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Abstract: Migraine is a common neurological disorder that can seriously compromise the quality of life of the affected
individuals. Migraine’s typical diagnosis is solely dependent on traditional diagnostic methods which relies on patient
self-reporting and clinical judgment, which can be subjective and prone to errors. The main objective of this study was to model
migraine classification using Extreme Gradient Boosting (XGBoost), Random Forest, and K-Nearest Neighbors (KNN)
algorithms, integrating Least Absolute Shrinkage and Selection Operator (LASSO) for feature regularization. Through this
study, the classifications abilities of these machine learning models were evaluated to determine which among them is superior
in terms of classifying the type of migraine one is suffering from. To prevent overfitting and enhance interpretability, LASSO
regression was utilized for feature regularization. The models were trained with a labeled data set, hyperparameter tuning was
achieved through Grid Search to systematically explore different combinations of hyperparameters and identify the optimal
settings that maximize models performance. The models were evaluated based on accuracy, precision, recall, ROC-AUC,
F1-score and computation time. The top-performing model was deployed into a web-based application using Spring Boot.
XGBoost outperformed the other models, achieving an accuracy of 92.4%, an AUC of 96.0%, an F1-score of 91.65%, and a
sensitivity of 92.24%, with a false positive rate of 1.59% and a computation time of 2.08s. Random Forest followed closely with
91.6% accuracy, a 94.0% AUC, an F1-score of 90.49%, and a sensitivity of 86.45%, but required 4.65s of computation time.
K-Nearest Neighbors (KNN) demonstrated the lowest performance, with an accuracy of 86.6%, an AUC of 91.0%, F1-score of
80.53%, a sensitivity of 79.32%, and the highest computation time of 9.51s. XGBoost was found to be the most appropriate
choice for migraine classification. This study highlights the promise of machine learning in enhancing migraine diagnosis
through objective and data-driven means.

Keywords: Random Forest, K-Nearest Neighbors, Extreme Gradient Boosting,
Least Absolute Shrinkage and Selection Operator

1. Introduction
Migraine is a common and disabling neurological disorder

in which frequent headaches of different intensity are
accompanied by symptoms like nausea, photophobia and
phonophobia. The influence of migraine stretches beyond
the acute physical pain by impacting the overall well being,

private life, professional performance as well as livelihood
of an individual [2]. Migraine can be categorized into
different subtypes based on their clinical features and related
neurological symptoms. One rare type is basilar-type aura,
which impacts the brainstem and can cause symptoms like
vertigo, double vision, and trouble speaking. Familial
hemiplegic migraine is a genetic form that leads to temporary
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paralysis or weakness on one side of the body, often
accompanied by aura symptoms. The most common type is
migraine without aura, which presents as throbbing headaches
along with nausea, phonophobia, and photophobia, but without
any preceding neurological issues. Sporadic hemiplegic
migraine has similar characteristics to familial hemiplegic
migraine but occurs without a known family history. Typical
aura with migraine involves transient neurological symptoms
such as visual disturbances, sensory changes, or speech
difficulties before the headache, while typical aura without
migraine includes these symptoms without the headache
following. The ”Other” category is for migraine cases that
don’t neatly fit into established subtypes. Understanding
these classifications is essential for accurate diagnosis and the
creation of effective treatment strategies [10].

Correct classification and diagnosis of migraine should
be given much priority, which will enable the medical
personnel to come up with the best strategies to handle the
attacks as well as improve the patients’ outcomes. Common
diagnosing methods for migraine are mostly made by the
doctor with the help of patients’ descriptions and medical
history. However, these methods appear subjective and their
genuine accuracy is often highly dependent on the individual’s
perceptiveness [10]. With the increasing number of datasets,
particularly more specialized ones, it is now feasible to
take advantage of advanced machine learning approaches,
to consequently improve the classification of the migraine
variants [4]. This research included Least Absolute Shrinkage
and Selection Operator features regularization technique so
as to achieve excellent model performance. Least Absolute
Shrinkage and Selection Operator regulates features by adding
a penalty equivalent to the absolute value of the magnitude of
coefficients, effectively shrinking some coefficients to zero and
thus performing variable regularization [7]. Least Absolute
Shrinkage and Selection Operator inclusion to the machine
learning apparatus could as well as help to avoid over-fitting,
and to thus increase the models’ performance.

