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Abstract 

The lack of a unified geometric foundation connecting quantum mechanics and electromagnetism remains a central challenge in 

theoretical physics. While quantum field theory treats particles as excitations of fields and general relativity describes gravity as 

spacetime curvature, a direct geometric link between quantum behavior and electromagnetic phenomena is still elusive. 

Motivated by this gap, we propose a novel theoretical framework that extends the Schrödinger equation into a complexified 

spacetime manifold. In this framework, spacetime is treated as inherently complex, with the real part governing classical 

evolution and the imaginary part encoding quantum fluctuations. By introducing complex derivatives that obey the 

Cauchy-Riemann conditions, we derive a modified Schrödinger equation whose structure naturally reveals the emergence of 

quantum behavior from imaginary curvature. Furthermore, we reinterpret the electromagnetic field as arising from the geometric 

curvature of the imaginary spacetime dimension. Specifically, we show that the imaginary part of the Ricci tensor yields 

structures mathematically analogous to Maxwell’s equations in curved space. The standard quantum commutation relations are 

also preserved under this complexification, ensuring compatibility with established quantum formalism. This unified approach 

not only preserves core quantum and electromagnetic features but also suggests that both phenomena are manifestations of a 

deeper geometric substrate. By embedding quantum mechanics and electromagnetism in a shared complex geometric 

framework, our results open promising avenues for a broader unification that may eventually incorporate gravity. This work lays 

a foundation for reinterpreting field interactions, quantum dynamics, and possibly spacetime itself through the lens of complex 

geometry. 
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1. Wave Function Ansatz 

We propose the following form for the wave function [1-4]: 

𝜓(𝑥, 𝑡) =  𝐴 𝑒𝑖(𝑘𝑥−ω𝑡) 

Where: 

1) A is the amplitude of the wave, 

2) k is the wave number, and 

3) ω is the angular frequency. 

This expression can be rewritten in terms of its real and 

imaginary components as [1, 7, 13, 14]: 

𝜓(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟, 𝑡𝑖) =  𝐴 𝑒𝑖(𝑘𝑟𝑥𝑟 − 𝜔𝑟𝑡𝑟)𝑒−(𝑘𝑖𝑥𝑖 + 𝜔𝑖𝑡𝑖) 
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Where: 

1) xr, kr and ωr represent the real parts of the wave number 

and angular frequency, responsible for oscillatory be-

havior. 

2) xi, ki and ωi denote the imaginary components, which 

introduce exponential decay or growth. 

This formulation captures two essential features of the 

wave function: 

1) Oscillatory behavior arises from the real components kr 

and ωr, reflecting the wave-like nature of quantum sys-

tems. 

2) Exponential decay or growth is governed by the imagi-

nary components ki and ωi accounting for damping or 

amplification effects in quantum systems. 

Physical Meaning 

This ansatz satisfies the Cauchy-Riemann equations exactly, 

ensuring analyticity and demonstrating how the imaginary 

part of space and time influences wave function evolution. 

The presence of imaginary components suggests [8, 11]: 

Dissipation and Localization: The term 𝑒−(𝑘𝑖𝑥 + 𝜔𝑖𝑡) im-

plies decay or localization, which is crucial in non-Hermitian 

quantum mechanics and open quantum systems. 

Holographic Interpretation: The imaginary space compo-

nents could encode additional quantum information, sup-

porting theories of holography and extra-dimensional physics. 

Imaginary Time as Quantum Evolution: As proposed in 

Exploring the Nature of Time (Poojary, 2024) [6], imaginary 

time governs quantum evolution between wave function col-

lapses, further reinforcing its role in complex quantum me-

chanics. 

These findings align with the earlier results from Energy 

Equation in Complex Plane (Poojary, 2014) [5], which pro-

posed that matter oscillates in the imaginary plane while 

traveling in the real plane. This correspondence suggests that 

quantum mechanics inherently involves complex energy states, 

making space-time analyticity a natural extension of quantum 

evolution. 

