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Abstract 

In recent years, there have been growing interests on deep learning based face recognition which currently produces state of the 

art standards in face detection, recognition and verification tasks. As is well known, loss function for extracting face feature plays 

a crucial role in deep face model. In this regards, margin-based loss functions which apply a fixed margin between the feature and 

the weight have attracted many interests. However, such margin-based losses have a somewhat limitation in enhancing the 

discriminative power and generalizability of the face model, since the intra-class and inter-class variations in the real face 

training sets are often imbalanced. In particular, the embedding feature whose angle between the feature and the weight is 

distributed around 90° or 180° on the hypersphere reflects the difficult embedding feature in the process of classes. These 

phenomena occur when one considers those class which contains few number of embedding data. In order to address this 

problem, in this paper we propose an improved adaptive angular margin loss that incorporates the adaptive and robust angular 

margin on the angular space between the feature and the corresponding weight instead of constant margin. Our new margin loss 

function is constructed by incorporating adaptive and more robust angular margin constraint on angular space between the 

embedding feature and the corresponding weight. The proposed loss function improves the feature discrimination by minimizing 

the intra-class variation and maximizing the inter-class variation simultaneously. We present some experimental result on LFW, 

CALFW, CPLFW, AgeDB and MegaFace benchmarks, which demonstrate the effectiveness of the proposed approach. 
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1. Introduction 

Face recognition is a rapidly developing and increasingly 

broadening field of biometric technologies [19, 24]. Its ap-

plications are wide, ranging from law enforcement to con-

sumer applications. The recent advancement of powerful 

GPUs and the creation of huge face databases encouraged the 

development of Deep Convolutional Neural Networks 

(DCNNs) for face recognition tasks [19]. Deep learning based 

Face recognition system involves mapping the normalized 

face image into a feature vector (embedding). Precisely, 

DCNNs map the face image into a feature that having small 

intra-class and large inter-class distance. The design of ap-

propriate loss function is a fundamental issue for 

DCNN-based face recognition. For this reason, much efforts 

have been devoted to creating novel loss functions to make 
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features not only more separable but also discriminative [3, 15, 

23]. 

The existing loss functions which supervise the learning of 

network can be largely classified into two categories: one 

trains a multi-class classifier which can separate different 

identities in the training set, such as a softmax loss [2] and 

another learns directly an embedding, such as the triplet loss 

[19]. Among those, softmax loss is known to be easy to train, 

and have achieved excellent performances in large-scale face 

recognition tasks. However, the softmax loss does not ex-

plicitly optimize the feature embedding, which is not appro-

priate for intra-class appearance variations (e.g., pose varia-

tions [32] and age gaps [33]) and large-scale test scenarios 

[10]. 

To overcome this limitation, some researchers proposed 

several variants of softmax loss in the last decade (see [5, 9, 11, 

12, 13, 14, 18, 22, 25, 26] and references therein). In particular, 

the margin-based methods which add some constant margin 

penalties on the angular or cosine spaces between the feature 

and its corresponding weight have achieved the state of the art 

performance. These methods aimed at enforcing intra-class 

compactness and inter-class discrepancy of extracted face 

features. The representative margin-based losses are ArcFace 

[3, 4], SphereFace [15] and CosFace [23]. It is remarkable that 

these losses make the features more discriminative over the 

traditional softmax loss. 

However, marginal penalty losses such as ArcFace, 

CosFace and SphereFace assume that the samples are equally 

distributed in the embedding space around the class center, 

which is not true when dealing with largely intra-class varia-

tions. Since these methods use a constant margin, the dis-

criminative power of deeply learned feature in such case does 

not become optimal. 

Thus, there appeared numerous approaches to use dynamic 

margins. For instance, Boutros et al [1] proposed ElasticFace 

that relaxes the fixed single margin value by deploying a 

random margin drawn from the Gaussian distribution. In 

order to handle the class imbalance and softmax saturation 

issue during the training process, Zhang et al [29] proposed a 

class-variant margin loss (CVM-Loss) by incorporating a 

true-class margin and a false-class margin into the cosine 

space of the angle between feature vector and class weight 

vector. However, it should be noted that the cosine value 

considering the margin in CVM-Loss has an invalid value if 

the angle between the feature and its corresponding weight is 

in some range. This is clear from its mathematical expression 

(see (5)). 