A review of existing literature underscores the importance
of this research in connecting traditional diagnostic methods
with machine learning-based classification models. Previous
studies have investigated various techniques for classifying
migraine, yet the use of LASSO for feature regularization
has not been thoroughly examined. By enhancing feature
regularization and boosting model interpretability, this study
contributes to the growing area of Artificial Intelligence
in medical diagnostics. The findings hold considerable
importance for healthcare, offering a more objective and data-
driven approach to migraine classification. This advancement
could result in improved diagnostic accuracy, facilitate early
intervention, and ultimately enhance patient care.

2. Methodology

2.1. Lasso Regularization Technique

The Least Absolute Shrinkage and Selection Operator
(LASSO) is a regression analysis method that enhances model

prediction accuracy and interpretability by performing features
regularization [7].

2.2. Standard Linear Regression

In standard linear regression, we aim to minimize the
residual sum of squares (RSS):

RSS =

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 (1)

where:
1. yi is the response variable for the i-th observation.
2. β0 is the intercept.
3. βj are the regression coefficients.
4. xij are the predictor variables.
5. n is the number of observations.
6. p is the number of predictors.

2.3. Introduction of LASSO Penalty

LASSO modifies the standard linear regression by adding a
penalty term to the RSS. This penalty is the sum of the absolute
values of the regression coefficients (excluding the intercept):

LASSO Penalty = λ

p∑
j=1

|βj | (2)

The parameter λ controls the strength of the penalty. The
LASSO objective function to minimize becomes:

LASSO Objective Function =

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2

+ λ

p∑
j=1

|βj |

(3)
Effect of the LASSO Penalty
1. When λ = 0, the LASSO solution is the same as the

ordinary least squares (OLS) solution.
2. As λ increases, the penalty term forces some of the
βj coefficients to shrink towards zero. When λ is
sufficiently large, some coefficients become exactly
zero, effectively performing variable selection.

2.4. Optimization

To find the LASSO solution, we minimize the LASSO
objective function. This optimization problem can be solved
using various algorithms, including coordinate descent and
least angle regression (LARS).

Coordinate Descent Algorithm
Coordinate descent is an iterative optimization algorithm

that updates one coefficient at a time, holding the others fixed.
The update rule for each βj can be derived from the partial
derivative of the LASSO objective function with respect to
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βj[8]: For each predictor j:

β
(new)
j =

S
(∑n

i=1 xij(yi − β0 −
∑
k 6=j βkxik), λ

)
∑n
i=1 x

2
ij

(4)

where S(z, γ) is the soft-thresholding operator defined as:

S(z, γ) = sign(z)max(|z| − γ, 0) (5)

2.5. Interpretation of Results

Once the optimal λ is selected, the final LASSO model is
fitted using the entire dataset. The resulting model includes
only the predictors with non-zero coefficients, providing a
simplified and interpretable model.

2.6. General Non Parametric Models

A statistical non parametric model takes the form of;

Y =M(Xi) + εi for i = 1, 2, 3, ...n (6)

Where:
1. Y is the dependent variable, which represents the output

of the classification model.
In our case the output has seven classes namely; Basilar-
type aura, Familial hemiplegic migraine , Migraine
without aura, Other, Sporadic hemiplegic migraine,
Typical aura with migraine, and Typical aura without
migraine.

2. Xi = x1, x2, x3, . . . , xn are the independent variables.
In our case we have both continuous valuables and
binary variables (yes/no)

3. εi is the error term.
4. M(X) is the mean function, sometimes expressed as
E(Y |X).