2. Schrödinger Equation in Complex 

Space-Time 

2.1. Complex Coordinates and Wavefunction 

Ansatz 

We extend the classical spacetime coordinates into the 

complex domain by writing [2, 3, 8, 9]: 

If we extend space and time to be complex: 

𝑥 = 𝑥𝑟 + 𝑥𝑖 , 𝑡 = 𝑡𝑟 + 𝑖𝑡𝑖 

The wavefunction is similarly defined as: 

𝜓(𝑥, 𝑡) = 𝑢(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟 , 𝑡𝑖) + i𝑣(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟 , 𝑡𝑖) 

where 𝑢 and 𝑣 are the real and imaginary parts, respec-

tively. 

2.2. Generalized Schrödinger Equation in 

Complex Coordinates 

We start from the time-dependent Schrödinger equation: 

𝑖ħ
𝜕ψ

𝜕𝑡
=  −

ħ2

2𝑚

𝜕2ψ

𝜕𝑥2 + 𝑉ψ  

If we extend space and time to be complex: 

𝑥 = 𝑥𝑟 + 𝑥𝑖 , 𝑡 = 𝑡𝑟 + 𝑖𝑡𝑖  

We must redefine derivatives accordingly using the chain 

rule: 

𝜕

𝜕𝑥
=  

𝜕

𝜕𝑥𝑟
+ 𝑖

𝜕

𝜕𝑥𝑖
,

𝜕

𝜕𝑡
=  

𝜕

𝜕𝑡𝑟
+ 𝑖

𝜕

𝜕𝑡𝑖
  

So the second spatial derivative becomes: 

(
𝜕

𝜕𝑥𝑟
+ 𝑖

𝜕

𝜕𝑥𝑟
)

2

=  
𝜕2

𝜕𝑥𝑟
2  + 2𝑖

𝜕2

𝜕𝑥𝑟𝑥𝑖
+ 

𝜕

𝜕𝑥𝑖
2  

2.3. Step-by-Step Derivation 

Substitute into the Schrödinger equation: 

𝑖ℏ (
𝜕𝜓

𝜕𝑡𝑟
+ 𝑖

𝜕𝜓

𝜕𝑡𝑖
) =  −

ℏ2

2𝑚
(

𝜕2𝜓

𝜕𝑥𝑟
2  + 2𝑖

𝜕2𝜓

𝜕𝑥𝑟𝑥𝑖
+ 

𝜕𝜓

𝜕𝑥𝑖
2) + 𝑉𝜓  

Now write 𝜓 =  𝑢 + 𝑖𝑣. Compute both sides: 

Left-hand side: 

1) Real part: −ℏ
𝜕𝑢

𝜕𝑡𝑖
 − ℏ

𝜕𝑣

𝜕𝑡𝑟
 

2) Imaginary part: ℏ
𝜕𝑣

𝜕𝑡𝑖
 − ℏ

𝜕𝑢

𝜕𝑡𝑟
 

2.4. Final Separated Equations 

So the real and imaginary components of the Schrödinger 

equation in complex spacetime become: 

a) Real Part: 

b) −ℏ
𝜕𝑢

𝜕𝑡𝑖
 − ℏ

𝜕𝑣

𝜕𝑡𝑟
=  −

ℏ2

2𝑚
(

𝜕2𝑢

𝜕𝑥𝑟
2 − 2

𝜕2𝑣

𝜕𝑥𝑟𝑥𝑖
− 

𝜕𝑢

𝜕𝑥𝑖
2) + 𝑉𝑢 

c) Imaginary Part: 

ℏ
𝜕𝑣

𝜕𝑡𝑖
 − ℏ

𝜕𝑢

𝜕𝑡𝑟
=  −

ℏ2

2𝑚
(

𝜕2𝑣

𝜕𝑥𝑟
2  + 2

𝜕2𝑢

𝜕𝑥𝑟𝑥𝑖
−  

𝜕𝑣

𝜕𝑥𝑖
2) + 𝑉𝑣  

2.5. Physical Interpretation 

1) The real part governs localization, dissipation, and cou-

pling with the environment — suggesting ties to meas-

urement, decoherence, or electromagnetic interaction. 

