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Abstract 

Colorectal Cancer is one of the most common and lethal forms of cancer hence, an early and accurate detection is crucial. 

Traditional manual diagnosis is a tedious and time-consuming job susceptible to human errors; therefore, it is imperative to use 

computer-aided detection systems to interpret medical images for a quicker and more accurate diagnosis. In recent years 

deep-learning approaches have proved to be efficacious in predicting cancer from pathological images. This study assesses 

several deep-learning techniques for cancer diagnosis on digitized histopathology images, amongst which GoogLeNet and 

Xception emerged as the most effective, with GoogLeNet exhibiting slightly better precision in identifying cancerous tissues. 

Building on these findings the study proposes a new model (Xception+) by borrowing the idea from Xception architecture, which 

outperforms existing architectures with an accuracy of 99.37% for cancer diagnosis and 94.48% for cancer-grade classification. 

The primary inference of our research is assisting pathologists in detecting colorectal cancer from pathological images faster and 

more accurately. With notable accuracy and robustness, our proposed model has significant potential to analyze pathological 

images and detect the patterns associated with other types of cancer. Our study holds promise for driving the advancement of 

innovative medical diagnostic tools, aiding pathologists and medical practitioners in expediting cancer diagnosis processes. 
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1. Introduction 

According to the American Institute of Cancer Research 

(AICR) [1], Colorectal Cancer (CRC) is the third most 

common form of cancer after lung and breast cancers, con-

tributing to almost 10% of the total cancer cases worldwide. It 

is the second most common form in women and the third most 

in men. AICR reported [1] that in 2020 there were more than 

1.9 million new cases of cancer and more than 8,50,000 

deaths globally with a mortality rate of CRC being 9% of all 

cancer-related deaths. However, as per the AICR‟s [1] find-

ings, the five-year survival rate for early detection (regional-

ized stage) in the USA is as high as 70%, making it vital for 

early and accurate detection. The diagnosis of CRC demands 

a thorough visual examination of digitized whole- slide im-

ages (WSIs) of Hematoxylin & Eosin (H&E)-stained histol-

ogy images which is an extremely monotonous task and is 

prone to errors as the size of the cancer cells are minute and 

can be easily overlooked, this difficulty has been highlighted 

in the study [2]. As per the AICR report [1] the cases of CRC 
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worldwide are expected to rise by 60% over the next 15 years. 

Therefore, the need for the diagnosis will also increase 

rapidly which would prove disastrous if pathologists only 

relied on manual examinations. Thus, it is essential to take the 

help of computer-aided detection (CAD) systems to improve 

precision and diminish the time and manual effort. 

The current study compares several state-of-the-art deep- 

learning architectures for cancer detection and tissue classi-

fication. The study is an effort to exploit the capabilities of 

Artificial Intelligence to facilitate automated diagnosis to 

alleviate the burden on pathologists thus enabling faster and 

improved patient outcomes in the fight against cancer. 

In the subsequent sections of the report, the relevant back-

ground studies and related work have been discussed, fol-

lowing which the techniques and our proposed model have 

been outlined. The later sections are dedicated to the presen-

tation and discussion of our results. The final section dis-

cusses the key conclusions drawn from this research and the 

future scope. 

2. Background and Motivation 

With the advent of computer vision disciplines, there has 

been a huge improvement in CAD; state-of-the-art deep 

neural networks have replaced the traditional feature extrac-

tion and classification methods. Traditional methods comprise 

two steps, first, an image descriptor is used to encode the 

texture and patterns in an image called „features‟ into a feature 

matrix. Then this feature matrix is used in a supervised ma-

chine learning-based classifier to classify the images into 

cancerous and non-cancerous classes. Various studies [3, 4] 

have incorporated the traditional supervised methods for 

detection, but the time taken to extract features and classify 

images is very high and the accuracy is very mediocre. Arti-

ficial Neural Networks have revolutionized the field of ma-

chine learning and computer vision; Convolutional Neural 

Networks (CNNs) have been used in most image processing 

problems [5]. The performance of these CNN-based models 

has also vastly improved from the traditional methods. 

Nowadays, CNN-based deep-learning models are used in 

most computer vision problems like image classification [5]. 