The error term ε has the following assumptions:
1. E[ε] = 0, i.e., the mean of the error is expected to be

zero.
2. var[ε] = σ2

ε , i.e., the variance of the error function is σ2.
3. There is no interaction between the error function and

the independent variables, i.e., cor(X, ε) = 0.
To estimate the mean function M(X), we can use different

models such as the Random Forest model, XGBoost model,
and the K-Nearest Neighbors model.

2.6.1. Random Forest
The mathematical formula for a Random Forest algorithm

involves the aggregation of predictions from multiple decision
trees, typically represented as [18]:

f̂(x) =
1

B

B∑
b=1

h(x, θb) (7)

Where:
1. f̂(x) represents the predicted outcome for input x.
2. B denotes the number of trees in the forest.

3. h(x, θb) signifies the prediction made by the bth tree
with parameters θb.

For each tree b = 1, . . . , B, a random sample n is
drawn from the training dataset with replacement, typically
encompassing about two-thirds of the data. Subsequently,
a random subset of predictors, selected without replacement
from the full set of predictors, is chosen. Utilizing these
two samples, the first random forest tree Tb is constructed,
following the same methodology as standard decision trees,
with the randomly selected subset of the training data [1,
12, 13]. This process iterates until the terminal node size is
achieved. These steps are replicated for a predefined maximum
number of trees, resulting in the ensemble of decision trees
denoted as TBb=1. In order to make a prediction in the case of
classification, the prediction is given as follows:

Let Ĉb(x) be the class predicted by the b-th tree. Then the
prediction for the random forest ensemble Ĉrf(x) is calculated
as:

Ĉrf(x) = majority vote
{
Ĉb(x)

}B
b=1

(8)

The equation presented above depict how the final
classification prediction is made in a random forest. In the
classification scenario, a majority vote is conducted among
the predictions of individual decision trees to determine the
final class choice [12]. In the context of branching within
decision trees in a random forest, the Gini Index is employed
to determine how the trees branch from root nodes to their
daughter nodes. The Gini Index (GI) is calculated as:

GI = 1−
C∑
c=1

p2i (9)

The Gini Index (GI) is a metric utilized in decision tree
algorithms, where pi represents the frequency of each class
observed in the dataset, and C denotes the number of classes
in the classification problem. This index, computed for each
tree, utilizes class information to determine the most probable
branching decisions at each node [11]. Entropy measures the
amount of uncertainty or randomness in the data, indicating
how mixed the classes are within a dataset. It is calculated
using the formula:

Entropy(D) = −
C∑
i=1

pi log2(pi) (10)

where pi represents the probability of class i in the dataset D.
The algorithm evaluates different thresholds to find the best
split by minimizing the impurity of the resulting subsets. The
effectiveness of a split is determined using the formula:

Split(D, j, t) =

(
|Dleft|
|D|

× Impurity(Dleft)

)
+(

|Dright|
|D|

× Impurity(Dright)

) (11)

where |Dleft| and |Dright| are the sizes of the left and right
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subsets, respectively, and Impurity is a measure such as
entropy or Gini impurity.

2.6.2. Extreme Gradient Boosting
The loss function of XGBoost is minimized by the objective

function. That consists of two major parts. These include the
loss function and the regularization function. The function for
XGBoost, denoted by L, is defined as follows:

L =

n∑
i=1

loss(yres, h(x)) +
1

2
λ

T∑
j=1

w2
j + α

T∑
j=1

|wj | (12)

the term
n∑
i=1

loss(yres, h(x)) (13)

represents the loss function, which measures the prediction
loss errors. The subsequent terms

1

2
λ

T∑
j=1

w2
jandα

T∑
j=1

|wj | (14)

represent the regularization function, which penalizes model
complexity to prevent overfitting. XGBoost employs
a gradient boosting framework to refine the model by
minimizing the gradient of the loss function concerning the
predicted outcomes [15]. The loss function described is
represented as:

loss =
n∑
i=0

(yi − ŷ)2 (15)

where:
ŷ: predicted value
yi: actual values
During each iteration, the algorithm computes the negative

gradient of the loss function, and subsequently constructs
a tree to accommodate these gradients. XGBoost utilizes
a sequential approach where decision trees are constructed
parallel to each other, preventing overfitting while capturing
essential patterns, thereby enhancing model generalization
[15].