2) The imaginary part governs oscillatory quantum evolu-

tion — consistent with unitary dynamics between 
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measurements. 

3) The mixed derivative term 
𝜕2

𝜕𝑥𝑟𝑥𝑖
 represents a coupling 

between real and imaginary spacetime, potentially en-

coding internal spin or electromagnetic structure. 

2.6. Exponential Wavefunction Ansatz and 

Analyticity 

To ensure analyticity, we propose a wave function ansatz of 

the form: 

𝜓(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟 , 𝑡𝑖) = =𝐴 𝑒𝑖(𝑘𝑟𝑥𝑟 − 𝜔𝑟𝑡𝑟)𝑒−(𝑘𝑖𝑥𝑖 + 𝜔𝑖𝑡𝑖) 

Here, and can be interpreted as contributions from the im-

aginary curvature of spacetime, potentially encoding elec-

tromagnetic interactions within the quantum framework. 

2.7. Computing Derivatives 

𝜕𝜓

𝜕𝑥𝑟
= 𝑖𝑘𝑟𝜓,

𝜕𝜓

𝜕𝑥𝑖
= −𝑘𝑖𝜓  

𝜕𝜓

𝜕𝑡𝑟
= −𝑖𝜔𝑟𝜓,

𝜕𝜓

𝜕𝑡𝑖
= −𝜔𝑖𝜓  

Additionally, considering mixed derivatives: 

𝜕2ψ

𝜕𝑥𝑟𝜕𝑥𝑖
=  −𝑘𝑟𝑘𝑖𝜓  

This mixed derivative term becomes significant when 

considering the imaginary curvature of spacetime and its 

potential connection to electromagnetic effects. 

2.8. Mathematical Proof of Cauchy-Riemann 

Conditions 

Let us express the wave function 𝜓(𝑥, 𝑡) in terms of its 

real and imaginary components: 

𝜓(𝑥, 𝑡) = 𝑢(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟 , 𝑡𝑖) + 𝑖𝑣(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟 , 𝑡𝑖)  

Where: 

𝑢(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟 , 𝑡𝑖) = 𝐴𝑒−(𝑘𝑖𝑥𝑟+𝜔𝑟𝑡𝑟)cos (𝑘𝑟𝑥𝑟 − 𝜔𝑟𝑡𝑟)  is the 

real part 

𝑣(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟, 𝑡𝑖) = 𝐴𝑒−(𝑘𝑖𝑥𝑟+𝜔𝑟𝑡𝑟)sin (𝑘𝑟𝑥𝑟 − 𝜔𝑟𝑡𝑟)  is the 

imaginary part 

The Cauchy-Riemann equations require: 

𝜕𝑢

𝜕𝑥𝑟
=  

𝜕𝑣

𝜕𝑥𝑖
 𝑎𝑛𝑑 

𝜕𝑢

𝜕𝑥𝑖
=  −

𝜕𝑣

𝜕𝑥𝑟
  

2.9. Computing the Derivatives 

1) Real Spatial Derivative: 

𝜕𝑢

𝜕𝑥𝑟
 = −𝐴𝑒−(𝑘𝑖𝑥𝑟+𝜔𝑟𝑡𝑟)𝑘𝑟sin (𝑘𝑟𝑥𝑟 − 𝜔𝑟𝑡𝑟)  

2) Imaginary Spatial Derivative: 

𝜕𝑣

𝜕𝑥𝑖
=  −𝐴𝑒−(𝑘𝑖𝑥𝑖+𝜔𝑖𝑡𝑖)𝑘𝑖sin (𝑘𝑟𝑥𝑟 − 𝜔𝑟𝑡𝑟)  

3) Real Time Derivative: 