Although some variants of margin-based methods are ef-

fective, there still remains some problems to be discussed in 

more detail. The intra-class and inter-class variations in the 

real face training sets are inevitable, and this leads to degra-

dation of face recognition performance. Geometrically, the 

embedding feature whose angle between the feature and the 

weight is distributed around 90° or 180° on the hypersphere 

reflects the difficult embedding feature in the process of 

classes. These phenomena occur when we consider those 

class which contains few number of embedding data. Obvi-

ously, the discriminative power of face recognition system 

will be improved if we learn these embedding features. 

The purpose of this paper is to address this problem. More 

precisely, in this paper we propose an adaptive angular margin 

loss function that incorporates the adaptive and more robust 

angular margin constraint on angular space between the fea-

ture and its corresponding weight. This adaptive margin con-

straint makes it possible embedding features in the same class 

more compact and those belonging different classes farther 

apart. The detailed information can be found in section 3. 

We present some experimental result to show the effec-

tiveness of our approach. The experiments were conducted on 

some face recognition benchmarks: LFW, CALFW, CPLFW, 

AgeDB and MegaFace. The results demonstrate (a) our 

method is comparable to the state of the art methods in the 

face recognition performance, (b) a high generalizability of 

the proposed approach in spite of changes in backbone ar-

chitecture, training datasets, and evaluation benchmarks. 

The rest of present paper is organized as follows. In Section 

2, we introduce some background concepts and terminologies, 

and then we briefly summarize the previous research on var-

ious loss functions for deep face model. In Section 3, we shall 

present an adaptive angular margin loss in detail, from its 

motivation, intuition, and formulation to the discussion. In 

Section 4, we experimentally demonstrate the effectiveness of 

the proposed loss, including the effect of its parameters and 

the superiority of its performance compared to the other losses. 

Section 5 is devoted to concluding the main contribution of 

this paper. 

2. Related Works 

Let us briefly summarize the related research in the field of 

margin-based losses. We limit ourselves to the classical 

softmax loss and its variants. The most widely used classifi-

cation loss function, softmax loss sL  being defined as a cross 

entropy loss between the output of the activation function and 

the ground-truth, is formulated as follows: 

=1

=1

1
= log ,

TW x b
y i yN i i

s N TW x b
j i ji

j

e
L

N
e





 
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           (1) 

where d
ix R  denotes the deep feature of the i -th sample 

belonging to the iy -th class. , d
y j
i

W W R  denote the iy -th 

and j -th column of the weight 
d CW R  , and ,y j

i
b b  is 

the bias term. The batch size and the class number are N  and 

C , respectively. In practice, we usually set = 0y
i

b  and 
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= 0jb . 

For optimimality of classification result, one often fixes the 

embedding feature ix  by 2  normalization and rescale it 

to s . Then the learned embedding features are distributed on 

a hypersphere with a radius of s , and softmax loss is trans-

formed into normalized softmax loss function nsL , which is 

defined as follows. 
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      (2) 

Later on, many works have attempted to improve the 

softmax loss to obtain effective margin discriminative fea-

tures [5, 9, 11, 12, 13, 14, 18, 22, 25, 26]. Liu et al [15] in-

troduced a multiplicative angular margin loss named 

SphereFace. Wang et al [23] proposed CosFace: additive 

cosine margin on the cosine angle between the deep features 

and their corresponding weights. Deng et al [3] proposed 

additive angular margin termed ArcFace by deploying angular 

penalty margin on the angle between the deep features and 

their corresponding weights. 

By combining SphereFace, ArcFace and CosFace, Deng et 

al [4] introduced an integrated loss function IntegratedL , which 

is formulated as. 

(cos( ) )
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where 1 2,m m  and 3m  as the hyper-parameters. 