They are also gaining popularity in bio-medical fields, several 

studies [6-9] have used deep-learning techniques which have 

proven to be highly effective. Of late, deep-learning tech-

niques have proved to be very efficient in analyzing patho-

logical images for various oncology and clinical studies for 

cancer. Many authors performed comparative studies [4, 10, 

11] of the CNN architectures for cancer diagnosis. Several 

studies on post- cancer diagnosis have incorporated 

deep-learning algorithms for grade classification [12-14], 

tumor cell detection [15, 16], gland segmentation [13], and 

even speculation of patient survivorship [17]. 

One shortcoming of the deep-learning models is the re-

quirement of a massive amount of labeled data to train the 

model. In the context of pathological datasets, this is a huge 

challenge as labeled datasets are in short supply. Proper an-

notation of clinical images is expensive as it requires visual 

scrutiny by pathologists which is a very strenuous and time- 

consuming task. Privacy is of utmost concern and all ethical 

and privacy policies must be followed; one must ensure that 

no data or information can be traced to individual patients. 

Despite the challenges, deep-learning methods are extensively 

used in several bio-medical problems [18] due to highly ac-

curate diagnosis. 

In this study, several CNN-based algorithms were used for 

Cancer Diagnosis and Cancer Grade Classification. Firstly, 

the models were used for cancer detection by predicting 

whether images have cancerous tumors present in them or not. 

Secondly, tissue classification was performed, where the 

algorithm determined the tissue class of the pathological 

images. Furthermore, a new CNN-based model was proposed 

by slightly modifying the Xception architecture (henceforth 

called Xception+), and its accuracy was compared with the 

known models. Finally, cancer grade classification was per-

formed which involves determining the grade of colon cancer 

from histopathology tissue slides utilizing the top-performing 

models such as GoogLeNet, Xception, and our proposed 

model (Xception+). 

3. Materials and Methods 

This study has two primary goals. Firstly, do a comparative 

study of several deep learning algorithms to perform cancer 

diagnosis and tissue classification of digitized H&E-stained 

images of CRC. Secondly, propose a new model based on the 

Xception architecture and compare the results with the 

standard models. 

3.1. Data and Resources 

The dataset primarily used in this study is the ‘NCT- 

CRC-HE-100K’ [19], which contains digitized histopathology 

images; they are H&E-stained tissue sections. It has 100,000 

non-overlapping image patches of CRC and normal tissue 

parts. The tissue classes are defined as Adipose (ADI), back-

ground (BACK), debris (DEB), lymphocytes (LYM), mucus 

(MUC), smooth muscle (MUS), normal colon mucosa 

(NORM), cancer-associated stroma (STR), colorectal ade-

nocarcinoma epithelium (TUM). The tissue class „TUM‟ 

represents the cancerous class. For the Cancer detection 

problem, the Training and Validation dataset contains 30,000 

images (split in a 7:3 ratio); i.e., 15,000 images of cancer and 

normal tissues respectively. The Test dataset contains 7200 

images; 3600 images of cancer and normal tissues respec-

tively. For the Tissue Classification Problem, the Training and 

Validation dataset contains 18,000 images (split in a 7:3 ratio), 

with 2000 images of each tissue class. The Test dataset con-

tains 4050 images; 450 images of each tissue class. All the 

aforesaid datasets have no class imbalance. For cancer grade 

classification, we have used the dataset [14], which has 139 
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images, consisting of 71 normal, 33 low-grade, and 35 

high-grade cancer images. 

Pytorch [20] libraries have been used to build deep- learn-

ing architectures. Local Interpretable Model-agnostic Expla-

nations (LIME) [21] has been used for explainable AI. 

3.2. Cancer Diagnosis using Deep-Learning 

Methods 

In this experiment several popular deep-learning architec-

tures like AlexNet [5], GoogLeNet [22], Inception V3 [23], 

ResNet [24], MobileNet [25], Xception [26], DenseNet [27], 

and ResNeXt [28] were incorporated. A single experiment has 

been divided into two phases, the training- validation phase 

where the deep learning model is trained and validated, and 

the testing phase, where the model is tested on unseen data. 

After completion of the test phase, the entire experiment is 

repeated 5 times, and the mean and standard deviation of the 

test accuracies are recorded. The below steps have been fol-

lowed for the deep-learning algorithms: 

1) In the training-validation phase images are resized 

(224x224), normalized, and converted to tensors. 

 

Figure 1. High Level Project Design for deep-learning models. 

The dataset is split into training and validation datasets in 

the ratio 7:3. 

2) The datasets are loaded to the respective data loaders in 

batches of 10. 

