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Abstract 

In this work, we developed a numerical integrator using the Gompertz function model approach with the basic parameters as 

highlighted by Gompertz in finding and measure the growth in human cells as a basis function involving exponential, 

logarithmic, and polynomial, hence implemented the numerical integrator to solve problems arising in microbial growth staging. 

Microbial growth, synonymous to mildew or mold, which is a fungi family commonly found both indoors and outdoors. The 

indoors occur especially when there is humidity, moisture, oxygen, organic matters and low sunlight. Microbial growth which is 

the increase in the number of microbial cells which can also be in term of bacterial growth. It can be influenced by various factors 

to grow including temperature, Water, availability of oxygen, and other nutrient content. The growth staging can be in four 

phases such as lag, logarithmic, stationary and death phases. A culture of bacterial was taken, the approximate number of strand 

that was originally present and the growth were calculated using the numerical integration, the results obtained shows a 

significant, effective and robust improvement on the strand when compared the results with the exact solution. The properties of 

the integrator were analyzed, considering that Microbial Growth is an increase in the number of bacteria cells in a system when 

the proper nutrients and environment are provided. Therefore with the approach of Gompertz, the numerical integrator can be 

applied further to find the growth in each of the phases as they occurs. 
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1. Introduction 

1.1. Microbial Growth 

A microbial culture is a method of multiply microbial or-

ganism by letting them reproduce in predetermined culture 

medium under controlled conditions. Bacteria Culture’s 

growth measuring rate can inform Scientists of their Physio-

logical and Metabolic functions, which is also useful in ob-

taining an accurate cell number of the Bacteria for down-

stream applications. [7] 

Microbial Growth also refer to as Bacteria Growth has been 
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studying extensively. It is a common phenomena that Bacteria 

cells produces asexually. It’s engage in a process called binary 

fission which is single cells splits into two equally sized cells. 

It has been determined in the laboratory that if provided with 

the right conditions, can grow very rapidly depending on the 

situation. Bacteria can grow in a predictable pattern resulting 

in a growth curve of 4 phases, the lag phase, the exponential 

phase or log phase, the stationary phase and the death phase. 

While growth for multicellular organisms is typically 

measured in terms of the increase in size of a single organism, 

Microbial or Bacteria growth is measured by the increase in 

population, either by measuring the increase in cell number or 

the increase in overall mass. [9, 14, 15] 

1.2. Gompertz Function 

According to Laird (1960), [4] A Gompertz Function, is a 

sigmoid function. It is a type of mathematical model for a time 

series, where growth is slowest at the beginning and end at a 

time period. The future value asymptote of the function is 

approach much more gradually by thr curve. In contrast to the 

simple Logistic function in which both asymptote are ap-

proach by the curve symmetrically. 

The general formular for a Gompertz function is 

𝑦(𝑡)  = 𝑎𝑒;𝑏𝑒−𝑐𝑡
             (1) 

Where a is an asymptote, since 𝑎𝑒𝑏𝑒−∞
= 𝑎𝑒0 = 𝑎 

b, c are positive numbers 

b sets the displacement along the x axis 

c sets the growth rate (y scalling) 

e is Euler’s number 𝑒 = 2.71828 

The Growth equation proposed which form the basic 

equation applied in this research is: 

𝑑𝐵𝑁

𝑑𝑡
= 𝑟𝐵𝑁𝑙𝑛 (

𝐾

𝐵𝑁
)            (2) 

where 

𝐵𝑁 = 𝐵𝑁(𝑡) is the population of Bacteria cells. 

𝑟 is the constant intrinsic growth of cells, with 𝑟 > 0 

𝐾 is the carrying capacity of the growth, that is, the max-

imum size that it can achieve with the available nutrients. 