Note that if we set 2 3= = 0m m  in (3), then it reduces to 

SphereFace, if we set 1 2= = 0m m  in (3), then it reduces to 

CosFace, and if we set 1 3= = 0m m  in (3), then it reduces to 

ArcFace, respectively. Furthermore, if we set 1 = 1m  and 

2 3= = 0m m  in (3), then it reduces to normalized softmax 

loss function nsL . 

Recently, dynamic marginal penalty has proven to be more 

discriminative over constant marginal constraint. One of the 

dynamic marginal penalty is ElasticFace, which is defined as 

follows. 
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where ( , )E m   is a normal function that return a random 

value from a Gaussian distribution with the mean m  and the 

standard deviation  . This aims at giving the decision 

boundary chance to extract and retract to allow space for 

flexible class separability learning. This loss demonstrated the 

superiority of ElasticFace loss over ArcFace and CosFace 

losses, using the same geometric transformation, on a large set 

of mainstream benchmarks. However, the generated random 

margin in each training iteration is independent of the angle 

between the feature and its corresponding weight (see (4)). 

Another notable dynamic marginal penalty is class-variant 

margin (CVM) normalized softmax loss [29], which is de-

fined as follows. 
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2
1( ) = (1 ),cosy y

i i
h m                (6) 

2
2( ) = ( ),cosj jg m               (7) 

where ( )y
i

h   is the margin function applied to the cosine of 

angle between the feature vector and the true class weight 

vector, named the true-class margin; ( )jg   is the margin 

function added to the cosine of angle between the feature 

vector and the false class weight vector, named the false-class 

margin; 1m  and 2m  are predetermined hyperparameters; 

1m  represents the upper bound of the true-class margin, and 

2m  represents the upper bound of the false-class margin. 

It is worth mentioning that there are other remarkable 

margin addptive dynamic loss functions. Xu et al [26] intro-

duced X2-Softmax loss, which replaces the cosine function in 

ArcFace loss with a quadratic function. This loss is mar-

gin-adaptive and can automatically adjust the angular margin 

with the angle between different classes. Very recently, Kha-

lifa el al [11] proposed a joint adaptive margins loss function 

termed JAMsFace that learns class-related margins for both 

angular and cosine spaces. 

3. Proposed Approach 

In this section, we propose an adaptive angular margin loss 

to further improve the discriminative power of deep face 

model. The proposed loss function aims to enhance the 

boundary margins whose angles are distributed around 90° or 

180° on the hypersphere. In general, there exist an imbalance 

between different classes, especially this is true when we 

consider samples with large intra-class variation in training 

datasets or few number of embedding samples. In other words, 

some samples within the same class are greatly dissimilar to 
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each other, and another samples belonging different classes 

are similar to each other, which strongly affects learning of 

features. Therefore, it is possible to enhance the intra-class 

compactness and inter-class discrepancy simultaneously if we 

design a new loss function that allows emphasize the effect of 

training data at the boundary between different classes. 

Let us introduce new margin loss function that incorporates 

the adaptive and more robust angular margin constraint on 

angular space between the embedding feature and the corre-

sponding weight. The proposed adaptive loss function can be 

formulated as follow. 

(cos( ( )))

(cos( ( ))) cos( )
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= log ,

s f
y yN i i

Adaptive Cs f sy y ji i i

j j y
i

e
L

N
e e

 

  














 (8) 

2
1 2( ) = (1 ) ,cosy y

i i
f m m             (9) 

where 1m  and 2m  are hyperparameters satisfying 1 2m m , 

whose explicit value are experimentally decided in realistic 

settings. 

It seems that ( )y
i

f   in (9) is similar to ( )y
i

h   from [29], 

but the cosine value of angular margin is always valid, since 

the incorporated margin constraint depends on the angle 

between weights of classes and does not less than a fixed 

constant, namely 2m . Notice that if we set 1 = 0m  in (9), 

then it reduces to ArcFace. Furthermore if we set 

1 2= = 0m m  in (9), then it reduces to the normalized softmax 

loss. 

Let us consider mathematical meaning of marginal 

function. By definition, it is immediate that 2( )y
i

f m   

for all y
i

 . Let us be more precise. If the marginal angle 

y
i

  is distributed around 90°, then we have 

1 2( )y
i

f m m    from (9), and if y
i

  is distributed 

around 180°, then we have 2( )y
i

f m   from (9). This 

means that the proposed loss function actively enhances the 

marginal features lying on the boundary between different 

classes, which results in increasing extra intra-class 

compactness and inter-class discrepancy simultaneously. 