3) A deep-learning algorithm is trained on the training 

images. The cross-entropy loss and the loss gradients are 

computed for each batch and the weights of all learnable 

parameters are updated. 

4) Post-training, the model is used to predict the classes for 

images in the validation dataset, and the accuracy is 

noted. 

5) The previous two steps are repeated for 30 epochs. The 

weights of the model with the best validation accuracy 

are saved. 

6) In the test phase, the test dataset is loaded in batches of 

50. The saved model (from step 5) is used to predict the 

classes of test images and the average accuracy of the 

prediction is recorded. 

7) Steps (1) through (6) are repeated 5 times and the mean 

and standard deviation of the accuracy obtained are 

recorded. 

The High-Level Diagram of the above steps is illustrated in 

Figure 1. 

For cancer detection, the below 4 metrics were used to 

evaluate the performance of the different models. 

1) Accuracy represents the number of correctly classified 

images over the total number of images. The formula is 

given by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
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2) Precision is the positive predictive value and is given by 

the formula: 

 𝑟 𝑐      =
  

       
  

3) Recall also known as sensitivity or true positive rate. 

This should be high for a good classifier. The formula is 

given by: 

  𝑐𝑎   =
  

       
  

4) F1 score metric considers both precision and recall, this 

is a better metric than accuracy and is defined as: 

    𝑐 𝑟  =
                        

                  
  

Accuracy is the ratio of correctly predicted observations to 

the total observations (useful when there is no class imbalance) 

whereas Precision is the ratio of correctly predicted observa-

tions to the total positive observations, for this problem it 

answers how many have cancer? The Recall is the ratio of 

correctly predicted positive observations to all observations in 

the actual class. This metric answers the question from all the 

cancer cases how many were labelled accurately? The F1 

score is the weighted average of Precision and Recall, this 

metric is useful if there is an imbalanced dataset. These met-

rics are also called “Confusion Metrics” which uses the counts 

for TN (True Negative), FN (False Negative), FP (False Pos-

itive), and TP (True Positive). 

 
Figure 2. Architecture of the Xception model. [26]. The layers outlined in red have been omitted, the resultant layers form our proposed model 

(Xception+). 

3.3. Proposed Model (Xception+) 

In this experiment, a modified Xception [26] architecture 

(Xception+) was proposed and the accuracy in cancer diag-

nosis and tissue classification was noted. Figure 2, portrays 

the original architecture of the Xception. The Xception [26] 

uses modified Depthwise Separable Convolutions, where the 

pointwise convolutions (1x1 convolution) are followed by the 

depthwise convolutions (nxn spatial convolutions). The ar-

chitecture is divided into 3 flows, The Entry Flow, The Mid-

dle Flow, and the Exit Flow. The Entry Flow consists of a 3x3 

convolutional layer with 32 filters and a stride of 2x2, fol-

lowed by a 3x3 convolutional layer with 64 filters and finally 
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modified depthwise separable convolution layers with 128, 

256, and 728 filters, with 1x1 convolutional layers followed 

by 3x3 Max Pooling. The entry layer is responsible for ex-

tracting low-level features from the image. The Middle Layer 

comprises eight repeated blocks, where each block is made up 

of depthwise separable convolutions with 728 filters and a 

3x3 kernel, it is responsible for extracting complex and 

higher-level features. Finally, the Exit block consists of Sep-

arable convolution with 728, 1024, 1536, and 2048 filters, all 

with 3×3 kernel, followed by Average Pooling and a Dense 

Layer, thus refining the extracted features and performing 

final predictions. The proposed model, Xception+ has been 

designed to omit the entire Middle Flow comprising 8 blocks. 

In Figure 2 the blocks outlined with red rectangle have been 

excluded, the remainder network with only the Entry and Exit 

Flow is the proposed model (Xception+). 

3.4. Cancer Grade Classification 

In this task, a grade classification of cancer from histo-

pathology tissue slides of CRC has been performed. Since the 

dataset [14] has only 139 images, a patch generation tech-

nique [29] was used to increase the size and diversity of our 

dataset. In this technique a single image is cropped into mul-

tiple smaller non-overlapping images or patches, each patch 

inherits the label of the original image and is considered a 

unique image. The patches generated are of 3 grades (classes) 

namely High, Low, and Normal. The dataset is split into 

training and validation datasets in the ratio 7:3. A deep- 

learning algorithm (GoogLeNet, Xception, and Xception+) is 

trained for 50 epochs on these images. Once all batches of 

images are trained, the model is used to predict the classes of 

images using the validation dataset, and the best validation 

accuracy is noted. 

