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Abstract: This work develops mathematical aspects of Conventional Finite Volume schemes for flow problems in porous
media governed by discontinuous absolute permeability. Focusing on incompressible one-phase flow problems in heterogeneous
porous media, a particular attention is put on the homogenized absolute permeability involved in the discrete Darcy velocity
over the “interaction zone” between two adjacent control volumes. The first key-step of our presentation consists in putting
in place a discrete-function-space frame-work endowed with inner products and their associated norms. Then after adequate
mathematical tools are deployed as projection and interpolation operators with their fundamental properties. A discrete version
of the Poincaré-Friedrichs inequality is also established and used to get equivalent discrete norms. Interpolation Operators are
used to define cellwise-constant and linear-spline approximate solutions. A discrete variational formulation of the finite volume
problem is stated and the Lax-Milgram theorem applies (upon projection operator continuity) to show the well posedness of the
discrete variational problem. A first order convergence in L2-norm and in some discrete energy norm has been shown. Sufficient
conditions to get higher order convergence rate in L2-norm and in H1

0 -norm have been stated for linear-spline solutions.

Keywords: Conventional Finite Volumes, Incompressible Flows, Discrete Function Space Frame-Work, Cellwise-constant
and Linear-spline Solutions, Rate Convergence

1. Introduction

Let Ω be a bounded open subset of Rd, d ∈ {1, 2, 3} being
the space dimension. Note that Ω is not necessary convex
(but connected and not empty) with a polygonal boundary
denoted by Γ. Let us start with recalling that H1(Ω) denotes
the usual Sobolev space made up of L2(Ω)−functions with
distributional partial derivatives in L2(Ω) while H1

0 (Ω) is a
closed subspace of H1(Ω) gathering the functions v such that
γ0(v) = 0, with γ0(.) denoting the usual Trace operator
(over the boundary Γ) defined from H1(Ω) to L2(Γ). As

usual H
1
2 (Γ) denotes γ0(H1(Ω)) which is a dense subspace

of L2(Γ).
We are interested in the finite volume approximation of the

solution u to the following system:

− div [λ(x)grad u] = f in Ω (1)
u = 0 on Γ (2)

where u is the unknown function while λ and f are given
functions such that:

f ∈ L2(Ω) (3)
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and λ(.) is a piecewise-constant function over Ω, so it verifies
what follows:

∃λmin, λmax ∈ R∗+ such that,
λmin ≤ λ(x) ≤ λmax a.e. in Ω. (4)

Before going into the finite volume approximation of the
solution u to the system of equations (1)-(2) we should start
with ensuring on existence and uniqueness of this solution
thanks to the well-known Lax-Milgram theorem. The Lax-
Milgram theory and more can be found for instance in [2, 3,
18]. It is a tool adapted for the analysis of weak (or variational)
formulations of 2nd order elliptic problems. This is the way
we can see that the system (1)-(2) possesses a unique weak (or
variational) solution u in the sense that:{

u ∈ H1
0 (Ω) such that :

B(u, v) = L(v) ∀v ∈ H1
0 (Ω)

(5)

where we have set:{
B(u, v) =

∫
Ω
λ(x)grad u.grad v dx

L(v) =
∫

Ω
f(x)v(x) dx

(6)

Terminology: The above system is named Weak (or

Variational) Formulation of the elliptic problem (1)-(2).
Remark 1.1. Under conditions (3)-(4) above one can show

that there is equivalence between (1)-(2) and (5)-(6).

2. Conventional Finite Volume
Formulation of (1)-(2) in
One-dimensional Space

Let us concentrate on the one-dimensional version of the
model problem (1)-(2).

2.1. The Model Diffusion Problem and Its Weak
Formulation

We are interested here in the following one-dimensional 2nd
order elliptic problem :

Find a function ϕ such that :

− [λ(x)ϕ′]′(x) = f(x) in I =]a , b[,

with ϕ(a) = ϕ(b) = 0 .

(7)

Note that the weak (or variational) formulation of the system
(7) is the problem that consists to (see for instance [1, 2, 4, 5, 8]
concerning this topic):

 Find u ∈ H1(I), with u(a) = u(b) = 0 such that :∫
I
λ(x)u′(x)v′(x)dx =

∫
I
f(x)v(x)dx ∀ v ∈ H1

0 (I).
(8)

where H1(I) is the well-known Sobolev space made up of
functions v fromL2(I), with distributional first derivative of v,
denoted here by v′, belonging to L2(I). Since I is a bounded
interval of R, it is known that H1(I) ⊂ C0(I), where I =
[a, b] (see [2] for instance). So the relations u(a) = u(b) = 0
get sense. On the other hand, H1

0 (I) denotes a subspace of
H1(I), made up of v such that v(a) = v(b) = 0.
The variational formulation (8) is relevant for the discrete
formulation of the model problem in terms of Finite Volume
scheme, as will be seen later, (or in terms of Finite Element
scheme: see for instance [12]).

2.2. Finite Volume Meshes and Relevant Discrete Function
Spaces

Let us start with the presentation of gridding procedure
which is the starting point of most numerical methods for
Boundary- and Initial-Value Problems (including Generalized
Equations of Finite Difference Methods introduced by [6] and
developed for Computational Structural Mechanics models in
[7, 20, 21] for instance).

2.2.1. Finite Volume Meshes
Let us consider a finite increasing sequence of points {a =

x0 < x1 < x2 < ... < xN < xN+1 = b} from I = [a, b].

In one-dimensional space we have the following conventional
Finite Volume Mesh.

Definition 2.1. (conventional finite volume mesh)
1) Let us set by definition:{
Ki = [xi − h−i , xi + h+

i ]

with h−i = xi − xi− 1
2
and h+

i = xi+ 1
2
− xi ∀1 ≤ i ≤ N

(9)

where the real numbers {xi}N+1
i=0 and {xi+ 1

2
}Ni=0 are given and

are such that:

a = x0 < x 1
2
< x1 < x 3

2
< x2 < ... <

... < xi−1 < xi− 1
2
< xi < xi+ 1

2
< xi+1 < ... <

... < xN−1 < xN− 1
2
< xN < xN+ 1

2
< xN+1 = b.

2) Let us set by definition:{
K0 = [x0 − h−0 , x0 + h+

0 ]

KN+1 = [xN+1 − h−N+1, xN+1 + h+
N+1]

(10)

with the convention:

h−0 = h+
N+1 = 0. (11)
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3) Let us set: P = {Ki}N+1
i=0 , C = {xi}N+1

i=0 and
N = {xi+ 1

2
}Ni=0.

The family {P, C,N} defines on I what we name a finite
volume mesh denoted by M. The elements of P are called the
mesh control-volumes (or simply control-volumes ), those of
C are called the mesh (element) centroids and those of N are
called the control-volume boundaries or mesh interfaces.

Note that each control-volumeKi is attached to one centroid
xi and vice-versa. In what follows hi denotes the diameter of
the control-volume Ki. In other words:

hi = h+
i + h−i .

On the other hand let us define the size h of the mesh M as:
Definition 2.2. We set:

h = max
0≤i≤N+1

hi.

The control-volumes K0 and KN+1 have their “centroids”
on their borders. For this reason these control-volumes are
named ”degenerate control-volumes”.

Definition 2.3. (Cell-Centered and Vertex-Centered Finite
Volumes)

4) The Cell-Centered Finite Volume is a Finite Volume
Scheme for which the discrete unknowns are all located at
{xi}Ni=1 i.e. at the “centroids”.

5) The Vertex-Centered Finite Volume is a Finite Volume
Scheme for which the discrete unknowns are all located at the

boundaries of control-volumes i.e. at {xi+ 1
2
}Ni=0

Remark 2.1. Note that depending on the boundary
conditions discrete unknowns are to be also considered at
x0 or at xN+1. More precisely, with Dirichlet boundary
conditions there is no discrete unknown to be considered
neither at x0 nor at xN+1. For Neumann boundary conditions
i.e. only the fluxes −[λϕ′](x0) and −[λϕ′](xN+1) at end-
points are given, so discrete unknowns are to be considered
at x0 and at xN+1. This is the reason why degenerate control-
volumes are not involved in the local discrete balance equation
for Dirichlet boundary conditions, but are involved for the
Neumann boundary conditions. Note also that it is possible
to solve a flow (or diffusion) problem with hybrid (or mixed
) boundary conditions, that is, Dirichlet condition at one end-
point and Neumann condition at the other.

2.2.2. Discrete Function Spaces for Finite Volume
Reconstruction of Exact Solutions

Let us start with the following definition.
Definition 2.4. We set:

Di+ 1
2

= [xi, xi+1], for i = 0, 1, 2, ..., N

Let us introduce a family of subintervals of I , called
“diamond mesh” and denoted by D. This is needed in
what follows for defining the discrete derivative of discrete
functions associated with the mesh M. So the mesh D depends
somewhat on the mesh M.

Definition 2.5. We set :

D = {Di+ 1
2
}Ni=0.