Moreover, this ensures stable training of network by adding 

the small constraint on the feature whose angles are dis-

tributed around 180°. 

The proposed marginal loss function can be easily 

implemented by adding the expression (9) and its derivative 

calculation in forward and backward propagation of a network 

which is supervised by general softmax loss function. Plotted 

in Figure 1 shows the graph of the adaptive margin ( )y
i

f  , 

nonlinear mapping of angle y
i

 . 

 

Figure 1. Adaptive margin function 2
1 2f ( )= m (1 ) mcos   . 

Now, we consider the decision boundary of adaptive an-

gular margin loss over the previous some loss for two-class 

classification task. The decision boundaries of various loss 

functions are listed in the following Table 1. 

Table 1. Decision boundaries of some loss functions in two-class 

classification case. 

Loss Function Decision Boundaries 

Normalized 

Softmax 
1 2cos cos 0    

ArcFace  1 2cos cos 0m     

CosFace 1 2cos cos 0m     

ElasticFace-Arc  1 2cos ( , ) cos 0E m      

CVM-Loss  2 2
1 2 1 1 2 2cos cos sin cos 0m m        

The proposed 

loss 
  2

1 1 1 2 2cos 1 cos cos 0m m        
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a) Normalized softmax, b) ArcFace, c) Elastic Arc, d) CosFace, e) CVM-Loss, f) The proposed loss 

Figure 2. Decision boundary and margins for two class classification task. 

Figure 2 illustrates the decision boundary of Normalized 

Softmax, ArcFace, ElasticFace-Arc, CosFace, Elas-

ticFace-Cos and the proposed adaptive angular margin loss. 

The dashed black line is the decision boundary. The gray area 

illustrates the decision margin. 

4. Experimental Results 

To demonstrate the effectiveness of our proposed adaptive 

angular margin loss, we conducted extensive experiments on 

LFW, CALFW, CPLFW, AgeDB-30 and MegaFace datasets, 

which are the most widely used benchmarks for face recog-

nition. 

4.1. Results on LFW, CALFW, CPLFW and 

AgeDB-30 

First, we compared the accuracy (Acc) for the adaptive 

angular margin loss with the various losses. Acc is a simpli-

fied metric introduced by Labelled Faces in the Wild (LFW) 

[7], which represents the percentage of correct classifications. 

LFW is the commonly used benchmark for face recognition in 

unconstrained environments [8]. The original LFW protocol 

includes 3,000 genuine and 3,000 impostor face pairs and 

evaluates the mean verification accuracy on these 6,000 pairs. 

In addition to LFW, several other benchmarks are also used 

for face recognition evaluations. These include CPLFW [32], 

CALFW [33], and AgeDB [18]. 

We used the manually refined dataset from Casia-WebFace 

[27] as our training sets. This dataset contains images of ce-

lebrities which consist of 10554 identities and 446996 images. 

We used a similarity transformation based on 5 facial land-

marks (eyes, a nose, and mouth corners) detected by MTCNN 

[28] to normalize the face image. The normalized face is then 

cropped and resized to 112 112  [1, 4]. During training, the 

RGB values are normalized from [0, 255] to [-1, 1]. These 

normalized faces are used as an input of network. 

For a fair comparison with other losses, we employed 

slightly modified version of well-known CNN architecture 

such as ResNet50, the widely used DCNN architecture as a 

backbone. The proposed loss in this paper are implemented 

using Caffe framework. We follow the common setting [4] to 

set the scale parameter s  to 64. We set the dimension of 

feature embedding to 512. All models are trained on NVIDIA 

Tesla P100 using the stochastic gradient descent (SGD) al-

gorithm with a momentum of 0.9 and a weight decay of 5e-4. 