The learning rate parameter in XGBoost controls the impact
of each tree on the ensemble, preventing overfitting and
enhancing generalization by adjusting the step size during
optimization.

In XGBoost, final predictions are computed by summing up
the predictions from all decision trees in the ensemble, and
for classification tasks, a softmax transformation is applied to
obtain class probabilities [15].

Hyperparameter tuning in XGBoost optimizes parameters
like learning rate and regularization to balance model
complexity, enhancing performance through techniques like
grid search.

2.6.3. K-Nearest Neighbors
K-Nearest Neighbors is a straightforward algorithm that

retains all existing data points and categorizes new instances

by measuring their similarity to the existing ones, typically
using distance functions [17].

There are different ways of calculating the distance function.
These ways differs with the type of data, for instance if we
have continuous data we use the following ways to calculate
the distance;

1. Euclidean
2. Manhattan
3. Minkowski

dEuclidean(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (16)

dManhattan(x, y) =

n∑
i=1

|xi − yi| (17)

dMinkowski(x, y) =

(
n∑
i=1

|xi − yi|p
) 1

p

(18)

For the categorical data we use the Hamming distance
function. The Hamming distance formula calculates the
number of positions at which corresponding symbols differ
between two strings of equal length.

Let s1 and s2 be two strings of length n, and let
δ(s1[i], s2[i]) be a function that returns 0 if the symbols are the
same and 1 if they are different. Then, the Hamming distance
H(s1, s2) between s1 and s2 is given by:

H(s1, s2) =

n∑
i=1

δ(s1[i], s2[i]) (19)

Where s1[i] and s2[i] are the symbols at position i in the
two strings, and δ(s1[i], s2[i]) is a function that returns 0 if the
symbols are the same and 1 if they are different [16].

Voting is done in two way.
1. Each of the k nearest neighbors votes for its class, and

the class with the most votes is assigned to the new data
point.

2. Weighted voting mechanism, where weights are
assigned due to how far the distance is.

class(x) = argmax
c∈C

k∑
i=1

wiδ(x, y) (20)

In order to choose the value of the number of nearest
neighbors k, for example, between noise reduction and
computational efficiency, the following trade-offs should be
considered. In the case of a small k value the K-NN algorithm
will be sensitive to noise and biased towards neighbouring
points when classifying. However, selecting a large k
value gives rise to computational ineffectiveness and may be
antithetical to the naive principle of KNN, that is, points close
together should usually have similar classes or densities. A
simple and intuitive approach to selecting k is to set it equal to
the square root of the number of data points n. This method
balances both noise reduction and computational efficiency
(size of the dataset are taken into account, while the algorithm
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can still learn local patterns efficiently [6].

K =
√
(n) (21)

2.7. Performances Comparison

For us to compare the performance of the models, we used
the following: Accuracy, Sensitivity (Recall), Precision, Error
Rate, True Positive Rate (TPR), False Positive Rate (FPR),
AUC, ROC, Computational time and F1 Score.

Accuracy:

Accuracy =
Number of correct predictions
Total number of predictions

(22)

Sensitivity (Recall):

Recall =
TP

TP + FN
(23)

Sensitivity denotes the count of actual positive instances that
are correctly classified as positive.

Specificity

Specificity =
TN

TN + FP
(24)

Specificity represents the ratio of actual negative instances
correctly classified as negative.