Definition 2.6. For a given bounded interval T of R we set:

P0(T ) = {v : T −→ R / ∃ vT ∈ R s.t. v(x) = vT in T}. (12)

where “s.t.” stands for such that.

In our frame-work it is interesting to view the elements v of
P0(T ) as functions defined in T\{xTg , xTd }, where xTg and xTd
are respectively left and right end-points of the interval T .

Now all the ingredients are gathered to define the
finite-dimensional function spaces for the finite volume
reconstruction of the exact solution to general 2nd order
elliptic problems. In the following definition CFV means
”Conventional Finite Volume(s)”.

Definition 2.7. (Discrete function spaces for CFV
approximations)
6)The discrete function space SM,0 for the CFV approximation
of the exact solution to general 2nd order elliptic problems is
defined as:

SM,0 =

N+1∏
i=0

P0(Ki)

7) The discrete function set VM,0 for the CFV approximation
of the exact solution to general 2nd order elliptic problems
with prescribed Dirichlet boundary conditions is the subset of

SM,0 defined as:

VM,0 =

{
v ∈ SM,0 6

{
v(x) = ua in K0

v(x) = ub in KN+1

}

where ua and ub are prescribed values of v at the domain end-
points. In the particular case where ua = 0 and ub = 0 the set
VM,0 is nothing than a subspace of SM,0, denoted by SM,0

0 in
what follows.

Remark 2.2. Note (or recall) that :
1) The function space SM,0 is a finite-dimensional space,

with dimension equal to (N + 2).
2) The function space SM,0

0 is a finite-dimensional space,
with dimension equal to N .

3) Let us denote by 1K (with K generic name of control-
volumes from the mesh M) the pseudo-characteristic function
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defined almost everywhere in I as :

1K(x) =

{
1 if x ∈ Int(K)

0 if x ∈ Ext(K)
(13)

where Int(K) and Ext(K) stand for Interior and Exterior of
K respectively. The sets of pseudo-characteristic functions
{1Ki

}N+1
i=0 and {1Ki

}Ni=1 are naturally canonical basis of SM,0

and SM,0
0 respectively.

In the sequel we will need to use some scalar products
defined on the spaces SM,0. Before defining these scalar
products we should introduce the function space SD,0 defined
as :

Definition 2.8. (Space where are lying discrete gradients of

discrete functions.)
Let us set: SD,0 =

∏N
i=0 P0(Di+ 1

2
) where we have set

Di+ 1
2

= [xi , xi+1]. Define on SD,0 the following scalar
product:

(ξD, ζD)L2(I),D =

N∑
i=0

hi+ 1
2
ξi+ 1

2
ζi+ 1

2
(14)

where we have set

hi+ 1
2

= h+
i + h−i+1 ≡ length of Di+ 1

2
. (15)

A discrete derivation operator∇D is defined from the space
SM,0 to the space SD,0 as follows:

Definition 2.9. (Discrete derivation operator)

SM,0 3 vh 7−→ ∇Dvh =

N∑
i=0

[∇Dvh]i+ 1
2
1D

i+1
2

∈ SD,0 (16)

where we have set
[∇Dvh]i+ 1

2
=

1

hi+ 1
2

[vi+1 − vi]. (17)

It is high time to equip the space SM,0 with the following scalar products. Indeed they play a key role in the sequel.
First scalar product:

∀ vh, wh ∈ SM,0 (vh, wh)L2(I),M =

N+1∑
i=0

hiviwi. (18)

Recall that hi is the one-dimensional Lebesgue measure of the control-volume Ki. This scalar product is associated with the
following norm:

∀ vh ∈ SM,0 ‖ vh ‖L2(I),M = [

N+1∑
i=0

hiv
2
i ]

1
2 . (19)

Whenever there is no risk of confusion, we will be using the following simplified notations, namely (vh, wh)L2,M and ‖
vh ‖L2,M.

Second scalar product:

∀ vh, wh ∈ SM,0 (vh, wh)H1(I),M = (vh, wh)L2(I),M + (∇Dvh , ∇Dwh)L2(I),D (20)

The associated norm denoted by ‖ . ‖H1(I),M and called discrete H1 − norm is defined as :

∀ vh ∈ SM,0 ‖ vh ‖2H1(I),M = ‖ vh ‖2L2(I),M + ‖ ∇Dvh ‖2L2(I),D . (21)

We have the following important result.
Proposition 2.1. (Discrete version of Poincaré-Friedrichs inequality)

There exists a mesh independent nonnegative constant κ such that

∀ vh ∈ SM,0
0 ‖ vh ‖L2,M ≤ κ ‖ ∇Dvh ‖L2,D

where

‖ ∇Dvh ‖2L2,D =

N∑
i=0

1

hi+ 1
2

[vi+1 − vi]2.
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Proof Let vh be a function from SM,0
0 , that is, vh ∈

∏N+1
i=0 P0(Ki), with (excluding discontinuous points of vh, that is,

precisely speaking, boundary-points of Ki]
N+1
i=0 ):

vh(x) = vi in Int[Ki] ∀ 0 ≤ i ≤ N + 1

where Int[Ki] stands for interior of Ki and where v0 = vN+1 = 0 since vh ∈ SM,0
0 . So for any arbitrarily fixed

i ∈ {0, 1, ..., N,N + 1}, we have a.e. in Ki:

| vh(x) |2 = v2
i ≤ (

i−1∑
k=0

| vk+1 − vk |)2 ≤ (

N∑
k=0

√
hk+ 1

2

| vk+1 − vk |√
hk+ 1

2

)2

By Cauchy-Schawrz inequality we deduce that for all i ∈ {0, 1, ..., N,N + 1}

| vh(x) |2 = v2
i ≤ [b− a] ‖ vh ‖2H1

0 ,M
a.e. in Ki

Integrating the two sides of the previous inequality in Ki and summing over i ∈ {0, 1, ..., N,N + 1} lead to the inequality we
are looking for, with κ = b− a.

An immediate consequence of the previous result is what follows.
Proposition 2.2. (Discrete H1

0 − norm)

(i) The following mapping

SM,0
0 3 vh 7−→ ‖ vh ‖H1

0 ,M
= [

N∑
i=0

1

hi+ 1
2

[vi+1 − vi]2]
1
2 ≡ ‖ ∇Dvh ‖L2,D (22)

defines a norm over the space SM,0
0 . This norm is called below the discrete H1

0 − norm.
(ii) Moreover on the space SM,0

0 the discrete H1
0 −norm is equivalent to the discrete H1−norm (defined above on the larger

space SM,0).

Remark 2.3. Note that the discrete H1
0 −norm is associated

with the following inner product:

(vh, wh)SM,0
0

= (∇Dvh , ∇Dwh)L2(I),D. (23)

The function space SM,0
0 equipped with this inner product is

a Hilbert space. Note also that in the sequel the bilinear form
(vh, wh)SM,0

0
is denoted also by (vh, wh)H1

0 ,M
.

Projection operator
Let us introduce the following projection operator denoted

by ΠM, operating from the well-known Lebesgue space L2(I)
to the discrete function space SM,0.

Definition 2.10. (Projection operator) Define the projection

operator ΠM as follows:

L2(I) 3 v 7−→ ΠMv ∈ SM,0 with ΠMv =

N+1∑
i=0

[ΠMv]i1Ki

where we have set : [ΠMv]i = 1
hi

∫
Ki
v(x) dx ∀ 0 ≤ i ≤

N + 1.
Proposition 2.3. The projection operator ΠM is a continuous

linear mapping from the function space L2(I) equipped with
its well-known standard-norm (defined by:
‖ v ‖L2(I)= [

∫
I
| v(x) |2 dx]

1
2 ) to the discrete function space

SM,0 endowed with the norm ‖ . ‖L2(I),M defined above by
the relation (19).

Proof Let v be an arbitrarily chosen function from the space L2(I) equipped with its well-known standard-norm. The operator
ΠM transforms v into ΠMv lying in SM,0. By definition, we have

‖ ΠMv ‖2L2(I),M

def
=

N+1∑
i=0

hi[Π
Mv]2i =

N+1∑
i=0

hi(
1

hi

∫
Ki

v(x) dx)2

Thanks to Cauchy-Schwarz’s inequality we get:
‖ ΠMv ‖2L2(I),M≤‖ v ‖

2
L2(I) . This inequality ensures that

the projection operator ΠM is continuous since it is obviously
linear.

2.3. Conventional Finite Volume Formulation of the
Problem (7)

Let us start with describing the general frame-work and
introducing some useful definitions and notations.
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2.3.1. General Frame-work
In most engineering problems (fluid flows in subsurface and

heat conduction in multilayered materials for instance), the
diffusion operator coefficient λ(.) is supposed to be a piece-
wise constant function for geophysical/physical reasons. We
adopt that point of view in this work. Putting in place a relevant
finite volume mesh is required as the first step towards any
finite volume analysis for such mathematical models. In the
preceding subsection we have exposed in details the procedure
for obtaining such a finite volume mesh M = {P, C,N}.
Recall that P is the family of control-volumes Ki = [xi −
h−i , xi + h+

i ], C is the family of mesh element centroids

xi]
N+1
i=0 and N is the family of control-volume boundary

points xi+ 1
2
]Ni=0. Note that centroids xi]Ni=1 are the points

where approximate values ϕi]
N+1
i=0 of the exact solution ϕ are

computed by means of a Finite Volume algorithm. In what
follows we are going to expose the main steps for putting in
place a Finite Volume scheme in view to address the problem
(7).