The learning rate starts at 0.01 and is decreased by multiply-

ing 0.8 at the 18th and 28th epoch, and training is stopped 

after the 35 epochs. We also set the hyper parameters 

1 0.03m   and 2 0.5m  , respectively. In Table 2, we pre-

sented the changes of Acc with various selection of hy-

perparameters. Relying on this table, we chose 1 0.03m   

and 2 0.5m   as the best possible hyperparameter. 
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Table 2. Parameter selection. 

m1 m2=0.45 m2=0.5 m2=0.55 

 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05 

LFW (Acc) (%) 99.39 99.41 99.37 99.48 99.53 99.43 99.35 99.39 99.42 

Table 3. Verification comparison with state-of-the-art methods on four benchmarks (LFW, CALFW, CPLFW and AgeDB-30) reported in 

terms of accuracy (%). 

Loss functions LFW CALFW CPLFW AgeDB-30 

Softmax 99.08 91.57 87.17 92.33 

ArcFace (0.5) [4] 99.53 93.93 89.99 95.15 

ArcFace (0.5) 99.46 93.89 89.98 95.05 

CosFace (0.35) [23] 99.51 93.83 89.70 94.56 

CosFace (0.35) 99.37 94.12 89.66 94.93 

Combined Margin (1, 0.3, 0.2) 99.43 92.23 90.06 95.11 

ElasticFace-Arc [1] 99.53 93.65 90.88 95.23 

The proposed (0.03, 0.5) 99.53 93.81 91.03 95.25 

 

Second, we evaluated the models on LFW, CALFW, 

CPLFW and AgeDB-30 benchmarks. The DCNN used in this 

paper is the slight modification of ResNet50 and the adaptive 

angular margin loss is used. We selected the datasets as our 

training sets: MS1MV2 [3] refined from MS-Celeb-1M da-

taset [6]. MS1MV2 datasets include 5.8M images of 85K 

different identities. We also selected custom dataset consist of 

27709 identities and 219384 images. By combining these 

dataset, the total dataset contains 87709 identities and 

6019384 images. The results evaluated in terms of recognition 

on LFW, CALFW, CPLFW and AgeDB-30 benchmarks are 

listed in Table 3. The hyperparameters used in training pro-

cess are set as above. The results of the various SOTA 

methods evaluated on LFW, CALFW, CPLFW and 

AgeDB-30 benchmarks are listed in Table 3. As shown in 

Table 4, the proposed adaptive angular margin loss have 

shown the slight improvement to the previous face recogni-

tion methods. 

Table 4. Evaluation of verification accuracy for face recognition methods on LFW, CALFW, CPLFW and AgeDB-30 (%). 

Methods #Images of Training data LFW CALFW CPLFW AgeDB-30 

DeepID [20] 0.2M 99.47 - - - 

Dynamic-AdaCos [30] 6.3M 99.73 - - - 

FaceNet [19] 200M 99.63 - - - 

SphereFace [15] 0.5M 99.42 - - - 

CosFace [23] 5M 99.73 - - - 

UniformFace [5] 6.1M 99.8 - - - 

CircleLoss [21] 3.6M 99.73 - - - 

CoCo Loss [16, 24] 3M 99.86 - - - 

GroupFace [12] 5.8M 99.85 96.20 93.13 98.28 
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Methods #Images of Training data LFW CALFW CPLFW AgeDB-30 

ArcFace [4, 3] 5.8M/11.96M 99.83 95.45 92.08 98.15 

MagFace [17] 5.8M 99.83 96.15 92.87 98.17 

ElasticFace-Arc [1] 5.8M 99.82 96.17 93.28 98.35 

BroadFace [13] 11.96M 99.85 - - - 

The proposed method 6.0M 99.87 96.33 93.35 98.41 

 

4.2. Results on MegaFace 

The MegaFace dataset [10] includes 1M images of 690K 

different individuals as the gallery set and 100K photos of 530 

unique individuals from FaceScrub as the probe set. Mega-

Face and MegaFace(R) [11] are used for even more rigorous 

evaluations. MegaFace(R) benchmark refers to the refined 

version of MegaFace which is manually selected. These 

benchmarks are publicly available. We evaluate the Rank-1 

identification accuracy and the TAR (@FAR=1e-6) on both 

benchmarks. Rank-1 is based on what percentage of probe 

searches return the probe’s gallery mate within the top 1 

rank-ordered results. TAR (@FAR=1e-6) denotes true ac-

ceptance rates (TAR) at false acceptance rates (FAR) of 1e-6. 