4. Results 

This section presents the results of the experiments and the 

performance of the proposed model. 

 
Figure 3. Cancer Detection Problem: Performance comparison of the deep-learning algorithms. 

4.1. Performance of Deep-Learning Models 

Two optimizers were used in the training phase of the 

deep-learning models: Adam (uses features of AdaGrad and 

RMSProp algorithms) and SGD (extension of Gradient De-

scent). Optimizers are algorithms for stochastic gradient de-

scent for training deep-learning models. Table 1, shows the 

performance of each model using the two optimizers. It has 

been observed the performance of the models using SGD 
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optimizers is slightly better in most cases. The values of the 

hyperparameters have been experimentally determined and 

have been kept constant for all models. The following values 

were used: 

1) Learning rate=0.0005 

2) Weight decay=0.001 (only for Adam Optimizer) 

3) Momentum=0.9 (only for SGD) 

4) Epochs=30 

Since there is no class imbalance, the accuracy, and F1 

score are approximately similar. Figure 3, illustrates the per-

formance of the models for Cancer Detection. It has been 

observed that the GoogLeNet architecture has the highest 

precision of 99.11%, whereas the mean accuracy, recall and 

F1 score of Xception are the highest (99.25%, 99.70%, and 

99.14% respectively). Overall, Xception has the best perfor-

mance among all the deep-learning models. Receiver Oper-

ating Characteristic Curve (ROC) has been plotted for only 3 

models Xception (the best performing), AlexNet (the worst 

performing), and Inception v3 (medium performing) for easy 

comparison and visualization, refer Figure 4. The ROC curve 

for a binary classifier shows the performance of the model at 

various threshold settings. The ROC curve is plotted with 

TPR (True Positive Rate) vs FPR (False Positive Rate). TPR 

is nothing but Recall, FPR is defined by the formula: 

  

       
  

AUC stands for the Area under the Curve, it is a perfor-

mance metric widely used for classification problems, the 

higher the AUC the better is the model at predicting the 

classes. As seen in Figure 4, the AUC for Xception is 1.0 

which is the ideal value, this implies that this model is highly 

accurate in classifying the images. 

For the tissue classification problem, the accuracy of the 

models in classifying the 9 tissue classes has been compared, 

refer to Tables 1 and 2 for the detailed results. Figure 5 illus-

trates the performances of the models for classifying each 

tissue class; it has been observed that GoogLeNet has the 

highest accuracy for classification across all tissue classes 

followed by Xception. Figure 6, compares the overall per-

formance of each deep-learning model for both the tasks, i.e., 

Cancer detection and tissue classification. The average, mean, 

and standard deviation of the test accuracies from 5 experi-

ments have been tabulated in Table 2. 

 
Figure 4. Cancer Detection Problem: ROC curve for few deep-learning models. 

Table 1. Accuracy of Different models. 

Model Cancer detection  Tissue classification  

 Adam Optimizer SGD Optimizer Adam Optimizer SGD Optimizer 

AlexNet 95.39% 94.04% 91.80% 87.96% 

GoogLeNet 99.00% 99.12% 97.88% 98.86% 

ResNet 98.78% 98.72% 97.04% 96.94% 

Inception v3 97.24% 95.81% 93.92% 96.44% 
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Model Cancer detection  Tissue classification  

 Adam Optimizer SGD Optimizer Adam Optimizer SGD Optimizer 

MobileNet 98.85% 98.19% 96.22% 94.37% 

Xception 98.47% 99.14% 96.25% 97.16% 

ResNeXt 96.25% 97.92% 93.63% 93.33% 

DenseNet 97.00% 98.92% 94.30% 96.37% 

 

4.2. Performance of Proposed Model: Xception+ 

The proposed model Xception+ performed exceptionally 

well for both classification tasks. It achieved an overall av-

erage accuracy of 99.37% and 98.22% for cancer detection 

and tissue classification respectively, which is better than the 

known architectures, refer to Table 2. Through the experi-

ments, it has been observed that Xception+ performs better 

than the original architecture. To interpret the proposed ar-

chitecture, LIME [21] was used for visual explanations. LIME 

aims to explain or approximate a machine-learning model 

with a local interpretable model to visually explain each pre-

diction. Figure 7 shows the regions of the image that con-

tributed to the classification by the model. For the image 7a, 

the regions highlighted in green, show the segments in the 

image the model is looking at for labeling as ‘Cancerous’. 