Based on the findings, Gompertz generated the following 

facts that the carrying capacity, 𝐾, of a Tumour like Bacteria 

be intimately related with quantity of growth cells, 𝐵𝑁(𝑡) and 

the value assigned is  1013 cells, the rate  𝑟 = 0.0060 , 

and 𝑁(0) = 109 where these values was used for Gompertz 

equation. [4] 

Consider Bacteria which reproduce asexually. Its most 

commonly engage in a process known as binary fission, where 

a single cell splits into two equally sized cells. It’s however 

experimented and deduce that the entire process or cycle can 

take as little as 20 Minutes for an active culture. [12] 

1.3. Growth of Bacteria Cells 

Laird for the first time successfully used the Gompertz 

curve to fit data of growth, growth in a cellular populations 

growing in a confined space where the availability of nutrients 

is limited. Therefore, this growth can be likened with that of 

Bacteria growth. [3, 10, 11] 

Denoting the Bacteria cell size as 𝐵𝑁(𝑡) it is useful to write 

the Gompertz Curve as follows: 

𝐵𝑁(𝑡) = 𝐾𝑒𝑥𝑝(𝑙𝑜𝑔 (
𝐵𝑁(0)

𝐾
) exp (−𝛼𝑡))                  (3) 

where: 

𝐵𝑁(0) is the Bacteria cells size at the starting observation 

time; 

K is the carrying capacity, i.e. the maximum size that can be 

reached with the available nutrients. In fact it is: 

lim𝑡<:∞ 𝐵𝑁(𝑡) = 𝐾              (4) 

independently on 𝐵𝑁(0) > 0. Note that, in absence of thera-

pies, usually it is 𝐵𝑁(0) < 𝐾, whereas, in presence of thera-

pies, it may be 𝐵𝑁(0) > 𝐾; 

α is a constant related to the proliferative ability of the cells. 

Log () refers to the natural log. 

It is easy to verify that the dynamics of 𝐵𝑁(𝑡) is governed 

by the Gompertz differential equation: 

𝐵𝑁′(𝑡) = 𝛼𝑙𝑜𝑔 (
𝐾

𝐵𝑁(𝑡)
) 𝐵𝑁(𝑡)            (5) 

i.e. is of the form: 

𝐵𝑁′(𝑡) = 𝐹(𝐵𝑁(𝑡))𝐵𝑁(𝑡), 𝐹′(𝐵𝑁) ≤ 0        (6) 

where  𝐹(𝐵𝑁) is the instantaneous proliferation rate of the 

cellular population, whose decreasing nature is due to the 

competition for the nutrients due to the increase of the cellular 

population, similarly to the logistic growth rate. However, 

there is a fundamental difference: in the logistic case the pro-

liferation rate for small cellular population is finite: 

𝐹(𝐵𝑁) = 𝛼 (1 − (
(𝐵𝑁)

𝐾
)

𝑣

) ⇒ 𝐹(0) = 𝛼 < +∞     (7) 

where as in the Gompertz case the proliferation rate is un-

bounded: 

2. Derivatives of the Equation 

2.1. Representation of Interpolating Function 

Let us assume that the theoretical solution 𝑦(𝑥) to the ini-

tial value problem 
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𝑤′ = 𝑓(𝑥, 𝑤),       𝑤(𝑥𝑜) = 𝑤𝑜           (8) 

can be locally represented in the interval [𝑥𝑛, 𝑥𝑛:1 ], 𝑛 ≥ 0. 

Considering eq (1) and (3) as bases, we developed the 

non-polynomial interpolating function with transcendental 

function; 

𝐹(𝑥,𝑤)

𝐾
= 𝛼1𝑒𝛽𝑥 + 𝛼2𝐵𝑥 + 𝛼3𝑐𝑜𝑠𝑥         (9) 

where  𝛼1, 𝛼2, 𝛼3 are real undetermined coeffi-

cients, 𝛽 𝑎𝑛𝑑 𝐵 are the shape and scale parameters, K repre-

sent the saturation level using Gompertz approach. The in-

tervals defined are 𝑥 ∈ [0,1] and 𝑘 ∈ (0,1]. [8, 13] 

