which helps in avoiding local optima. By exploring 

more diverse actions, the agents can potentially dis-

cover better policies that lead to higher cumulative re-

wards. 

4. Handling Non-Stationarity: Multi-agent environments 

are inherently non-stationary from the perspective of 

any individual agent because the agents' policies are 

continually changing. An exploratory strategy can help 

an agent adapt to these changes more effectively by 

constantly exploring and updating its policy in re-

sponse to the actions of other agents. 

5. Credit Assignment: In multi-agent settings, it can be 

challenging to determine which agent's actions are re-

sponsible for observed outcomes. The exploratory 

strategy can facilitate the credit assignment process by 

allowing the algorithm to evaluate the impact of indi-

vidual actions on the collective outcome more effec-

tively. 

Regarding the impact of parameters on RL training and 

Q-value: 

1. Sensing Radius: A larger sensing radius allows agents 

to gather more information about the environment, 

which can lead to more informed decision-making and 

better policies. However, there is a trade-off between 

the increased information and the associated energy 

costs. 

2. Sensor Specificity Constant (α): This parameter can 

affect the precision of the sensors and the quality of the 

information gathered. A well-tuned α can help in bal-

ancing the trade-off between the sensitivity of the sen-

sors and the noise in the measurements, leading to 

more accurate state representations and better policy 

learning. 

3. Event Poisson Rate: A higher event rate increases the 

number of decisions an agent must make within a giv-

en timeframe, which can stress the agent's policy and 

lead to higher energy consumption. An effective RL 

algorithm must be able to handle these events effi-

ciently to maintain a high Q-value. 

In summary, the MADDPG with an exploratory strategy 

tends to perform better because it effectively balances ex-

ploration with exploitation, enriches the policy space, and 

adapts to the non-stationarity of multi-agent environments. 

The parameters such as sensing radius, sensor specificity 

constant, and event Poisson rate are critical in RL training as 

they influence the agents' ability to perceive and interact with 

the environment, directly impacting the Q-value and the 

overall success of the learning process. 

6. Conclusions 

This study has provided a comprehensive analysis of the 

impact of various environmental and algorithmic parameters 

on the performance of sensor nodes in a simulated mul-

ti-agent reinforcement learning setting. Our experiments 

have demonstrated that the MADDPG algorithm augmented 

with an exploratory strategy consistently outperforms other 
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algorithms under a range of conditions, maintaining higher 

average Q-values even as the event Poisson rate increases. 

This suggests that the exploratory strategy's ability to balance 

exploration and exploitation is crucial for optimizing both 

energy consumption and event detection capabilities in dy-

namic environments. 

The sensitivity of the algorithms to the sensor specificity 

constant α and the Poisson rate of events underscores the 

importance of careful parameter tuning in reinforcement 

learning applications. A smaller α value generally leads to 

better performance, indicating that energy efficiency is a key 

consideration for sensor node operation. However, as the 

event rate increases, the demand on sensor nodes escalates, 

necessitating a more robust response from the algorithms to 

maintain performance. 

Future work should focus on validating these simulation 

results in real-world environments, exploring the scalability 

of the algorithms to larger networks of sensor nodes, and 

investigating the integration of additional environmental 

factors into the simulation framework. The ultimate goal is to 

develop MARL algorithms that are not only theoretically 

sound but also practically viable, capable of adapting to the 

complexities of real-world operations and contributing to the 

advancement of autonomous sensor networks. 
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