Whereas, in Figure 7b the regions highlighted in red influ-

enced the labeling of the ‘Non-Cancerous’ class. 

  
                             (a) AlexNet                                   (b) GoogLeNet 

  
                           (c) Inceptionv3                                  (d) Xception 
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                      (e) DenseNet                                               (f) ResNet 

Figure 5. Class-wise Accuracy of Models for Tissue Classification. 

4.3. Grade Classification 

Due to the huge class imbalance and inadequacy in the 

dataset, a patch generation technique was employed to in-

crease the dataset size and diversity. By using a step size of 12 

on images of dimensions 512x512x3, a total of 15,520 images 

were generated. The 3 top performing CNN models from 

cancer diagnosis experiments namely, GoogLeNet, Xception, 

and Xception+ were used for training and validating these 

patches for classification. The highest validation accuracy of 

GoogLeNet and Xception models was 92.86%. While Xcep-

tion+ (the proposed model) achieved a higher accuracy of 

94.48%. Figure 8 illustrates the per-class accuracies for each 

of the models. Xception+ demonstrated a superior accuracy in 

predicting all three grades (High: 85.1%, Low: 94.9%, and 

Normal: 97.1%) compared to the two other models. In con-

trast to this study, the accuracy reported by the study by Awan 

et al. [14] was 91%, indicating the superior performance of 

the proposed model compared to Awan et al. [14]. 

 
Figure 6. Comparison of accuracy of each model for the two problems. 
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Table 2. Mean and standard deviation of average test accuracy. 

Model Cancer detection  Tissue classification  

 Mean accuracy Standard Deviation Mean accuracy Standard Deviation 

AlexNet 97.96% 0.0877 94.55% 0.1143 

GoogLeNet 99.14% 0.0665 98.86% 0.0671 

ResNet 98.61% 0.2081 96.61% 0.2201 

MobileNet 98.39% 0.2819 96.27% 0.2713 

Xception 99.25% 0.1033 97.52% 0.3409 

Xception+ 99.37% 0.0524 98.22% 0.1896 

 

5. Discussion 

As demonstrated by the results, Xception has the best mean 

accuracy (99.25%) for the Cancer detection problem and 

GoogLeNet has displayed the best mean accuracy (98.86%) in 

the tissue classification problem. There might be a few rea-

sons why Xception and GoogLeNet outperformed the rest of 

the state-of-the-art neural networks. As the network goes 

deeper it becomes more difficult to train and beyond a certain 

point the train loss increases which overfits the model and 

then it does a poor generalization which in turn has a detri-

mental effect on its performance. Moreover, deeper networks 

are more prone to the vanishing gradient problem. By in-

creasing more layers with activation functions like sigmoid, 

the gradients of the loss function tend to zero making the 

network difficult to train. The gradients of the loss functions 

for each layer are computed using the backpropagation 

method which uses the chain rule, if the gradients are very low, 

with each layer the gradient reduces exponentially and by the 

time it propagates to the initial layer, it approaches zero. The 

main purpose of backpropagation is to find the optimum 

amount for changing the weights and biases of the learnable 

parameters. If the gradient of the initial layers is very low then 

the learnable parameters of these layers will not be updated 

properly thus the performance will get saturated. The archi-

tecture of GoogLeNet is less deep than all the state-of-the-art 

models hence GoogLeNet is less prone to vanishing gradient 

problem and the accuracy increases faster than most models. 

Xception on the other hand uses skip connections, skip con-

nections allow the gradients to propagate to the initial layers 

with greater magnitude by skipping a few in-between layers 

thus tackling the vanishing gradient problem. Additionally, in 

the Xception model, convolutions are not performed across all 

the channels, making fewer connections thus making the 

architecture less deep, therefore, the model is more trainable 

and less prone to overfitting. When compared to the various 

studies conducted by other researchers, such as [4, 10, 11], the 

models in this study demonstrated superior results as shown in 

Table 3. 

Table 3. Comparison of similar works. 