Then, we compare the proposed method with state-of-the-art 

face recognition approaches and verify its effectiveness. Note 

that “*” indicates our implementations and the best results are 

indicated in bold. 

We use MS1MV2 as the training dataset, which is manually 

refined dataset containing images of celebrities which consist 

of 87709 identities and 6019384 images. We employ the 

DCNN architecture such as ResNet100. Loss function and the 

hyper parameters set as above, and the learning rate initially 

starts at 0.01 and is decreased by multiplying 0.8 at 20th and 

32nd epoch, and training is stopped after 43 epochs. 

The evaluation results are shown in Table 5. 

Table 5. The evaluation results for face recognition methods on MegaFace and MegaFace (R). 

Methods 
#Images of Train-

ing data 

MegaFace (%) MegaFace (R) (%) 

Rank-1 TAR (@FAR=1e-6) Rank-1 TAR (@FAR=1e-6) 

Dynamic-AdaCos [30] 6.3M - - 97.41 - 

FaceNet [19] 200M 70.49 86.47 - - 

SphereFace [15] 0.5M 72.729 85.561 - - 

CosFace [23] 5M 82.72 96.65 - - 

UniformFace [5] 6.1M 79.98 95.36 - - 

CircleLoss [21] 3.6M - - 98.50 98.73 

AdaptiveFace [14] 5M - - 95.02 95.61 

GroupFace [12] 5.8M 81.31 97.35 98.74 98.79 

ArcFace [4, 3] 5.8M/ 81.03/ 96.98/ 98.35/ 98.48/ 

 11.96M 81.43 97.63 98.98 99.08 

MC-FaceGraph [31] 18.8M - - 99.02 98.94 

ElasticFace-Arc[1] 5.8M 80.76 97.30 98.81 98.92 

BroadFace [13] 11.96M - - 98.70 98.95 

The proposed method* 6.0M 84.11 93.50 98.82 98.91 
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As Figured in Table 5, the evaluation result on MegaFace 

shows that proposed face recognition method achieves the 

similar performance to the state of the art methods. Further-

more, the ArcFace [33] (TAR@ FAR=1e-6: 99.08%) and 

MC-FaceGraph [12] (Rank-1 Acc: 99.02%) whose size of 

training datasets are 11.96M and 18.8M scored the highest 

performance on MegaFace (R) datasets. Compared to these 

methods, the proposed method has as less as 2 or 3 times of 

that datasets, and the size of network is 1.5 times as less as the 

size of those network, while archives the similar performance 

to that methods. 

5. Conclusions 

As stated above, we proposed an adaptive angular margin 

loss function, which can effectively enhance the discrimina-

tive power of feature embedding learned via DCNNs for face 

recognition. We demonstrate the effectiveness of our ap-

proach through some experiments. The experimental result 

reveals that the proposed adaptive angular margin loss 

actively enhances the marginal features lying on the boundary 

between different classes, which results in increasing 

intra-class compactness and inter-class discrepancy 

simultaneously. Moreover, this ensures stable training of 

network by adding the small constraint on the feature whose 

angles are distributed around 180°. Specifically our method 

advances the state of the art face recognition performance on 

LFW, CALFW, CPLFW and AgeDB-30, and achieves com-

parable results on MegaFace benchmarks. 

In the future, we will explore deep learning models for 

face recognition such as Swin transformer, which outper-

forms DCNNs by a large margin loss in the image classifica-

tion. In addition, we will also explore novel loss function 

which is more robust to facial poses and expressions. 

Abbreviations 

DCNN Deep Convolutional Neural Network 

CVM-Loss Class-variant Margin Loss 

LFW Labeled Faces in the Wild 

CALFW Cross-age Labeled Faces in the Wild 

CPLFW Cross-pose Labeled Faces in the Wild 

TAR True Acceptance Rate 

FAR False Acceptance Rate 

Acc Accuracy 
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