General assumptions:
Let {Is}s∈S be the subdivision of I associated with the

set (assumed finite) of discontinuity points of the diffusion
coefficient λ(.). Let us assume that:

1)The discontinuity points of λ(.) are part of the set {x 1
2
, x 3

2
, x 5

2
, ..., xN+ 1

2
}

2) ∀s ∈ S, ϕ |Is∈ C
2(Is) and we set: γ = maxs∈S [maxIs | ϕ

′′ |].
(24)

In the sequel we denote by λis the constant value of λ(x)
in the control-volume Ki included in the portion Is from the
subdivision of I due to the diffusion coefficient discontinuity.
Whenever there is no risk of confusion λis is simply denoted
by λi.

Definitions and notations useful for the sequel
Let us define the flow velocity (vector function with

d components in d-dimensional space; recall that in this
subsection d = 1) and the flux (scalar function by definition)
at the point xi+ 1

2
represented with x−

i+ 1
2

or x+
i+ 1

2

whether it
is seen by an observer lying in [xi, xi+ 1

2
] or in [xi+ 1

2
, xi+1]

respectively:

q(x±
i+ 1

2

, ϕ′) = −[λϕ′](x±
i+ 1

2

) (25)

is the flow velocity at the points x±
i+ 1

2

and

F (x±
i+ 1

2

, ϕ′) = q(x±
i+ 1

2

, ϕ′) · ν(x±
i+ 1

2

) (26)

is the flux at the points x±
i+ 1

2

, where ν(x+
i+ 1

2

) = −1 and

ν(x−
i+ 1

2

) = +1 are the outward unit normal vector in one-
dimensional space. The dot ”·” in the relation (26) represents
the standard scalar product in Rd; but here d = 1, so this
standard scalar product is reduced to the simple multiplication
operation in R.

2.3.2. The Discrete Flux Function at Control-volume
Boundaries

Step one: Pressure-Velocity reformulation) Rewrite the
global flow equations (7) in the following equivalent form :


qx(x, ϕ′) = f(x) (Balance equation in control-volumes) for x ∈ Ki = [xi− 1

2
, xi+ 1

2
], ∀1 ≤ i ≤ N

q(x, ϕ′) = −[λi ϕ
′(x)]

(Diffusion law: Darcy’s law in our model problem)

(27)


ϕ(x+

i+ 1
2

) = ϕ(x−
i+ 1

2

) (Continuity principle for ϕ) ∀0 ≤ i ≤ N
F (x+

i+ 1
2

, ϕ′) + F (x−
i+ 1

2

, ϕ′) = 0

(Continuity principle of the flux),

(28)

with the following prescribed Dirichlet boundary conditions
(see equation (7)):

ϕ(x0) = ϕ(xN+1) = 0. (29)

where qx is the derivative of the velocity with respect to the
space variable.

Step two: Approximation of the fluxes involved in the
balance equation over control-volumes.

Integrating in the control-volume Ki the two sides of the
balance equation (see the system (27) above) leads to

F (x−
i+ 1

2

, ϕ′) + F (x+
i− 1

2

, ϕ′) = hi[Π
Mf ]i ∀ 1 ≤ i ≤ N. (30)

where (according to Definition 2.10)

[ΠMf ]i =
1

hi

∫
Ki

f(x) dx ∀ 1 ≤ i ≤ N. (31)
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At this stage it is easily seen that an accurate approximation
of the fluxes is required for getting a Finite Volume scheme of
higher quality. However never forget that this approximation
accuracy is dependent on the mesh structure and the regularity
of the solution.

Under the assumptions (24) the Taylor-Lagrange Theorem
applies to ϕ restricted to [xi, xi+ 1

2
] (which is included in some

Ωŝ, with ŝ ∈ S) and leads to

ϕ(xi) = ϕ(x−
i+ 1

2

)−h
+
i

1!
ϕ′(x−

i+ 1
2

)+
(h+
i )2

2!
ϕ′′(ξ−

i+ 1
2

),

with xi < ξ−
i+ 1

2

< xi+ 1
2
.

Then we deduce

F (x−
i+ 1

2

, ϕ′) =
λi

h+
i

[ϕ(xi)−ϕ(x−
i+ 1

2

)]+T (x−
i+ 1

2

, h, ϕ′′) (32)

where, in virtue of (24), we have (with h standing for the mesh
size, denoted also by size(M) and defined in Definition 2.2
above):

| T (x−
i+ 1

2

, h, ϕ′′) |≤ γ h
2
max{λs; s ∈ S} ∀0 ≤ i ≤ N. (33)

Applying again Taylor-Lagrange Theorem to ϕ restricted to [xi+ 1
2
, xi+1] leads similarly to

ϕ(xi+1) = ϕ(x+
i+ 1

2

) +
h−i+1

1!
ϕ′(x+

i+ 1
2

) +
(h−i+1)2

2!
ϕ′′(ξ+

i+ 1
2

), with xi+ 1
2
< ξ+

i+ 1
2

< xi+1.

By analogy we deduce that

F (x+
i+ 1

2

, ϕ′) =
λi+1

h−i+1

[ϕ(xi+1)− ϕ(x+
i+ 1

2

)] + T (x+
i+ 1

2

, h, ϕ′′) (34)

where, in virtue of General Assumptions (24), we have

| T (x+
i+ 1

2

, h, ϕ′′) |≤ γ h
2
max{λs; s ∈ S} ∀0 ≤ i ≤ N. (35)

Step three : What expression for the discrete flux function
in view to get a conservative scheme ?

This is a decisive step. Our objective in this step is to
find out a discrete flux function defined at the control-volume
boundaries in such a way that the Flux Continuity Principle is
respected. This is so far the only way to get a conservative

scheme.
Summing side by side the flux relations (32) and (33), and

accounting with the exact (or physical) flux continuity at the
interface xi+ 1

2
i.e. [F (x−

i+ 1
2

, ϕ′) + F (x+
i+ 1

2

, ϕ′)] = 0, in

addition with ϕ ∈ H1
0 (I) ⊂ C0(I), lead to the following

relation:

λi+1

h−i+1

[ϕ(xi+1)− ϕ(xi+ 1
2
)] +

λi

h+
i

[ϕ(xi)− ϕ(xi+ 1
2
)] + T (xi+ 1

2
, h, ϕ′′) = 0 (36)

where we have set: T (xi+ 1
2
, h, ϕ′′) = T (x+

i+ 1
2

, h, ϕ′′) +

T (x−
i+ 1

2

, h, ϕ′′).

Note that discrete pressure continuity is imposed by setting:
ϕr ≡ ϕ(x+

r )
continuity

= ϕ(x−r ),

for r ∈ {1
2 , 1,

3
2 , 2, ..., N + 1

2 , N + 1}. Since the quantities
of the form ϕi+ 1

2
are viewed as discrete unknowns of second

class we look for expressing them as a linear combination of
the quantities ϕk]N+1

k=0 plus a term of the form O(h2). Thanks
to (36) we immediately obtain the following result:

Proposition 2.4. Assume that the conditions for the definition (24) are put in place and that there exist mesh independent
nonnegative numbers ωg, ωd such that

ωgh ≤ h+
i , h

−
i ≤ ωdh ∀ 0 ≤ i ≤ N + 1.

Then we have for all i ∈ {0, 1, ..., N}

ϕi+ 1
2

=
(λi+1/h

−
i+1)ϕi+1 + (λi/h

+
i )ϕi

(λi+1/h
−
i+1) + (λi/h

+
i )

+
T (xi+ 1

2
, h, ϕ′′)

(λi+1/h
−
i+1) + (λi/h

+
i )
. (37)
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with

|
T (xi+ 1

2
, h, ϕ′′)

(λi+1/h
−
i+1) + (λi/h

+
i )
| ≤ Ch2 (38)

where C is a mesh independent nonnegative number.

Let us go back to the flux expressions F (x−
i+ 1

2

, ϕ′) and

F (x+
i+ 1

2

, ϕ′) (see equations (32) and (34) ) with the intention
of replacing there ϕi+ 1

2
with the expression in the RHS (Right-

Hand Side) of equation (37). Setting

α+
i =

λi

h+
i

and α−i+1 =
λi+1

h−i+1

We easily obtain that

F (x−
i+ 1

2

, ϕ′) =
α+
i α
−
i+1

α+
i + α−i+1

[ϕi − ϕi+1] + E(ϕ”, x−
i+ 1

2

) (39)

and

F (x+
i+ 1

2

, ϕ′) =
α+
i α
−
i+1

α+
i + α−i+1

[ϕi+1 − ϕi] + E(ϕ”, x+
i+ 1

2

) (40)

where
| E(ϕ”, x+

i+ 1
2

) |≤ Ch and | E(ϕ”, x−
i+ 1

2

) |≤ Ch (41)

with C standing for diverse mesh-independent nonnegative
numbers.