Model  Cancer detection Tissue classification 

GoogLeNet  99.14% 98.86% 

Xception  99.25% 97.52% 

Xception+ (Our Proposed Model) 99.37% 98.22% 

Inception v3 97.24% 97.15% 

Inception v3 [4] 90.50% 87.00% 

Adaptive CNN [4] 94.50% 92.00% 

Proposed AI model [10] (same dataset as ours) 98.11%  

Proposed AI model [10] (different dataset) 99.02%  

Multiple CNNs [11] 94.11% 94.4% 
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                      (a) Predicted Labels: Cancerous                    (b) LIME: Cancerous 

  
                      (c) Predicted Label: Non-Cancerous                    (d) LIME: Non-Cancerous 

Figure 7. Examples of explainable model predictions for Xception+ using the LIME algorithm. 

The proposed model, Xception+ has outperformed the 

other standard models (GoogLeNet and Xception) in cancer 

diagnosis as well as cancer grade classification. Figure 9 

illustrates the confusion matrix showing the performance of 

the proposed model (Xception+) for each of the problems, as 

can be seen, the model has very few misclassifications. Large 

networks are prone to overfitting and incur a high computa-

tional cost during training. Omitting layers is effective in 

reducing computational cost, overfitting, and generalization 

error thus making the network more efficient. Not every 

neuron in the neural network contributes to the output some of 

them are redundant, and removing these neurons contributes 

to a smaller and faster network. A resultant smaller network is 

better at handling overfitting and vanishing gradient problems 

thus improving the accuracy. The proposed model (Xception+) 

is more compact and smaller than the actual Xception model 

and achieves better prediction accuracy. For the cancer grade 

classification task as well Xception+ performed better than 

the known models. 
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                      (a) GoogLeNet                                           (b) Xception 

 
(c) Xception+ 

Figure 8. Accuracy for different methods for Cancer Grade Classification. 

6. Conclusion 

Among the deep-learning-based models, the best results 

were exhibited by Xception and GoogLeNet with the preci-

sion of GoogLeNet being slightly better than that of Xception, 

implying that GoogLeNet predicts the cancerous class with 

better perfection. It is notable that the proposed model Xcep-

tion+, which is obtained by modifying the Xception network 

to a smaller size architecture, provides better accuracy in both 

problems (99.37% and 98.22%). Xception+ also outper-

formed the accuracy achieved in similar studies conducted by 

other researchers like [4, 10, 11]. Furthermore, for the task for 

the grade classification of CRC, the average accuracy 

achieved by Xception+ was 94.48%, the highest among the 

known models and other studies [14]. In the future, we aim to 

expand this research by incorporating other comparable da-

tasets and observe the performance of Xception+ on datasets 

comprising histopathology images sourced from various pa-

tients, covering conditions such as breast cancer, skin cancer, 

brain tumors, and others. Additionally, to boost the robustness 

of the model we intend to incorporate diverse types of 

pathological images like biopsies, CT scans, and X-rays. 

There is significant scope for further exploring the effects of 

Transfer Learning by using pre-trained models trained on 

similar histology images like breast cancer, skin cancer, etc. 

Finally, fine-tuning various architectures and analyzing their 

efficiency could contribute to a deeper understanding of 

model optimization. 
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                      (a) Cancer Diagnosis                                     (b) Tissue Classification 

 
(c) Cancer Grading 

Figure 9. Confusion Matrices for showing the performance of Xception+ model. 

Our research incorporating deep-learning models for can-

cer diagnosis has the potential to have a high impact in the 

field of clinical studies for cancer due to its high efficiency 

and predictive accuracy. It has the proficiency to analyze 

complex pathological imaging data and unearth the abstruse 

patterns or biomarkers of CRC in providing highly accurate 

outcomes leading to early detection and personalized treat-

ment procedures resulting in improved survival rates. Re-

search such as ours has the potential to propel the develop-

ment of innovative medical diagnostic tools to assist 

pathologists and medical professionals in faster cancer diag-

nosis. 

Abbreviations 

ADI Adipose 

AICR American Institute for Cancer Research 

AUC Area Under the Curve 

BACK Background 

CAD Computer-Aided Detection 

CNN Convolutional Neural Network 

CRC Colorectal Cancer 

DEB Debris 

FN False Negative 

FP False Positive 

http://www.sciencepg.com/journal/ajcst


American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst 

 

102 

H&E Hematoxylin and Eosin 

LIME Local Interpretable Model-Agnostic Explanations 

LYM Lymphocytes 

MUC Mucus MUS Muscle NORM Normal 

ROC Receiver Operating Characteristic 

SGD Stochastic Gradient Descent 

STR Stroma 

TN True Negative 

TP True Positive 

TUM Tumour 

WSI Whole-Slide Images 

Ethics 

No human trials were involved as part of this study. The 

authors have used publicly available datasets NCT-CRC-HE- 

100K [19]. Please refer to their Ethics statement for the da-

taset from the link: https://zenodo.org/records/1214456. 