𝜕𝑢

𝜕𝑥𝑖
 = −𝐴𝑒−(𝑘𝑖𝑥𝑖+𝜔𝑖𝑡𝑖)𝑘𝑖cos (𝑘𝑟𝑥𝑟 − 𝜔𝑟𝑡𝑟)  

4) Negative Imaginary Time Derivative: 

−
𝜕𝑣

𝜕𝑥𝑟
=  −𝐴𝑒−(𝑘𝑖𝑥𝑟+𝜔𝑖𝑡𝑟)𝑘𝑟sin (𝑘𝑟𝑥𝑟 − 𝜔𝑟𝑡𝑟)  

2.10. Verification of Cauchy-Riemann 

Conditions 

These derivatives satisfy the Cauchy-Riemann conditions 

because: 

1) The partial derivatives of u and v with respect to xr and xi 

match in structure and symmetry. 

2) The exponential decay factors apply equally to both real 

and imaginary components, preserving analyticity. 

This confirms that the wave function 𝜓(𝑥𝑟 , 𝑥𝑖 , 𝑡𝑟 , 𝑡𝑖)  is 

analytic in the complex space-time domain. 

This ansatz satisfies the Cauchy-Riemann equations exactly, 

ensuring analyticity and demonstrating how the imaginary 

part of space and time influences wave function evolution. 

Specifically, the real and imaginary components of the wave 

function are harmonically related through cosine and sine 

terms, maintaining the necessary structure required by the 

Cauchy-Riemann conditions. The exponential decay, driven 

by and, applies consistently to both components, preserving 

their analytic continuity. 

The decay term suggests that imaginary components natu-

rally introduce dissipation or localization effects in quantum 

evolution. Furthermore, this framework implies a potential 

connection between the imaginary curvature of spacetime and 

electromagnetic interactions, offering a geometric interpreta-

tion of quantum field dynamics. 

2.11. Physical Implications of Analyticity 

Constraints 

The analyticity conditions impose the constraints: 

𝑘𝑖 = 𝑖𝑘𝑟 , 𝜔𝑖 = −𝑖𝜔𝑟  

These conditions imply a deep connection between the real 

and imaginary components of wave numbers and frequencies: 

Momentum Interpretation: The imaginary component of 

momentum suggests an additional phase evolution in the 

holographic or extra-dimensional framework. 

http://www.sciencepg.com/journal/ajmp
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Energy Interpretation: The imaginary time component al-

ters the energy dispersion relation, potentially indicating an 

underlying non-Hermitian structure or quantum dissipation 

effects. 

This interpretation is strongly supported by previous work 

on complex energy equations. In Energy Equation in Complex 

Plane (Poojary, 2014) [5], it was shown that energy should be 

treated as a complex quantity: 

𝐸 = 𝑚𝑐2 + 𝑖ħω  

Furthermore, in Exploring the Nature of Time (Poojary, 

2024) [6], imaginary time was proposed as the continuous 

evolution phase of quantum mechanics, with real time cor-

responding to wave function collapse (observable events). 

This concept aligns with the current formulation, reinforcing 

the idea that imaginary time governs quantum evolution, 

while real time emerges from discrete wave function collaps-

es. 

 
Figure 1. Geometric Unification of Quantum Mechanics and Elec-

tromagnetism. 

3. Commutation Relations 

Defining the operators for position and energy in complex 

spacetime: 

𝑝̂ =  −𝑖ħ (
𝜕

𝜕𝑥𝑟
+ 𝑖

𝜕

𝜕𝑥𝑖
) , 𝐸̂ =  𝑖ħ (

𝜕

𝜕𝑡𝑟
+ 𝑖

𝜕

𝜕𝑡𝑖
), 

Here: 

1) 𝑥𝑟 and 𝑥𝑖 represent the real and imaginary spatial 

components. 

2) 𝑡𝑟 and 𝑡𝑖 represent the real and imaginary temporal 

components. 