Precision:
Precision =

TP

TP + FP
(25)

Error Rate:

ER =
FN + FP

TP + FP + FN + TN
(26)

True Positive Rate (TPR):

TPR =
TP

TP + FN
(27)

False Positive Rate (FPR):

FPR =
FP

FP + TN
(28)

F1 Score:

F1 Score = 2× Precision× Recall
Precision + Recall

(29)

AUC:

AUC =

n−1∑
i=1

(FPRi+1 − FPRi)

× (TPRi+1 + TPRi)

2

(30)

2.8. Deployment

Model deployment in machine learning is the process of
smoothly embedding a trained model into operational systems
or applications and automating task execution or producing

predictions [9]. In our particular scenario, our focus was
to implement the best model selected from a set composed
of Random Forest (RF), XGBoost, and K-Nearest Neighbors
(KNN). This section comprehensively explores the step-
by-step process of deploying the machine learning model,
utilizing the popular framework Spring boot.

Leveraging Spring boot, a highly acclaimed framework for
crafting interactive web applications with java, facilitates the
deployment process [14]. With Spring boot we were able
to create easy-to-use interfaces for our models so that the
user can easily interact with and receive predictions from the
deployed model. One of the major considerations in this
deployment task is to serialize the trained model, setup a
spring boot application, plug the model, in fact, and deploy
it in a web server. In addition, proper data preprocessing,
efficient user input processing, and understandable prediction
output visualization are all equally important when deploying
the model [5]. In the end, via a structured methodology
and the use of tools such as Spring boot, we intended to
effortlessly implement predictive capabilities of our machine
learning models in real world applications, rendering end-user
able to act upon results and predict in real-world applications.
The deployment followed this process. Serialization involves
converting the trained machine learning model into a format
that can be easily stored and loaded, facilitating its retrieval
from disk and loading into memory for making predictions
without the need for retraining. After serialization, the
configuration of the web application, library framework,
spring boot, consists of the configuration of the basic structure,
including routes, views and files, and thus the foundation, on
which Hypertext Transfer Protocol requests are handled, and
on which responses are constructed. Subsequently, embedding
the serialized model in the web application simply entails
getting the model into memory when the application starts
and, it can be directly used for predictions. Developing
an Application Programming Interface endpoint in the web
application allows the submission of input data for prediction
using Hypertext Transfer Protocol POST requests. After
the input data is received, data preprocessing guarantees its
conformity to the format of the training data, including the data
scaling, normalization, or also categorical variable encoding.
Based on the preprocessed input, the web app retrieves
predictions from the deployed machine learning model and
presents the results in an appropriate response format to the
client for convenient application [6]. Finally, a web application
processes the response, displaying the predictions to the user
(i.e., displaying the predictions on a browser or retrieving
predictions from the client in a different format).

3. Results

3.1. Selected Features

In the Lasso model, feature selection was guided by the
absolute value of their coefficients.

Location “the side of the head in which patients perceive
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pain from migraine” turned out to be the most relevant
predictor with the largest coefficient, suggesting its importance
for predicting the outcome variable (type of migraine).
Other, e.g., “Diplopia”, “Phonophobia”, and “Paresthesia”,
also showed significant coefficients, indicating their high
correlation to the type of migraine and helpfulness for the
model. On the other hand, characteristics such as “Age
of the patient”, “Duration of headache”, and “Number of
headache episodes a day” achieved lower coefficients which
implies less predictive role. However, these characteristics
still provided informative supplementary data that could be
useful to differentiate between various subtypes of migraine.
Exhausted features, “Character”, “Dysarthria” and “Ataxia”,
coefficients were given a coefficient of zero, as they do
not contribute significantly to the predictive outcome of the
presence of the chosen features or their effect was already
captured in the model via another variable. By this selective
process, the model is kept efficient and generalizable to unseen
data.

Table 1. Features Selected by Lasso.

Rank Feature Coefficient

1 Location 10.8

2 Diplopia/Double vision 6.28

3 Phonophobia 5.98
...

...
...