Remark 2.4. (Very important for error estimates) It follows
from (39) and (40) that:

E(ϕ”, x+
i+ 1

2

) + E(ϕ”, x−
i+ 1

2

) = 0.

Our objective was to find out a discrete flux function
(defined at the control-volume boundaries) that satisfies the
Flux Continuity Principle. This purpose is achieved with the
following definition of the discrete flux function inspired from
relations (39) and (40).

Definition 2.11. Let us assume that the true solution ϕ to
the diffusion problem (7) satisfies the required conditions (24).
Let ϕh be the function from SM,0 defined by its components

(ϕ(xi) ≡ ϕi)
N+1
i=0 in the canonical basis of SM,0. Denote by

FD
i+1

2

(.,∇Dϕh) the vector made up of discrete fluxes defined
on the two sides of the point xi+ 1

2
as follows. For i = 0, ..., N

we set:

FD
i+1

2

(x−
i+ 1

2

,∇Dϕh) =
λiλi+1

λih
−
i+1 + λi+1h

+
i

[ϕi − ϕi+1],

and

FD
i+1

2

(x+
i+ 1

2

,∇Dϕh) =
λiλi+1

λih
−
i+1 + λi+1h

+
i

[ϕi+1 − ϕi].

.
The above definition of the discrete flux function can be

expressed in terms of discrete gradient [∇Dϕh]i+ 1
2

as follows:

Definition 2.12. The conditions required in the previous definition are conserved here. We could define the discrete flux
function as follows. For i = 0, ..., N we set:

FD
i+1

2

(x−
i+ 1

2

,∇Dϕh) = −λ?D
i+1

2

[∇Dϕh]i+ 1
2

(42)

and
FD

i+1
2

(x+
i+ 1

2

,∇Dϕh) = λ?D
i+1

2

[∇Dϕh]i+ 1
2

(43)

where we have set:

λ?D
i+1

2

=
hi+ 1

2
λiλi+1

λih
−
i+1 + λi+1h

+
i

and [∇Dϕh]i+ 1
2

=
[ϕi+1 − ϕi]

hi+ 1
2

(44)

with
hi+ 1

2
= h+

i + h−i+1.

Remark 2.5. The coefficient λ?D
i+1

2

involved in the

definition of the discrete flux function and given by the relation
(44) is the harmonic mean value of the following set of
diffusion coefficients {λi, λi+1}. This harmonic mean value,
called ”homogenized” or ”equivalent” diffusion coefficient
of the exchange zone Di+ 1

2
, is well-known by Reservoir

Engineers. Indeed the determination of homogenized
parameters for numerical simulation of large scale multiphase
flows in fractured and/or heterogenous petroleum reservoirs is
a challenging issue so far (see for instance: [8–11, 13, 14, 16,
17, 19]). We will be coming back on this topic for 2-D elliptic
problems in a up-coming work.
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2.3.3. Equations of the Conventional Finite Volume Scheme
Here our objective is to put in place the discrete balance equation in each control-volume and the finite volume formulation of

(7).
It follows from relations (39)-(40) and Definition 2.11 that

F (xεi+ 1
2
, ϕ′) = FD

i+1
2

(xεi+ 1
2
,∇Dϕh) + E(ϕ”, xεi+ 1

2
), (45)

with ε ∈ {−; +}. Using (45) in the following equation of the local mass balance (i.e. mass balance in the control-volume Ki):

F (x−
i+ 1

2

, ϕ′) + F (x+
i− 1

2

, ϕ′) = hi[Π
Mf ]i ∀1 ≤ i ≤ N

yields a system of relations (linear with respect to ϕk]N+1
k=0 ) that reads as:

FD
i+1

2

(x−
i+ 1

2

,∇Dϕh) + FD
i+1

2

(x+
i− 1

2

,∇Dϕh) =

= hi[Π
Mf ]i − E(ϕ”, x−

i+ 1
2

)− E(ϕ”, x+
i− 1

2

) ∀1 ≤ i ≤ N (46)

where we have set:

∀ 0 ≤ j ≤ N FDj+1
2

(x−
j+ 1

2

,∇Dϕh) =
λjλj+1

λjh
−
j+1 +λj+1h

+
j

[ϕj − ϕj+1]

FD
j+1

2

(x+
j+ 1

2

,∇Dϕh) =
λjλj+1

λjh
−
j+1 +λj+1h

+
j

[ϕj+1 − ϕj ].
(47)

Definition 2.13. (Cellwise-constant approximation of ϕ)
Recall that ϕ denotes the exact solution to the problem (7). Let (ϕi)

N+1
i=0 be the components (in the canonical basis) of a

function ϕh from the space SM,0. The function ϕh is called a cellwise-constant approximation of ϕ if (and only if) the set of its
components {ϕi}N+1

i=0 is solution to the following system of linear equations:{
∀ 1 ≤ i ≤ N
FD

i+1
2

(x−
i+ 1

2

,∇Dϕh) + FD
i+1

2

(x+
i− 1

2

,∇Dϕh) = hi[Π
Mf ]i

(48)

where, for j = 0, ..., N , we have set:FDj+1
2

(x−
j+ 1

2

,∇Dϕh) =
λjλj+1

λjh
−
j+1 +λj+1h

+
j

[ϕj − ϕj+1]

FD
j+1

2

(x+
j+ 1

2

,∇Dϕh) =
λjλj+1

λjh
−
j+1 +λj+1h

+
j

[ϕj+1 − ϕj ],
(49)

accounting with the following boundary conditions:

ϕ0 = ϕN+1 = 0. (50)

Recall that [ΠMf ]i is defined by the relation (31).

Definition 2.14. (Finite Volume scheme) The system of equations (48)-(50) with discrete unknowns {ϕi}Ni=1 defines what is
called a Finite Volume Scheme or Finite Volume algorithm for numerically solving the problem (7).

Rewriting the LHS (Left-Hand Side) of (48) in terms of components of ϕh by exploiting the equations (49) leads to the
following discrete problem :

Find a discrete function ϕh ∈ SM,0
0 , with components (ϕ1, ϕ2, ..., ϕN )

in the canonical basis of SM,0
0 , such that :

λiλi+1

λih
−
i+1+λi+1h

+
i

[ϕi − ϕi+1] + λiλi−1

λih
+
i−1 +λi−1h

−
i

[ϕi − ϕi−1] = hi[Π
Mf ]i ∀1 ≤ i ≤ N.

(51)
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Notice that this discrete problem is equivalent to the
system (48)-(50). The system of equations involved in the
previous discrete problem is what is called the conventional
(or classical) Finite Volume Scheme for the continuous problem
(7): see for instance the work of Eymard, Gallouet and Herbin
in [5] considered as one of the main references on this topic.

Concluding remarks: Notice that the homogeneous
Dirichlet boundary conditions of the continuous problem (7)
are involved in the Finite Volume scheme (51) through the fact
that we are seeking ϕh in the space SM,0

0 of discrete functions.
There are some natural questions concerning the Finite Volume
scheme given by (51): (i) Does the discrete problem (51) get a
solution ? (ii) If the response is affirmative, is there a unique
solution ? (iii) If there is a unique solution to (51), is that
solution stable with respect to the norms defined in SM,0 and
does the Finite Volume solution ϕh (in case it exists) converge
to the exact solution ϕ as the mesh size h goes to 0 ? we shall
be answering to all those questions in the next subsection.

2.4. Theoretical Analysis of the Finite Volume
Scheme Designed for the Problem (7)

Let us start with giving the matrix properties of the discrete
problem (51).

2.4.1. Matrix Analysis of the Discrete Problem (51)
Let Ah = {Aijh }, with 1 ≤ i, j ≤ N , be the N ×N matrix

associated with the finite volume scheme under consideration.
We have the following result.

Proposition 2.5. Ah is a symmetric positive definite matrix
i.e. 

(i) Aijh = Ajih ∀ 1 ≤ i, j ≤ N
and
(ii) (ξ)tAhξ > 0 ∀ ξ ∈ RN \ {0RN }

(52)

where (.)t is the transposition operator.

Proof Let ξ be a non zero-vector from RN , with components
(ξi)

N
i=1. We can see from the left-hand side of the discrete

balance equation from (51) that for i = 1, ..., N :

[Ahξ]i =
λiλi+1

λih
−
i+1 + λi+1h

+
i

[ξi − ξi+1]+

+
λiλi−1

λih
+
i−1 + λi−1h

−
i

[ξi − ξi−1]

where we have set ξ0 = 0 and ξN+1 = 0. Therefore,

(ξ)tAhξ =

N∑
i=0

λiλi+1

λih
−
i+1 + λi+1h

+
i

[ξi+1 − ξi]2

It is then clear that

(ξ)tAhξ ≥ 0 ∀ξ ∈ RN .