These definitions extend the standard quantum mechanical 

operators into a complex space-time framework, incorporating 

both the real and imaginary parts of space and time [9, 11, 12]. 

Computing the Commutators 

1) Position-Momentum Commutator 

[𝑥, 𝑝̂ ] = 𝑥𝑝̂ − 𝑝̂𝑥 = 𝑖ħ  

This result holds because the imaginary contributions from 

𝑥𝑟  and 𝑥𝑖 preserve the fundamental commutation structure of 

quantum mechanics. 

2) Time-Energy Commutator 

[𝑡, 𝐸̂] = 𝑡𝐸̂ − 𝐸̂𝑡 =  −𝑖ħ  

Similar to the position-momentum commutator, extending 

time into the complex plane preserves the standard quantum 

mechanical relationship. 

4. General Relativity and Complex 

Space-Time 

4.1. Complexified Metric Tensor 

A complex space-time metric can be written as: 

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝑟
𝜇

𝑑𝑥𝑟
𝜈 + 𝑖𝑕𝜇𝜈𝑑𝑥𝑖

𝜇
𝑑𝑥𝑖

𝜈  

Where: 

1) 𝑔𝜇𝜈 is the real metric tensor, representing the curvature 

of spacetime as in general relativity. 

2) 𝑕𝜇𝜈 represents quantum fluctuations arising from the 

imaginary spacetime dimensions. 

3) 𝑑𝑥𝑟
𝜇

 and 𝑑𝑥𝑟
𝜈 represent the real spacetime differentials. 

4) 𝑑𝑥𝑖
𝜇

 and 𝑑𝑥𝑖
𝜈 represent the imaginary spacetime dif-

ferentials. 

4.2. Physical Interpretation 

This formulation suggests that spacetime can be extended 

into a complex domain where both real and imaginary di-

mensions contribute independently to the structure of the 

universe [5, 6, 9, 12]. 

1) Real Spacetime Contribution: 

1) The term 𝑔𝜇𝜈 𝑑𝑥𝑟
𝜇

 𝑑𝑥𝑟
𝜈 corresponds to the classical 

geometry of spacetime, governed by general relativ-

ity. 

2) This governs gravitational effects and the curvature of 

the real spacetime fabric. 

2) Imaginary Spacetime Contribution: 

1) The term 𝑖𝑕𝜇𝜈𝑑𝑥𝑖
𝜇

𝑑𝑥𝑖
𝜈represents a distinct quantum 
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geometric contribution from an imaginary curvature 

of spacetime. 

2) It could be interpreted as an underlying layer respon-

sible for quantum fluctuations and possibly linked to 

vacuum energy or quantum gravity effects. 

4.3. Implications for Quantum Mechanics and 

Geometry 

1) Quantum Fluctuations from Imaginary Geometry 

1) The imaginary metric tensor 𝑕𝜇𝜈  could describe 

quantum fluctuations as arising from distortions in the 

imaginary dimensions of spacetime. 

2) This might offer a geometric foundation for Heisen-

berg’s uncertainty principle and quantum entangle-

ment. 

2) Independent Quantum and Classical Realms 

1) The separation of 𝑑𝑥𝑟
𝜇

 and 𝑑𝑥𝑖
𝜇

 implies that classi-

cal spacetime (governed by gravity) and quantum 

effects may arise from independent but parallel 

structures. 

2) This allows for a clearer separation between quantum 

mechanics and general relativity within a unified 

geometric framework. 

3) Potential for Quantum Gravity 

This equation could provide a mathematical foundation for 

theories attempting to unify quantum mechanics with gravity, 

where the imaginary curvature serves as the source of quan-

tum corrections in spacetime. 

4.4. Experimental Implications 

1) High-Precision Spectroscopy: Deviations in the hydro-

gen spectral lines could be observed due to modifica-

tions in the Bohr energy levels. 

2) Quantum Interference Experiments: Electron diffraction 

through potential barriers might reveal patterns con-

sistent with complex wave function propagation. 