18 Frequency 0.320

19 Duration 0.291

20 Age 0.0543

3.2. Fitted Models

3.2.1. Random Forest
Random Forest model was applied to a dataset to classify

migraine based on various features, using 500 decision trees.
With 4 variables randomly selected at each split and an Out-
of-Bag (OOB) error estimate of 8.4%, the model demonstrates

good performance. The OOB error rate, a reliable performance
measure for Random Forests, indicates that the model is well-
balanced, neither underfitting nor overfitting, and generalizes
well to new data. It is helpful, so that 4 variables are tried at
each split, to keep the diversity of the trees, so that correlation
is reduced and prediction is made more robust.

Table 2. Confusion Matrix for Random Forest Model: Out-of-Sample.

Reference 0 1 2 3 4 5 6

Prediction

0 3 1 0 1 0 0 0

1 0 3 0 0 0 0 0

2 0 0 21 0 1 0 0

3 0 0 0 2 0 0 0

4 0 0 0 0 1 0 0

5 0 2 0 1 5 72 0

6 0 0 0 0 0 0 6

3.2.2. K-Nearest Neighbors
The model was trained and tested by 10-cross-validation,

a powerful method for performance prediction. In this
study, the performance of the model fluctuated depending
on the value of k. The maximum accuracy 86.55% was
achieved with k 5, and the highest Kappa score 72.92%
was achieved, indicating a strong agreement between the
corresponding predicted class and the actual class. As k
increased, the model’s accuracy gradually decreased, with
the lowest accuracy 73.41% observed at k 23 , where the
Kappa value dropped to 42.10%. This trend is an indication
that, fewer neighbors leads to better performance, as the
model is increasingly sensitive to the local structure of the
data. Nevertheless, when k is large, the model is relatively
insensitive, adding noise as far from the considered neighbor,
in this way decreasing the quality of the classification. Thus,
the best value of K with which to train the model as
a hyperparameter for this dataset is 5, which captures a
compromise between accuracy and reliability.

Table 3. Performance Summary of k-NN Across Different Values of k.

k Accuracy Kappa

5 0.8655 0.7292

7 0.8145 0.6506

9 0.8152 0.6431

11 0.8078 0.6224

13 0.8011 0.6017

15 0.7837 0.5573

17 0.7696 0.5220

19 0.7697 0.5187

21 0.7590 0.4886

23 0.7341 0.4210

The k-Nearest Neighbors model was evaluated using the
confusion matrix and overall statistics, as detailed in Table

4. This model classifies instances into seven distinct classes
and achieved an overall accuracy of 86.66%. The confidence
interval for this accuracy ranges from 79.09% to 92.12%,
indicating a robust performance.

Table 4. Confusion Matrix for K-Nearest Neighbors Model: Out-of-Sample.

Reference 0 1 2 3 4 5 6

Prediction

0 2 1 0 0 0 0 0

1 1 2 0 1 3 0 0

2 0 0 14 0 0 2 0

3 0 0 0 3 0 0 0

4 0 0 0 0 0 1 0

5 0 3 7 0 4 69 0

6 0 0 0 0 0 0 6
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3.2.3. Extreme Gradient Boosting
The model was set up with a maximum tree depth of 3, ie.

each sample in the ensemble was limited to three splits on each
decision tree. Because this is a relatively shallow depth, there
is the potential to avoid overfitting by having each tree identify
broad, general patterns instead of fine interactions within the
data. The model was trained for more than 100 iterations
(boosting rounds), in which each iteration introduces a new
tree so as to fix the errors made by the previous trees. The
monotonic reduction from 1.2713 to 0.0344 of training log loss
between these iterations show that the model learned the data
and further enhanced its performance with each iteration. In
this framework the complexity and the learning are combined,
because the model converges to a good solution while staying
generalizable.

Table 5. Training Log Loss Across Iterations.

Iteration Training Log Loss

1 1.2713

2 0.9629

... ...