Remarking that (ξ)tAhξ = 0 implies ξ = 0, the positive
definiteness of the matrix Ah is proven.

Definition 2.15. Let a and b be two vectors from Rn, with
components {ai} and {bi} in the canonical basis of Rn. We
define a partial order over Rn as follows.

a ≤ b ⇐⇒ 0 ≤ bi − ai ∀1 ≤ i ≤ n. (53)

In particular a vector from Rn, with positive components, is
said greater than or equal to zero-vector of Rn, denoted 0Rn

or simply 0 if there is no risk of confusion. Notice that when
n = 1 we recover the well-known total order relation over R.
Remark that the partial order relation given by definition 2.15
easily extends to space of matrices.

Definition 2.16. (Monotone matrix)
Let M be an n × n real matrix. M is monotone if : (i)

M is invertible, and (ii) The inverse M−1 of M is such that
0 ≤M−1 i.e.

0 ≤ [M−1]ij , ∀1 ≤ i, j ≤ n.

A monotone matrix gets the following characterization (see
for instance [4]).

Proposition 2.6. Let M be an n × n real matrix. M is
monotone if and only if :

∀ ξ ∈ Rn 0 ≤ Mξ =⇒ 0 ≤ ξ.

The monotonicity of a matrix associated with a discrete
formulation of a linear 2nd order elliptic problem ensures that
the involved numerical scheme meets the positivity-preserving
property (often named discrete maximum principle). Before
checking that the finite volume scheme (51) meets that
property let us state it for the continuous problem (7): see [2, 3]
for instance.

Proposition 2.7. Denote by R∗+ the set of nonnegative real
numbers and assume that:

(i) The diffusion coefficient λ(.) lies in C1(I) and satisfies
the following (strict ellipticity) condition:

∃λmin ∈ R∗+ s.t. λmin ≤ λ(x) ∀x ∈ I;

(ii) The function f lies in C0(I) and satisfies the following
positivity condition:

f(x) ≥ 0 in I.

Then the unique solution ϕ in C2(I) ∩ C0(I) for the
diffusion problem (7) satisfies the following property:

ϕ(x) ≥ 0 in I (Positivity Preserving Property).

Proposition 2.8. (Monotonicity property) The matrix Ah
associated with the discrete problem (51) is monotone.

Proof Following the classical technique exposed in the
literature (see for instance [5]), let ω = {ωi}Ni=1 be a vector
from RN such that

0 ≤ Ahω (54)
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We should prove that all the components of ω are positive. The previous inequality is equivalent to what follows : for
i = 1, ..., N ,

0 ≤ λiλi+1

λih
−
i+1 + λi+1h

+
i

[ωi − ωi+1] +
λiλi−1

λih
+
i−1 + λi−1h

−
i

[ωi − ωi−1] (55)

with
ω0 = ωN+1 = 0. (56)

Let us set

ωmin = min{ωi ; i = 0, 1, 2, ..., N} (57)

and

α
def
= min{i ∈ {0, 1, ..., N} such that ωi = ωmin}. (58)

Suppose that
1 ≤ α ≤ N. (59)

Therefore (55) is satisfied for i = α, that is,

0 ≤ λαλα+1

λαh
−
α+1 + λα+1h

+
α

[ωα − ωα+1]+

+
λαλα−1

λαh
+
α−1 + λα−1h

−
α

[ωα − ωα−1],

It follows from the definition of α (see relation (58)) that

0 ≤ λαλα+1

λαh
−
α+1 + λα+1h

+
α

[ωα − ωα+1]+

+
λαλα−1

λαh
+
α−1 + λα−1h

−
α

[ωα − ωα−1] < 0

Since 0 < 0 is not possible, we have necessarily that α = 0
and thus ωmin = ω0 = 0. The positivity of all the components
of the vector ω is proven.

Remark For proving that Ah is monotone a novel and elementary technique has been exposed in [15]. It is based on geometric
arguments in any space dimension. Let us proceed with that technique for our one-dimensional situation. Consider ω = {ωi}Ni=1

any vector from RN such that
0 ≤ Ahω . (60)

We should prove that all the components of ω are positive. The previous inequality is equivalent to what follows.

0 ≤ λiλi+1

λih
−
i+1 + λi+1h

+
i

[ωi − ωi+1] +
λiλi−1

λih
+
i−1 + λi−1h

−
i

[ωi − ωi−1] ∀ 1 ≤ i ≤ N, (61)

with
ω0 = ωN+1 = 0. (62)

Let us suppose that the least component of ω is ωσ , with 1 ≤ σ ≤ N . So for i = σ, we get from (61) that

0 ≤ λσλσ+1

λσh
−
σ+1 + λσ+1h

+
σ

[ωσ − ωσ+1] +
λσλσ−1

λσh
+
σ−1 + λσ−1h

−
σ

[ωσ − ωσ−1] ≤ 0. (63)

Therefore
ωσ−1 = ωσ = ωσ+1. (64)

(i) If σ − 1 = 0 or σ + 1 = N + 1 then the positivity of all
the components of ω is proven since ω0 = ωN+1 = 0. It is the
end of the proof.

(ii) Otherwise, consider the semi-line Lσ with origin xσ and
passing trough xσ−1. It is clear that the relations (64) hold for
all the interior centroids xk belonging to the semi-line Lσ . The
concerned centroids are x1 < x2 < x3 < ... < xσ−1 < xσ .
So we can assert that:

ωk−1 = ωk = ωk+1 ∀ 1 ≤ k ≤ σ. (65)

Taking k = 1 in (65) leads straightly to the positivity of
all the components of ω. Note that the second technique for
proving the positivity preserving property of the matrix Ah

may be seen as less elegant than the classical one. However
it is easily extensible to higher space dimension (in particular
two- or three-dimensional space as we will see when dealing
with 2-D elliptic problems).

Remark Notice that the sparse structure of the matrix Ah
together with its symmetry and positivity definiteness give
rise to the use of a large game of powerful linear solvers
for addressing the linear square system (51). Let us list for
instance Jacobi’s method, Gauss-Seidel’s method, Conjugate-
gradient method, etc.

2.4.2. Variational Formulation of the Discrete Problem
(51)

Recall that ϕh is a cellwise-constant function, with
components (ϕ1, ϕ2, ..., ϕN ) in the canonical basis of SM,0

0 ,
defined as solution to the discrete problem (51). Let vh ∈
SM,0

0 , with components (v1, v2, ..., vN ) in the canonical basis
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of SM,0
0 . Multiplying the two sides of the discrete balance

equation from the discrete problem (51) by vi and summing
on i ∈ {1, 2, ..., N} lead to what follows :

N∑
i=0

λiλi+1

λih
−
i+1 + λi+1h

+
i

[ϕi+1 − ϕi][vi+1 − vi] = (ΠMf, vh)L2,M ∀vh ∈ SM,0
0 (66)

Let us name B(., .) the bilinear form defined on the discrete function space SM,0
0 by

B(vh, wh)
def
=

N∑
i=0

λiλi+1

λih
−
i+1 + λi+1h

+
i

[vi+1 − vi][wi+1 − wi].

Any discrete function solving the discrete problem (51) is necessarily a solution of the following variational problem.
Definition 2.17. (Variational problem)
The variational formulation of the discrete problem (51) consists to{

Find a function ϕh ∈ SM,0
0 such that

B(ϕh, vh) = (ΠMf, vh)L2,M ∀ vh ∈ SM,0
0 .

(67)

We have the following obvious result.
Proposition 2.9. (Equivalence result)

The discrete problem (51) is equivalent to the variational
problem (67).

Proof It is done in two steps.
1) Step 1: It is well understood (from the way the variational

problem is introduced) that any solution of the discrete

problem (51) is a solution of the variational problem (67).
2) Step 2: Let ϕh ∈ SM,0

0 be a solution to (67), and
let (ϕ1, ϕ2, ..., ϕN ) be its components in the canonical basis
of SM,0

0 . Therefore those components satisfy the variational
equation involved in the variational problem (67). That
variational equation is equivalent to the following system of
equations:

B(ϕh, 1Kj
) = (ΠMf, 1Kj

)L2,M ∀ j ∈ {1, 2, 3, ..., N} (68)

where 1Kj
is the jth element of the canonical basis of the space

SM,0
0 . Recall that

1Kj
(x) =


1 if x ∈ Int(Kj)

0 if x ∈ Ext(Kj)

(69)

where Int(Kj) and Ext(Kj) are respectively the interior
and the exterior of the control-volume Kj . According to the
definition of 1Kj

, the right-hand side of the equation (68)
is equal to

∫
Kj
f(x)dx while its left-hand side is equal to

λjλj+1

λjh
−
j+1+λj+1h

+
j

[ϕj −ϕj+1] +
λj−1λj

λj−1h
−
j +λjh

+
j−1

[ϕj −ϕj−1]. So

we recover the well-known discrete balance equation in the
control-volume Kj , governing the discrete problem (51).