Funding 

The authors declare no funding was received for this study. 

Data Availability Statement 

All data for performing the experiments have been up-

loaded in the location: Dataset. The codes are available on the 

Github repository: Source Code. The ReadMe file in the 

GitHub project has detailed instructions on executing the 

codes, and which datasets to use to reproduce the results. If 

the above link is inaccessible, all datasets and codes can be 

produced upon request. 

Conflicts of Interest 

The authors declare no conflicts of interest. 

References 

[1] Clinton, S. K., Giovannucci, E. L., Hursting, S. D. The World 

Cancer Research Fund/American Institute for Cancer Research 

Third Expert Report on Diet, Nutrition, Physical Activity, and 

Cancer: Impact and Future Directions, Journal of Nutrition 

2020; 4th edn. 

[2] Ahmet H. Y., Hassan E., Gokalp C., et al. Classification of 

Diabetic Rat Histopathology Images Using Convolutional 

Neural Networks, International Journal of Computational In-

telligence Systems 2021; 14: 715-722, Available from:  

https://doi.org/10.2991/ijcis.d.201110.001 

[3] Kralr P., Lenc L. LBP features for breast cancer detection, 

IEEE International Conference on Image Processing (ICIP) 

2016; 2643-2647, Available from:  

https://doi.org/10.1109/ICIP.2016.7532838 

[4] Malik J., Kiranayaz S., Kunhoth S., et al. Colorectal cancer 

diagnosis from histology images: A comparative study, ArXiv 

2019; abs/1903.11210, Available from:  

https://doi.org/10.48550/arXiv.1903.11210 

[5] Krizhevsky A., Sutskever I., Hinton G. E. ImageNet classifi-

cation with deep convolutional neural networks, Communica-

tions of the ACM 2017; 60: 84-900, Available from:  

https://doi.org/10.1145/3065386 

[6] Tang M. C. S., Teoh S. S., Ibrahim H., et al. Neovasculariza-

tion Detection and Localization in Fundus Images Using Deep 

Learning, Sensors (Basel) 2021; 16: 5327, Available from:  

https://doi.org/10.3390/s21165327 

[7] Tang M. C. S., Teoh S. S., Ibrahim H., et al. A Deep Learning 

Approach for the Detection of Neovascularization in Fundus 

Images Using Transfer Learning, IEEE Access 2022; 10: 

20247-20258, Available from:  

https://doi.org/10.1109/access.2022.3151644 

[8] Tang M. C. S., Teoh S. S. Blood vessel segmentation in fundus 

images using Hessian matrix for diabetic retinopathy detection, 

IEEE Annual Information Technology, Electronics and Mobile 

Communication Conference (IEMCON) 2020; 0728-0733, 

Available from:  

https://doi.org/10.1109/IEMCON51383.2020.9284931 

[9] Tang M. C. S., Teoh S. S., Ibrahim H. Retinal Vessel Seg-

mentation from Fundus Images Using DeepLabv3+, IEEE 18th 

International Colloquium on Signal Processing and Applica-

tions (CSPA) 2022; 377-381, Available from:  

https://doi.org/10.1109/CSPA55076.2022.9781891 

[10] Wang K. S., Yu G., Xu C., et al. Accurate diagnosis of colo-

rectal cancer based on histopathology images using artificial 

intelligence, BMC Med 2021; 19: 76, Available from:  

https://doi.org/10.1186/s12916-021-01942-5 

[11] Davri A., Birbas E., Kanavos T., et al. Deep Learning on His-

topathological Images for Colorectal Cancer Diagnosis: A 

Systematic Review. Diagnostics, Basel 2022; 12(4): 837, 

Available from: https://doi.org/10.3390/diagnostics12040837 

[12] Sari C. T., Gunduz-Demir C. Unsupervised feature extraction 

via deep learning for histopathological classification of colon 

tissue images, IEEE Trans Med Imaging 2018; 38(5): 