99 0.0346

100 0.0344

Table 6. Confusion Matrix for XGBoost Model: Out-of-sample.

Reference 0 1 2 3 4 5 6

Prediction

0 2 0 0 1 0 0 0

1 1 4 0 0 0 0 0

2 0 0 19 0 1 0 0

3 0 0 0 2 0 0 0

4 0 0 0 0 2 0 0

5 0 2 2 1 4 72 0

6 0 0 0 0 0 0 6

XGBoost model was evaluated using the confusion matrix
as detailed in Table 6. This model classifies instances into
seven distinct classes and achieved an overall accuracy of
92.44%. The confidence interval for this accuracy ranges from
83.05% to 94.68%, indicating a strong performance.

3.3. Performance Evaluation

XGBoost model demonstrated the highest accuracy of
92.4%. This architecture is well known for its efficiency, its
scalability¡aespecially for sparse data, and a capacity to ingest
complex relationships between features. The boosting method
is used to further reduce errors by correcting errors made by
the models that preceded it and thus results in high performing
system.

Table 7. Accuracies and 95% Confidence Intervals for Different Models.

Model Accuracy 95% CI

XGBoost 0.924 (0.8305, 0.9468)

Random Forest 0.916 (0.8406, 0.9529)

K-Nearest Neighbors (KNN) 0.866 (0.7909, 0.9212)

The accuracy of the Random Forest model is 91.6%, which
indicates a strong performance in classifying migraine types.
This model’s ability to handle large datasets with numerous
features, along with its robustness to overfitting due to the
ensemble approach, contributes to its high accuracy.

K-Nearest Neighbors model resulted in an accuracy of
86.6%. The performance is greatly reliant on the value of k,
the number of neighbors, and the distance metric that is used,
which may account for the relatively lower accuracy.

Table 8. Performance Metrics for Different Models.

Model TPR Spec. Prec. F1 FPR Time (s)

XGBoost 0.9224 0.9841 0.8059 0.9165 0.0159 2.08

RF 0.8645 0.9723 0.8975 0.9049 0.0277 4.65

KNN 0.7932 0.9624 0.7042 0.8053 0.0376 9.51

Figure 1. True Positive Rate (TPR) vs False Positive Rate (FPR) for XGBoost, Random
Forest (RF), and K-Nearest Neighbors (KNN).

Figure 2. Comparison of Specificity, Precision, and F1 Score for Random Forest (RF),
K-Nearest Neighbors (KNN), and XGBoost (XGB).
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In the case of data imbalance and its effects on model
performance, evaluation metrics for the XGBoost, Random
Forest, and K-Nearest Neighbors were studied. The
model evaluation criteria given the imbalance demanded that
accuracy alone cannot accurately measure the efficacy of the
models, so other indicators of performance, sensitivity (TPR),
specificity, precision, F1 score, false positive rate (FPR), and
computation time were considered. XGBoost outperformed
in identifying the true positive cases with extremely fewer
false positives of 1.59%, holding together with the highest
sensitivity of 92.24% and specificity of 98.41%. Random
Forest performed a little higher on FPR with 2.77%, showing
values of 86.45% for sensitivity and a good precision of
89.75%. The K-Nearest Neighbors performed poorly since
it exhibited the lowest sensitivity of 79.32% and precision
of 70.42%. Furthermore, there was a significant disparity in
computation time, with XGBoost having the least computation
time among the three models.

Figure 3. Receiver Operating Characteristic (ROC) curves comparing the performance
of Random Forest, K-Nearest Neighbors, and XGBoost classifiers..

The models performance was also evaluated using a
Receiver Operating Characteristic (ROC) curve, which
represents the performance of the model across different
threshold values graphically. It gives a fair amount of trade-off
between sensitivity and specificity and is particularly useful
for imbalanced datasets. The ROC curve with the highest
area under it suggests a model that has better classification
ability over the data. The classification of migraine types
by the XGBoost model outperformed the rest, achieving an
AUC of 96%, Random Forest achieved 94%, with K-Nearest
Neighbors slightly behind at 91%.