We have the following result.
Proposition 2.10. (Existence, Uniqueness and Stability)

Recall that h is the mesh size (with vocation for going to zero)
and assume that:

1) There exist mesh independent nonnegative numbers ωg
and ωd such that:

ωgh ≤ h−i , h
+
i ≤ ωdh ∀ 0 ≤ i ≤ N + 1;

2) The diffusion coefficient λ(.) is a piece-wise constant

function, with a finite number of discontinuity points, and is
strictly positive almost everywhere in I;

3) The sink/source term f(.) is lying in L2(I).
Then the variational problem (67) gets a unique solution.
Moreover that solution, denoted by ϕh, satisfies the

following stability inequality:

‖ ϕh ‖H1
0 ,M
≤ C ‖ f ‖L2(I) (70)

where C is a mesh independent nonnegative number.
The proof of the above Proposition is a straightforward

application of Lax-Milgram theorem which is a powerful tool
for the variational analysis of linear elliptic equations of order
2m, with m given nonnegative integer. The Lax-Milgram
theorem is stated as follows.

Theorem 2.1. (Lax-Milgram)
Let H be a Hilbert space and ‖ . ‖ the norm associated with
the scalar product defined on H . Let L be a linear form and Ψ
a bilinear form both of them defined on H and satisfying the
following properties:

1) Ψ is continuous i.e. there exists a nonnegative real
number γ such that for all v, w ∈ H we have:
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| Ψ(v, w) | ≤ γ ‖ v ‖ ‖ w ‖ .

2) Ψ is coercive or H-elliptic i.e. there is α a nonnegative
real number such that for all v ∈ H we have:

α ‖ v ‖2≤ Φ(v, v).

3) L is continuous, that is, L lies in the topological dual H ′

of H . Let 〈., .〉 denotes the duality pairing between H ′ and H .
Then the variational problem that consists to:

Find φ ∈ H such that

Ψ(φ, v) = 〈L, v〉 ∀ v ∈ H
(71)

possesses a unique solution.

The proof of Lax-Milgram’s theorem can be found in many
classical books of Functional Analysis. See for instance [1–3].

Let us give now the proof of Proposition 2.10 asserting
existence, uniqueness and stability of the solution ϕh to the
variational problem (67).

Proof We proceed in two steps.
1) Step 1: Existence and Uniqueness. It suffices to check

that the conditions of Lax-Milgram are fulfilled. We start with
noticing that SM,0

0 is a Hilbert space with respect to the scalar
product (23) associated with the discrete H1

0 −norm given by
(2.2).

(i) Let us prove Continuity and Coercivity of the bilinear
form B(., .). For all vh, wh ∈ SM,0

0 , we have :

| B(vh, wh) |2def= |
N∑
i=0

λiλi+1

λih
−
i+1 + λi+1h

+
i

[vi+1 − vi]

[wi+1 − wi] |2 .

According to assumption 2) the first observation is that there

exist two nonnegative numbers λmin and λmax such that

λmin ≤ λ(x) ≤ λmax a.e. in I.

According to assumption 1) and the previous inequalities,
the second observation is that the effective diffusion coefficient
(see Remark 2.5) λ?D

i+1
2

is bounded as follows:

ωgλ
2
min

2ωdλmax
≤ λ?D

i+1
2

def
=

hi+ 1
2
λiλi+1

λih
−
i+1 + λi+1h

+
i

≤ ωdλ
2
max

2ωgλmin
(∗).

These two observations put together with the Cauchy-
Schwarz inequality lead to the continuity of the bilinear form
B(., .). On the other hand, the coercivity of B(., .) straightly
follows from the first inequality of (∗).

(ii) Continuity of the linear form (ΠMf, .)L2,M: For all
vh ∈ SM,0

0 , the Cauchy-Schwarz inequality applies and gives

| (ΠMf, vh)L2,M | ≤ ‖ ΠMf ‖L2,M‖ vh ‖L2,M

The continuity of (ΠMf, .)L2,M follows from application
of the discrete Poincaré-Friedrichs inequality (Proposition 2.1
) and Proposition 2.10.

2) Step 2: Stability of the finite volume solution ϕh.
Take vh = ϕh in the variational equation (67) and use the
coercivity of the bilinear form B(., .) and the continuity of the
linear form (ΠMf, .)L2,M.

2.4.3. Convergence of ϕh

Note that ϕh, the cellwise-constant function (approximating
the exact solution ϕ) does not belong to the Sobolev space
H1

0 (I) as does ϕ. So we are going to give convergence result
of ϕh to ϕ only in L2 − norm. Let us establish an important
intermediate result. Denote by Eh the error-function from the
space SM,0

0 with components {Ei}Ni=1 (in the canonical basis
of this space) defined by

Ei = ϕi − ϕi ∀1 ∈ {1, 2, 3, ..., N}. (72)

Lemma 2.1. (Error estimates) Under the assumptions of Proposition 2.10, there exists a mesh-independent nonnegative number
C such that:

‖ Eh ‖H1
0 ,M
≤ C h, ‖ Eh ‖L2,M≤ C h, ‖ Eh ‖L∞,M

def
= max

1≤i≤N
| Ei | ≤ C h. (73)

Proof Let us start with subtracting side by side equation (48) from (46) and accounting with (47) and (49). Therefore we are
led to the following so-called Error system of equations:

λiλi+1

λih
−
i+1+λi+1h

+
i

[Ei − Ei+1] + λiλi−1

λih
+
i−1 +λi−1h

−
i

[Ei − Ei−1] =

= E−
i+ 1

2

+ E+
i− 1

2

∀1 ≤ i ≤ N,
(74)

where E0 = EN+1 = 0, and where we have set :

E−
i+ 1

2

= −E(ϕ”, x−
i+ 1

2

) and E+
i− 1

2

= −E(ϕ”, x+
i− 1

2

) (75)
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with (see Remark 2.4):
E(ϕ”, x−

i+ 1
2

) + E(ϕ”, x+
i+ 1

2

) = 0 (76)

and (see relations (41)):

| E(ϕ”, x−
i+ 1

2

) |≤ Ch and | E(ϕ”, x+
i+ 1

2

) |≤ Ch ∀ i ∈ {1, 2, 3, ..., N} (77)

where C stands for diverse mesh-independent nonnegative numbers.
Multiplying the two sides of equation (74) with Ei and summing on i ∈ {1, 2, ..., N} leads to what follows:

B(Eh, Eh) =

N∑
i=1

Ei[E+
i− 1

2

+ E−
i+ 1

2

]

Thanks to Remark 2.4 and the coercivity of the bilinear form B(., .) we can see that

ωgλ
2
min

2ωdλmax
‖ Eh ‖2H1

0 ,M
≤

N∑
i=0

E+
i+ 1

2

[Ei+1 − Ei] ≤ C h

N∑
i=0

√
hi+ 1

2

| Ei+1 − Ei |√
hi+ 1

2

≤

(by Cauchy − Schwarz) ≤ C h
√
b− a ‖ Eh ‖H1

0 ,M
. (78)

The second inequality of (73) follows from the discrete
version of Poincaré-Friedrichs inequality (see Proposition 2.1).
Let us prove the third inequality. For any i ∈ {1, 2, ..., N}, we
have | Ei |2≤ [

∑N
i=0 | Ei+1 − Ei |]2 ≤ (b− a) ‖ Eh ‖2H1

0 ,M

(thanks to Cauchy-Schwarz inequality).
Lemma 2.2. Consider the assumptions of Proposition 2.10

and let ϕM be the unique discrete function from the space
SM,0

0 such that :

ϕM
|Ki

def
= ϕ(xi) ≡ ϕi ∀0 ≤ i ≤ N + 1.

So we have

‖ ϕ− ϕM ‖L2(I)≤ C h

where C is a mesh-independent nonnegative number.
Proof Let us arbitrarily choose i ∈ {0, 1, ..., N,N + 1} and

x ∈ Ki. From the assumption: ϕ|Ki
∈ C1(Ki), with Ki part

of Is, for some s ∈ S, we get by Taylor-Lagrange theorem
that for all x ∈ Ki we have

[ϕ|Ki
− ϕM

|Ki
](x) =

1

1!
[ϕ|Ki

− ϕM
|Ki

]′(ξx).[x− xi]

with min{x, xi} ≤ ξx ≤ max{x, xi}. Therefore∫
Ki

[ϕ|Ki
− ϕM

|Ki
]2(x)dx ≤ h2

∫
Ki

| [ϕ|Ki
]′(ξx) |2 dx ≤

≤ hih2[max
Is

| ϕ′ |]2 ≤ Ch2hi

where
C = [max

Is

| ϕ′ |]2.

Therefore

N+1∑
i=0

∫
Ki

[ϕ|Ki
− ϕM

|Ki
]2(x)dx ≤ Ĉ h2

i.e.
‖ ϕ− ϕM ‖2L2(I)≤ Ĉ h2.