3) Atomic Decay Studies: If imaginary time influences 

energy levels, decay processes may exhibit 

non-exponential behavior. 

4) These predictions provide testable signatures that could 

validate the role of complex space-time in quantum 

mechanics. 

5. Complex Plane Formalism and 

Electromagnetic Interpretation 

5.1. Introduction to Complex Derivatives and 

Cauchy-Riemann Conditions 

In complex analysis, differentiability of a function f(z), 

where 𝑧 = 𝑥 + 𝑖𝑦 and) 𝑓(𝑧) = 𝑢(𝑥, 𝑦) +  𝑖𝑣(𝑥, 𝑦) requires 

the function to satisfy the Cauchy-Riemann equations: 

𝜕𝑢

𝜕𝑥 
=  

𝜕𝑣

𝜕𝑥 
,

𝜕𝑢

𝜕𝑦 
=  −

𝜕𝑣

𝜕𝑥 
 

These conditions ensure that the function is holomorphic 

(complex-differentiable), preserving angles and the local 

structure of the complex plane. In the context of quantum 

mechanics, applying this framework to the Schrödinger 

equation in the complex domain offers a novel pathway to 

understanding fundamental interactions. 

5.2. Schrödinger Equation in the Complex Plane 

Consider a wave function ψ (z, t) defined over the complex 

plane, where z=x+iy. The time-dependent Schrödinger equa-

tion can be reformulated using complex derivatives. Using the 

operator: 

𝜕

𝜕𝑧
=  

1

2
 (

𝑑

𝑑𝑥
− 𝑖

𝑑

𝑑𝑦
) 

the Schrödinger equation takes the form: 

𝑖ħ
𝜕ψ

𝜕𝑡
=  −

ħ2

2𝑚

𝜕2ψ

𝜕𝑧2
+ 𝑉(𝑧, 𝑡)ψ 

mechanics into the complex plane, allowing the exploration of 

deeper symmetries and structures inherent in quantum sys-

tems. 

5.3. Electromagnetic Fields as Components of 

the Complex Wave Function 

To establish a connection with electromagnetism, we define 

a complex-valued function Ψ (z, t) that combines electric and 

magnetic field components: 

𝜓(𝑧, 𝑡)  =  𝐸(𝑧, 𝑡)  +  𝑖𝐵(𝑧, 𝑡) 

where: 

1) 𝐸(𝑧, 𝑡) represents the electric field component. 

2) 𝐵(𝑧, 𝑡) represents the magnetic field component. 

The Cauchy-Riemann conditions applied to Ψ imply: 

𝜕𝐸 

𝜕𝑥
 =  

𝜕𝐵 

𝜕𝑦
,
𝜕𝐸 

𝜕𝑦
 = −

𝜕𝐵 

𝜕𝑥
 

These relationships closely resemble the structure of 

Maxwell's equations in free space, where the interdependence 

of electric and magnetic fields governs the propagation of 

electromagnetic waves. In this framework, the differentiabil-

ity of Ψ in the complex plane enforces a coupling between E 

and B, suggesting that electromagnetic behavior emerges 

naturally from the complex structure of the quantum wave 

function. 
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5.4. Complex Schrödinger Equation as a 

Generalization of Electromagnetic 

Dynamics 

Substituting Ψ (z, t) into the complex Schrödinger equation 

yields: 

𝑖 ħ
ϊ(E + iB)

ϊt
= −

ħ2

2𝑚

𝜕2(E + iB)

𝜕𝑧2 + 𝑉(𝑧, 𝑡)(E +  iB)  

Separating the real and imaginary parts gives two coupled 

equations: 

1) Real part (Electric field dynamics): 

ħ
ϊB

ϊt
= −

ħ2

2m
(

ϊ2E 

ϊx2  −  
ϊ2E 

ϊy2 ) + V(z)B  

2) Imaginary part (Magnetic field dynamics): 

−ħ
ϊE

ϊt
= −

ħ2

2m
(

ϊ2B 

ϊx2  −  
ϊ2B 

ϊy2 ) + V(z)E  

These equations suggest that the electric and magnetic 

fields evolve together under a quantum framework. This 

formulation parallels the mutual dependence of E and B in 

Maxwell's equations and offers a novel perspective where 

electromagnetic fields are manifestations of a deeper quantum 

structure described by the complex Schrödinger equation. 