4. Discussion

Performance of three machine learning models (Random
Forest, K-Nearest Neighbors, and XGBoost) were
evaluated based on a dataset of migraine symptoms and
patient parameters. Comparison of three models were
made on the basis of metrics such as Accuracy and

Sensitivity/Specificity/Precision, F1 Score and computation
time. XGBoost model showed the optimal overall
performance. This model is especially effective at predicting
positive and negative cases correctly, with the best balance and
strength in predicting F1 score. Its excellent performance is
due to its boosting process, which is very effective at modeling
complex relationships as well as reducing errors.

Random Forest model also performed well, although it
is slightly less sensitive and specific than XGBoost, it is
still a valuable tool, particularly its high Precision and
balanced performance. Its ensemble approach contributes to
its robustness and reliability.

On the other hand, K-Nearest Neighbors model yielded the
least favorable results among the three models. The lower
performance is due, in particular, to the adopted voting metric,
since it was a challenge to use the weighted voting method
because the outcome variable was categorical.

Various studies have examined the performance of the three
machine learning models on different diseases with quite
different results depending on the dataset, features applied,
and model hyperparameters. For instance, it was previously
demonstrated that XGBoost excels in handling imbalanced
breast cancer datasets and in identifying subtle interactions
amongst features [7], which is also what we experienced.
Also, there have been research work to demonstrate that deep
learning models such as CNNs and LSTMs can outperform
traditional ensemble methods in some situations [6]. Although
our findings shows KNN being worse compared to XGBoost
and Random Forest, research also proves that with careful
optimization through techniques like feature scaling and
dimensionality reduction, KNN can perform even better [16].
These comparisons highlight the need for thoughtful choice of
these models depending on specific contexts and underscore
the continued need for research into advancements in migraine
classification methodologies.

In general, this work has detected XGBoost as the best
model for migraine classification and Random Forest as the
second best model. Despite the lower accuracy, K-Nearest
Neighbors continues to be a potential choice depending
upon the application and requirements of a classification
task. This comparison offers insight into the advantages
and disadvantages of each model and informs their use for
performance considerations.

Despite promising results, this study has limitations; Model
interpretability is limited, as feature importance was not
extensively analyzed. Class imbalance in the dataset may have
affected model performance. Future work should concentrate
on the investigation of hybrid models like XGBoost-Recurrent
Neural Networks and advanced approaches like Fuzzy Logic
for better accuracy and robustness. Implement techniques like
Shapley Additive Explanations (SHAP) values to refine feature
selection and improve model interpretability. Apply methods
like Synthetic Minority Over-sampling Technique to ensure
balanced data for classification.
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5. Conclusion
Through the comparative study, we proposed Random

Forest, k-Nearest Neighbors and XGBoost as migraine
classification model, and among them, we suggest XGBoost
as the most ideal model due to the highest performance in
terms of Accuracy, Sensitivity, Specificity, Computation time
and F1 score. Due to its boosting technique, it is robust to the
complex relation and has high overall performance. Random
Forest, however, is a more powerful alternative providing both
high Precision and balanced performance, which is appropriate
for tasks where robustness and interpretability play a primary
role. KNN had the least effective performance, which can be
improved by managing class imbalance. The choice of model
should align with the specific requirements and constraints of
the application.

Abbreviations
LASSO Least Absolute Shrinkage and Selection Operator
ML Machine Learning
RSS Residual Sum of Squares
OLS Ordinary Least Squares
LARS Least Angle Regression
KNN K-Nearest Neighbors
RF Random Forest
OOB Out-of-Bag
TPR True Positive Rate
FPR False Positive Rate
AUC Area Under the Curve
ROC Receiver Operating Characteristic
SHAP Shapley Additive Explanations
SMOTE Synthetic Minority Over-sampling Technique
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