This is the end of the proof.
We can state now the L2 − convergence of ϕh to ϕ as

follows.
Proposition 2.11. (Convergence of the conventional finite

volume solution)
Under the assumptions of Proposition 2.10 there exists a mesh-
independent nonnegative number, let us say Υ, such that

‖ ϕ− ϕh ‖L2(I)≤ Υh.

.
Proof Thanks to the triangular inequality we have

‖ ϕ− ϕh ‖L2(I)≤‖ ϕ− ϕM ‖L2(I) + ‖ ϕM − ϕh ‖L2(I)

The proof is completed thanks to Lemma 2.2 that applies to the
first term and Lemma 2.1 that applies to the second term of the
Right-Hand Side of the preceding inequality.

2.5. Linear-spline Approximation of ϕ

We expose here a finite-volume-based reconstruction of the
exact solution ϕ, requiring that the candidates lie in Linear
Spline function space LSD associated with the mesh D =
{Di+ 1

2
= [xi, xi+1]}Ni=0 introduced in subsection 2.2. So

doing the reconstructed solution can be shown to lie in H1
0 (I),

just like the exact solution.
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2.5.1. Preliminary Notions and Results
Recall that

LSD = {vh ∈ C0(I) / vh |D
i+1

2

∈ P1(Di+ 1
2
) ∀ 0 ≤ i ≤ N},

where P1(Di+ 1
2
) is the space of real polynomials of degree

≤ 1, restricted to the segment Di+ 1
2

.

Proposition 2.12. The function space LSD is a subspace of
the Sobolev space H1(I).

This result is a straight consequence of the following
Lemma.

Lemma 2.3. Let Ω be an open bounded domain included in Rd, with d ∈ {1, 2, 3}. Let T be a family of sub-domains of Ω
defining a partition of Ω in the sense that for all T, L ∈ T we have :


T is nonempty open subset of Ω and Ω = ∪T∈T T
T 6= L =⇒ T ∩ L = ∅ and T ∩ L = ΓT ∩ ΓL

where Γ� is the boundary of �, for all � ∈ T .
(79)

Let v be a continuous function in Ω and assume that:

∀T ∈ T v|T ∈ H
1(T )

where v|T stands for the restriction of v within T .
Then v lies in H1(Ω).

Proof. Let v be a function from the space of continuous
functions in Ω. For the sake of simplification of notations the
function v|T is simply denoted by v inside T and on ΓT , except
when there is risk of confusion.

(i) Since Ω is bounded in Rd, v lies in L2(Ω).
(ii) It remains to check that the first order distributional

derivatives of v lie also in L2(Ω). For this purpose, let us
choose arbitrarily a direction, let us say α, in the space Rd.
Denote by Dαv the distributional derivative of v in the αth

direction. We should prove that Dαv ∈ L2(Ω). By definition
we have

< Dαv, φ >= − < v,
∂ φ

∂xα
> ∀φ ∈ D(Ω)

where D(Ω) is the space of functions of class C∞ in Ω, with
a compact support included in Ω. It follows that we get for all
φ ∈ D(Ω):

< Dαv, φ >= −
∫

Ω

v
∂ φ

∂xα
dx

= −
∑
T∈T

∫
T

v
∂ φ

∂xα
dx

= −
∑
T∈T

[

∫
ΓT

vφνTα dσ −
∫
T

φ
∂ v

∂xα
dx]

=
∑
T∈T

∫
T

φ
∂ v

∂xα
dx−

∑
T,L∈T ;T 6=L

∫
ΓT∩ΓL

vφ[νTα + νLα ] dσ

where ν�α is the αth component of the outward normal unit
vector to the boundary of a sub-domain � from T .

Remarking that (due to continuity of v and φ over Ω together
with the fact that νTα + νLα = 0 on ΓT ∩ ΓL for all adjacent

sub-domains T and L from T ) we have∑
T,L∈T ;T 6=L

∫
ΓT∩ΓL

vφ[νTα + νLα ] dσ = 0 ∀φ ∈ D(Ω)

we deduce that

Dαv =
∑
T∈T

∂ v|T
∂xα

1T in D′(Ω).

Since the right-hand side of the preceding equality lies in∏
T∈T L

2(T ) ≡ L2(Ω) and the αth direction is arbitrarily
chosen the proof is ended.

Remark 2.6. Recall that I = [a, b]. An immediate
consequence of the preceding Proposition is that the following
function space

LSD0 = {vh ∈ C0(I) / vh |D
i+1

2

∈ P1(Di+ 1
2
)

∀ 0 ≤ i ≤ N, vh(a) = vh(b) = 0}

is a subspace of the Sobolev space H1
0 (I).

Proposition 2.13. The space LSD is a finite dimensional
space with dimension equal to (N + 2). Moreover there exists
a (canonical) basis {Φi}N+1

i=0 of LSD such that:

Φi(xj) = δij ∀ 0 ≤ i, j ≤ N + 1

where δij is the Kronecker symbol i.e.

δij =

1 if i = j

0 otherwise.
(80)

Proof It will be done in two steps.
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1) First step : We should show that the space LSD gets a
finite dimension equal to (N + 2). It is obvious that LSD gets
a finite dimension as it satisfies the following ”inequality”:

LSD ⊂
N∏
i=0

P1(Di+ 1
2
)

and we have

dimension[

N∏
i=0

P1(Di+ 1
2
)] = 2(N + 1).

So dimension[LSD] ≤ 2(N + 1). Let us show now that
dimension[LSD] = N + 2. For that purpose let us introduce
the linear mapping Λ from LSD to RN+2 as follows:

Λ : LSD −→ RN+2

vh 7−→ (v(x0), v(x1), ..., v(xN ), v(xN+1)).

We are going to show that Λ is a bijective linear mapping.
The linearity of Λ is quite obvious. So we will focus on its
bijective status.

(i) Let us start with showing that Λ is a surjective mapping.
Given a vector from the space RN+1, with components
(β0, β1, ..., βN , βN+1) in the canonical basis of RN+1, there
exists a unique affine function gi+

1
2 defined in [xi, xi+1] such

that

gi+
1
2 (x) =

βi if x = xi

βi+1 if x = xi+1.
(81)

More precisely we have

gi+
1
2 (x) = βi[

x− xi+1

xi − xi+1
]+βi+1[

x− xi
xi+1 − xi

] in [xi, xi+1].

Now define a piece-wise affine function g in [a, b] as
follows:

g |D
i+1

2

(x) = gi+
1
2 (x) (recall that : Di+ 1

2
= [xi, xi+1]).

The function g is obviously a continuous function in [a, b]
and therefore it lies in the space LSD. So the surjective status
of Λ is proven.

(ii) Let us end the proof with showing that Λ is injective. We
set

Ker[Λ] = {vh ∈ LSD /Λ(vh) = 0RN+2}.

Since Λ is linear to show that this mapping is injective it
suffices to show that Ker[Λ] is reduced to {0LSD}. It is
clear that {0LSD} ⊂ Ker[Λ] since Λ is a linear mapping.
Let us concentrate on showing that Ker[Λ] ⊂ {0LSD}.
Consider an arbitrarily chosen function vh from Ker[Λ] such
that Λ[vh] = 0RN+2 . This means that v(x0) = v(x1) =
v(x2) = ... = v(xN ) = v(xN+1) = 0. So in any sub-interval
Di+ 1

2
≡ [xi, xi+1] there are two roots of vh and vh |D

i+1
2

is a

polynomial of degree ≤ 1. It implies that vh |D
i+1

2

≡ 0 for any

0 ≤ i ≤ N . So vh ≡ 0 in [a, b].

We have shown that Λ is a bijective linear mapping from
LSD to RN+2. So dimension[LSD] = N + 2.

2) Second step: The mapping Λ ensures the existence and
uniqueness of the family of functions {Φi}N+1

i=0 from LSD
such that

Φi(xj) = δij ∀ 0 ≤ i, j ≤ N + 1

This family is a basis of LSD if and only if it is made up of
linearly independent vectors. We are going to prove the linear
independency of the family {Φi}N+1

i=0 . For that purpose let us
introduce the family of linear forms {Li}N+1

i=0 defined on LSD
by

〈Lj , vh〉 = vh(xj) ∀ 0 ≤ j ≤ N + 1.

where 〈 ., .〉 is the duality operator. Consider any family of real
numbers {γi}N+1

i=0 such that

N+1∑
i=0

γiΦi = 0LSD .

For an arbitrarily chosen j in {0, 1, 2, ..., N,N+1}we have

0 = 〈Lj ,
N+1∑
i=0

γiΦi〉 =

N+1∑
i=0

γi〈Lj ,Φi〉 =

N+1∑
i=0

γiδij = γj .

This is the end of the proof.
Proposition 2.14. The basis {Φi}N+1

i=0 of the space LSD
possesses the following interesting property:

vh(x) =

N+1∑
i=0

vh(xi)Φi(x) in [a, b] ∀ vh ∈ LSD.

Proof Easy exercise.
It follows from the preceding result that:
Proposition 2.15. The family of functions {Φi}Ni=1 is a

basis of the space LSD0 and satisfies the following remarkable
property:

vh(x) =

N∑
i=1

vh(xi)Φi(x) in [a, b] ∀ vh ∈ LSD0 .