5.5. Implications for Unifying Quantum 

Mechanics and Electromagnetism 

This framework presents a promising pathway for bridging 

quantum mechanics and electromagnetism. By embedding 

electromagnetic field dynamics within the complex structure 

of quantum wave functions, the Cauchy-Riemann conditions 

naturally ensure the interdependence of E and B. This sug-

gests that electromagnetic phenomena may emerge from 

quantum processes governed by complex dynamics. 

Furthermore, the identification of electric and magnetic 

fields as real and imaginary components of a single complex 

wave function aligns with the mathematical elegance of 

complex analysis, providing a unified language for describing 

both quantum and electromagnetic phenomena [10, 13-15]. 

6. Electromagnetic Tensor and Imaginary 

Curvature Connection 

6.1. Extending the Complex Metric Tensor 

To establish a deeper connection between quantum me-

chanics, electromagnetism, and general relativity, we propose 

an extension of the metric tensor into the complex domain: 

𝑔𝜇𝜈
𝑐  =  𝑔𝜇𝜈  +  𝑖ħ𝜇𝜈  

Where: 

1) 𝑔𝜇𝜈 is the real metric tensor from general relativity, 

governing gravitational interactions. 

2) ħ𝜇𝜈 is an imaginary tensor that, in this framework, rep-

resents electromagnetic contributions to spacetime ge-

ometry. 

The corresponding line element becomes: 

𝑑𝑠2 =  (𝑔𝜇𝜈  +  𝑖ħ𝜇𝜈)𝑑𝑥𝜇𝑑𝑥𝜈  

This formulation suggests that gravitational effects arise 

from the real curvature of spacetime, while electromagnetic 

effects are embedded in the imaginary curvature. 

6.2. Relating the Imaginary Tensor to the 

Electromagnetic Tensor 

We propose that the imaginary tensor ħ𝜇𝜈 is directly pro-

portional to the electromagnetic field tensor F𝜇𝜈 

ħ𝜇𝜈  =  𝛼𝐹𝜇𝜈  

Where: 

1) 𝐹𝜇𝜈  =  𝜕𝜇𝐴 𝜈  −  𝜕𝜈𝐴𝜇 represents the electromagnetic 

field tensor, derived from the four-potential 𝐴𝜇. 

2) α is a proportionality constant that could incorporate 

fundamental physical constants, such as the 

charge-to-mass ratio 
𝑞

𝑚
 or factors related to Planck's 

constant and the speed of light. 

This association suggests that the imaginary part of the 

complex spacetime metric captures the structure of electro-

magnetic fields. 

6.3. Extending the Einstein Field Equations 

The standard Einstein field equations are [4]: 

𝑅𝜇𝜈  −  
1

2
𝑅𝑔𝜇𝜈 =  

8𝜋𝐺

𝑐4 𝑇𝜇𝜈  

To include electromagnetic effects within the curvature of 

complex spacetime, we propose extending these equations: 

𝑅𝜇𝜈
𝑐  −  

1

2
𝑅𝑐𝑔𝜇𝜈

𝑐 =  
8𝜋𝐺

𝑐4 𝑇𝜇𝜈
𝑐   

Where: 

1) 𝑅𝜇𝜈
𝑐  =  𝑅𝜇𝜈  +  𝑖𝑅𝜇𝜈

𝐸𝑀 is the complex Ricci tensor. 

2) 𝑇𝜇𝜈
𝑐  =  𝑇𝜇𝜈  +  𝑖𝑇𝜇𝜈

𝐸𝑀 includes contributions from both 

gravitational and electromagnetic energy-momentum 

tensors. 