1139-1149, Available from:  

https://doi.org/10.1109/TMI.2018.2879369 

[13] Sirinukunwattana K., Pluim J. P. W., Chen H., et al. Gland 

segmentation in colon histology images: The glas challenge 

contest, Medical Image Analysis 2017; 35: 489- 502, Available 

from: https://doi.org/10.1016/j.media.2016.08.008 

[14] Awan R., Sirinukunwattana K., Epstein D. Glandular mor-

phometrics for objective grading of colorectal adenocarcinoma 

histology images, Scientific Reports 2017; 7(1): 16852, 

Available from: https://doi.org/10.1038/s41598-017-16516-w 

[15] Sirinukunwattana K., Ahmed S. E., Tsang Y. W., et al. Locality 

Sensitive Deep Learning for Detection and Classification of 

Nuclei in Routine Colon Cancer Histology Images, IEEE 

Trans Med Imaging 2016; 35(5): 1196-1206, Available from: 

https://doi.org/10.1109/TMI.2016.2525803 

http://www.sciencepg.com/journal/ajcst
https://www.kaggle.com/datasets/purnakar/colorectal-cancer-dataset
https://github.com/purnakar18/Image-Based-Colorectal-Cancer-Diagnosis


American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst 

 

103 

[16] Chaddad A., Tanougast C. Texture Analysis of Abnormal Cell 

Images for Predicting the Continuum of Colorectal Cancer, 

Anal Cell Pathol (Amst) 2017; 2017: 8428102, Available from:  

https://doi.org/10.1155/2017/8428102 

[17] Kather J. N., Krisam J., Charoentong P., et al. Predicting sur-

vival from colorectal cancer histology slides using deep 

learning: A retrospective multicenter study, PLoS Med 2019; 

16(1): e1002730, Available from:  

https://doi.org/10.1371/journal.pmed.1002730 

[18] Yamashita R., Nishio M., Do R. K. G., et al. Convolutional 

neural networks: an overview and application in radiology, 

Insights Imaging 2018; 9: 611-629, Available from:  

https://doi.org/10.1007/s13244-018-0639-9 

[19] Kather J. N., Halama N., Marx A. 100,000 histological images 

of human colorectal cancer and healthy tissue, Zenodo 2018; 

Available from: https://doi.org/10.5281/zenodo.1214456 

[20] Paszke A., Gross S., Massa F., et al. PyTorch: An Imperative 

Style, High-Performance Deep Learning Library, Conf. on 

Neural Inf. Process. Syst. (NeurIPS 2019) 2019; 721: 

8024-8035, Available from:  

https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f

92f2bfa9f7012727740-Paper.pdf 

[21] Marco T. R., Singh S., Guestrin C., et al. ”Why Should I Trust 

You?”: Explaining the Predictions of Any Classifier, Pro-

ceedings of the 22nd ACM SIGKDD International Conference 

on Knowledge Discovery and Data Mining 2016; 16: 715-722, 

Available from: https://doi.org/10.1145/2939672.2939778 

[22] Szegedy C., Liu W., Jia Y., et al. Going deeper with convolu-

tions, IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR) 2015; 1-9, Available from:  

https://doi.org/10.1109/CVPR.2015.7298594 

[23] Szegedy C., Vanhoucke V., Ioffe S., et al. Rethinking the In-

ception Architecture for Computer Vision, IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR) 2016; 

2818-2826, Available from:  

https://doi.org/10.1109/CVPR.2016.308 

[24] He K., Zhang X., Ren S. Deep Residual Learning for Image 

Recognition, IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR) 2016; 770-778, Available from:  

https://doi.org/10.1109/CVPR.2016.90 

[25] Howard A., Zhu M., Chen B., et al. MobileNets: Efficient 

Convolutional Neural Networks for Mobile Vision Applica-

tions, ArXiv 2017; abs/1704.04861, Available from:  

https://doi.org/10.48550/arXiv.1704.04861 

[26] Chollet F. Xception: Deep Learning with Depthwise Separable 

Convolutions, IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR) 2017; 1800-1807, Available from: 

https://doi.org/10.1109/CVPR.2017.195 

[27] Huang G., Liu Z., Van-Der-Maaten L., et al. Densely Con-

nected Convolutional Networks, IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) 2017; 

2261-2269, Available from:  

https://doi.org/10.1109/CVPR.2017.243 

[28] Xie S., Girshick R., Dolla ŕ P., et al. Aggregated Residual 
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