Let us introduce an interpolation operator ΠD from the
space C0(I) to the space LSD as follows:

v 7−→ ΠDv =

N+1∑
i=0

v(xi)Φi.

Taking v = ϕ (exact solution to the model problem (7)) we
have, by definition,

[ΠD(ϕ)](x) =

N+1∑
i=0

ϕ(xi)Φi(x).
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Recall that ϕ(xi) is also denoted by ϕi, for i = 0, ..., N +1.
Proposition 2.16. Assume that the exact solution ϕ to the

problem (7) is lying in C2(I), i.e. ϕ is a classical solution to
(7). Then

‖ ϕ−ΠD(ϕ) ‖L2(I)≤ C h2. (82)

and
‖ ϕ−ΠD(ϕ) ‖H1(I)≤ C h. (83)

where C denotes here as always diverse mesh-independent
nonnegative real numbers.

Proof 1) Let us prove (82).
Fix arbitrarily i ∈ {0, 1, 2, ..., N}. Then for all x ∈ Di+ 1

2
=

[xi, xi+1] we have, according to Lagrange interpolation theory,

the existence of some real number ξi+
1
2

x , with xi < ξ
i+ 1

2
x <

xi+1, such that

ϕ|D
i+1

2

(x)− [ΠD(ϕ)]|D
i+1

2

(x) =
ϕ”(ξ

i+ 1
2

x )

2!
[x− xi][x− xi+1]. (84)

Therefore

| ϕ|D
i+1

2

(x)− [ΠD(ϕ)]|D
i+1

2

(x) |2≤ [
maxI | ϕ” |

2!
]2[xi+1 − xi]4 ≤ Λ[xi+1 − xi]4

with Λ mesh-independent. Integrating in Di+ 1
2

all sides of the previous double inequalities and summing on i ∈ {0, 1, 2, ..., N}
yield

‖ ϕ−ΠD(ϕ) ‖2L2(I)≤ Λ′h4.

2) Let us prove now (83).
Fix again arbitrarily a number x in [xi, xi+1]. According to Taylor-Lagrange theorem we have, with xi < θx < xi+1,

[ϕ−ΠD(ϕ)]′(x) = [ϕ−ΠD(ϕ)]′(xi) +
1

1!
ϕ”(θx).[x− xi] ∀xi ≤ x ≤ xi+1. (85)

On the other hand we have, by application of Taylor-Lagrange theorem to the function [ϕ−ΠD(ϕ)](x) over the interval [xi, x]
we get, for all xi ≤ x ≤ xi+1,

[ϕ−ΠD(ϕ)](x) = [ϕ−ΠD(ϕ)](xi) +
1

1!
[ϕ−ΠD(ϕ)]′(xi).[x− xi] +

1

2!
ϕ”(τx).[x− xi]2. (86)

From (84) and (86) we see that one can rewrite (85) in the following form

[ϕ−ΠD(ϕ)]′(x) =
ϕ”(ξx)

2!
[x− xi+1] + [ϕ”(θx)− 1

2
ϕ”(τx)][x− xi] ∀xi < x ≤ xi+1 (87)

Since ϕ” lies in C0(I) it is clear that

| [ϕ−ΠD(ϕ)]′(x) |2≤ C h2 a.e. in Di+ 1
2

(88)

Integrating the both sides of the previous inequality in Di+ 1
2

and summing over i ∈ {0, 1, 2, ..., N} lead to what follows:

‖ [ϕ−ΠD(ϕ)]′ ‖L2(I)≤ C h.

This is the end of the proof.

2.5.2. Approximation of ϕ in LSD0
The exact solution ϕ to the diffusion problem under consideration (in this part of our work) lies in the Sobolev space H1

0 (I).
According to Remark 2.6, the space LSD0 is a subspace of H1

0 (I). The first step of the proof of Proposition 2.13 shows that
there exists a bijection between RN+2 and LSD. Following the same technique one can easily show that there exists a bijection
between RN and LSD0 . So the vector (ϕ1, ..., ϕN ) is associated with some function ϕ?h from LSD0 , defined as:

ϕ?h(x) =

N∑
i=1

ϕiΦi(x) ∀x ∈ I.

It is reasonable to think that this function is a nice candidate
for a finite volume approximation of the exact solution ϕ.

We mean by ”nice candidate” a function lying in H1
0 (I) and

converging faster to ϕ than does ϕh (see Proposition 2.11).
Let us investigate this allegation. For that purpose let us look
for the estimates of ‖ ϕ−ϕ?h ‖L2(I) and ‖ ϕ−ϕ?h ‖H1

0 (I). Let
us start with setting that:
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ϕ?h(x) = ϕ(x) + Eh(x) in I (89)

We know from Lemma 2.1 that

| Eh(xi) | ≤ C h ∀0 ≤ i ≤ N + 1. (90)

Based on this result we make the assumption that there

exists some α ≥ 1 such that

| Eh(x) | ≤ C hα ∀x ∈ I. (91)

According to Lagrange interpolation theory, for all xi ≤
x ≤ xi+1 there exists some real number ξi+

1
2

x , with xi <

ξ
i+ 1

2
x < xi+1, such that:

ϕ|D
i+1

2

(x)− [ΠD(ϕ)]|D
i+1

2

(x) =
ϕ”(ξ

i+ 1
2

x )

2!
[x− xi][x− xi+1] (92)

Thanks to (89) the previous equality can be put in the following form:

ϕ?h(x)− [ΠD(ϕ)](x) =
ϕ”(ξ

i+ 1
2

x )

2!
[x− xi][x− xi+1] + Eh(x) ∀xi ≤ x ≤ xi+1 (93)

Therefore

| ϕ?h(x)− [ΠD(ϕ)](x) |2≤ C[h4 + h2α] ∀xi ≤ x ≤ xi+1 (94)

Integrating the two sides of the previous inequality in Di+ 1
2

and summing over i ∈ {0, 1, 2, ..., N} lead to what follows:

‖ ϕ?h − [ΠD(ϕ)] ‖L2(I)≤ C h
1
2 min{4,2α} = C hmin{2,α} (95)

On the other hand we have:

∀xi ≤ x ≤ xi+1


[ΠD(ϕ)](x) = ϕi

x−xi+1

xi−xi+1
+ ϕi+1

x−xi

xi+1−xi

ϕ?h(x) = ϕi
x−xi+1

xi−xi+1
+ ϕi+1

x−xi

xi+1−xi

(96)

We need the assumption consisting in saying that there exist two mesh-independent nonnegative real numbers$g and$d such
that

$g h ≤ hi+ 1
2
≤ $d h ∀ 0 ≤ i ≤ N. (97)

Note that an equivalent version of this assumption has been formulated in Proposition 2.10. It follows from (96) that for all
xi ≤ x ≤ xi+1 we have

[ΠD(ϕ)]′(x) − [ϕ?h]′(x) = −ϕi − ϕi
hi+ 1

2

[x− xi+1] +
ϕi+1 − ϕi+1

hi+ 1
2

[x− xi] (98)

Thanks to assumptions (91) and (97) it is easily seen that

| [ΠD(ϕ)]′(x) − [ϕ?h]′(x) |2≤ C h2(α−1) in I (99)

where α ≥ 1 is mesh-independent and comes from assumption
(91).

Let us summarize the main ideas exposed above concerning
the approximation of ϕ in the space LSD0 .

Lemma 2.4. Let us assume that (97) holds. Let us also
assume that the model problem (7) possesses a solution ϕ lying
in C2(I) and that the real-valued function Eh defined in I as
follows:

ϕ?h = ϕ + Eh
is such that there exist mesh-independent nonnegative numbers

C and α, with α ∈ [1, +∞[, such that

| Eh(x) | ≤ C hα in I.

Then we have what follows:

‖ [ΠD(ϕ)]− ϕ?h ‖L2(I)≤ C hmin{2,α}. (100)

Under the condition 1 < α ≤ 2, we have that:

‖ [ΠD(ϕ)]′ − [ϕ?h]′ ‖L2(I)≤ C hα−1. (101)

Recall that C stands for diverse mesh-independent
nonnegative numbers.

Proposition 2.17. (Error estimates for finite volume solution
lying in LSD0 )
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Let us assume that (97) holds. Let us also assume that the
model problem (7) possesses a solution ϕ lying in C2(I) and
that the real-valued function Eh defined in I as follows:

ϕ?h = ϕ + Eh

is such that there exist mesh-independent nonnegative numbers
C and α, with 1 ≤ α ≤ 2, such that

| Eh(x) | ≤ C hα in I.

Then we have what follows:

‖ ϕ− ϕ?h ‖L2(I)≤ C hα. (102)

Moreover, if 1 < α ≤ 2 then

‖ ϕ − ϕ?h ‖H1
0 (I)≤ C hα−1. (103)

Abbreviations
CFV Conventional Finite Volume(s)
RHS Right-Hand Side
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