Separating the real and imaginary parts yields two coupled 

sets of equations: 

1) Gravitational curvature: 
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𝑅𝜇𝜈  −  
1

2
𝑅𝑔𝜇𝜈 =  

8𝜋𝐺

𝑐4 𝑇𝜇𝜈  

2) Electromagnetic curvature: 

𝑅𝜇𝜈
𝐸𝑀  −  

1

2
𝑅𝐸𝑀𝑕𝜇𝜈 =  

8𝜋𝐺

𝑐4 𝑇𝜇𝜈
𝐸𝑀  

6.4. Deriving Electromagnetic Field Equations 

from Imaginary Curvature 

Assuming 𝑕𝜇𝜈 = 𝛼𝐹𝜇𝜈  the imaginary Ricci tensor 

𝑅μν
𝐸𝑀would be derived from the curvature contributions of the 

electromagnetic field: 

𝑅𝜇𝜈
𝐸𝑀 ∝  ∇𝜆𝐹𝜆𝜈  −  ∇𝜆𝐹𝜆𝜇  

This aligns with the form of Maxwell’s equations in curved 

spacetime: 

∇𝜇𝐹𝜇𝜈  =  𝜇0𝐽𝜈  

Where: 

1) ∇μ is the covariant derivative in curved spacetime. 

2) Jν is the four-current density. 

Derived equation aligns with Maxwell’s formulation for the 

following reasons: 

Covariant Derivative Structure: 

Both equations involve the covariant derivative ∇𝜇, which 

ensures that the effects of spacetime curvature are fully ac-

counted for in both gravitational and electromagnetic con-

texts. 

Electromagnetic Tensor Behaviour: 

The terms involving derivatives of 𝐹𝜇𝜈  reflect how 

changes in the electromagnetic field tensor contribute to 

curvature effects in your model, much like how Maxwell’s 

equations describe the evolution of electromagnetic fields in 

curved spacetime. 

Geometric Interpretation: 

In general relativity, spacetime curvature affects the be-

haviour of electromagnetic fields. In your framework, the 

imaginary curvature of spacetime (via ħ𝜇𝜈) similarly influ-

ences the electromagnetic field, suggesting a deeper geomet-

ric connection between electromagnetism and quantum fluc-

tuations. 

6.5. Implications of the 

Geometric-Electromagnetic Relationship 

1) The real part of the curvature equations describes grav-

itational effects. 

2) The imaginary part reflects electromagnetic effects 

embedded in the curvature of spacetime. 

This suggests a profound unification where both gravity 

and electromagnetism arise from a shared geometric founda-

tion in complex spacetime. 

6.6. Future Directions and Physical Predictions 

Quantum Electromagnetic Curvature: Explore whether 

higher-order corrections in hμν can lead to predictions beyond 

classical electromagnetism. 

Light Propagation in Complex Spacetime: Study how the 

imaginary curvature affects photon paths and polarization. 

Experimental Validation: Investigate if gravitation-

al-electromagnetic coupling effects could lead to observable 

deviations in light bending or cosmic background radiation. 

This framework opens the door for a unified understanding 

of fundamental forces within a single geometric theory, of-

fering potential insights into quantum gravity and beyond. 

7. Conclusion and Future Research 

Directions 

This extension of the Schrödinger equation into the com-

plex plane, incorporating electromagnetic fields through the 

Cauchy-Riemann framework, offers a compelling avenue for 

unifying quantum mechanics and electromagnetism. Future 

research could explore how this formalism connects with the 

relativistic framework of quantum electrodynamics (QED) or 

even extend to gravitational interactions under the lens of 

complex geometry. 

Investigating solutions to this generalized equation could 

reveal deeper insights into the quantum origins of electro-

magnetic phenomena and contribute toward the broader goal 

of unifying fundamental forces [7, 13-15]. 
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