Let’s shall assume  𝑤𝑛 is a numerical estimate to the the-

oretical solution  𝑦(𝑥) and  𝑓𝑛 = 𝑓(𝑥𝑛 , 𝑤𝑛), and define mesh 

points as follows 

𝑥𝑛 = 𝑎 + 𝑛𝑕, 𝑛 = 0, 1, 2, …          (10) 

then, impose the following constraints on the interpolating 

function (10) in order to get the undetermined coefficients, [2, 

5, 6] 

Hence we required that 

𝐹(𝑥𝑛 , 𝑤𝑛) = 𝐾(𝛼1𝑒𝛽𝑥𝑛 + 𝛼2𝐵𝑥𝑛 + 𝛼3𝑐𝑜𝑠𝑥𝑛)  

and 

𝐹(𝑥𝑛:1,  𝑤𝑛:1) = 𝐾(𝛼1𝑒𝛽𝑥𝑛+1 + 𝛼2𝐵𝑥𝑛+1 + 𝛼3𝑐𝑜𝑠𝑥𝑛:1) (11) 

2.2. Derivatives of the Ordinary Differential 

Equation 

The derivatives of the interpolating function (9) are re-

quired to coincide with the differential equation as well as its 

first, second, and third derivatives with respect to 𝑥 𝑎𝑡 𝑥 =

𝑥𝑛 𝑎𝑛𝑑 𝑥 = 𝑥𝑛:1 

We denote the i-th total derivatives of 𝑓(𝑥, 𝑤) with respect 

to 𝑥 with 𝑓(𝑖) such that 

𝐹1(𝑥𝑛) = 𝑓𝑛, 𝐹2(𝑥𝑛) = 𝑓𝑛
1, 𝐹3(𝑥𝑛) = 𝑓𝑛

2,      (12) 

This implies that, 

𝑓𝑛 = 𝑘𝛼1𝛽𝑒𝛽𝑥𝑛 + 𝑘𝛼2𝐵𝑥𝑛 𝑙𝑜𝑔 𝐵 − 𝑘𝛼3𝑠𝑖𝑛𝑥𝑛   (13) 

𝑓𝑛
1 = 𝑘𝛼1𝛽2𝑒𝛽𝑥𝑛 + 𝑘𝛼2𝐵𝑥𝑛(𝑙𝑜𝑔 𝐵)2 − 𝑘𝛼3𝑐𝑜𝑠𝑥𝑛  (14) 

𝑓𝑛
2 = 𝑘𝛼1𝛽3𝑒𝛽𝑥𝑛 + 𝑘𝛼2𝐵𝑥𝑛(𝑙𝑜𝑔 𝐵)3 + 𝑘𝛼3𝑠𝑖𝑛𝑥𝑛   (15) 

Solving for 𝛼1, 𝛼2, 𝑎𝑛𝑑 𝛼3, from (13) to (15) these form a 

system of linear equation which can be solved using Cramer’s 

rule and Marple software. 

(

𝐾𝛽𝑒𝛽𝑥𝑛 𝐾𝐵𝑥𝑛𝑙𝑜𝑔𝐵 −𝐾𝑠𝑖𝑛𝑥𝑛

𝐾𝛽2𝑒𝛽𝑥𝑛 𝐾𝐵𝑥𝑛(𝑙𝑜𝑔𝐵)2 −𝐾𝑐𝑜𝑠𝑥𝑛

𝐾𝛽3𝑒𝛽𝑥𝑛 𝐾𝐵𝑥𝑛(𝑙𝑜𝑔𝐵)3 𝐾𝑠𝑖𝑛𝑥𝑛

) (

𝛼1

𝛼2

𝛼3

) = (

𝑓𝑛

𝑓𝑛
1

𝑓𝑛
2

) (16) 

When taking (16) as a system of equations, according to 

[8], 𝐴𝑋 = 𝐵, it gives 

𝛼1 =

𝑓𝑛(𝑙𝑜𝑔 𝐵)2𝑠𝑖𝑛𝑥𝑛:(𝑙𝑜𝑔 𝐵)3𝑐𝑜𝑠𝑥𝑛;(𝑙𝑜𝑔𝐵)(𝑓𝑛
1𝑠𝑖𝑛𝑥𝑛:𝑓𝑛

2𝑐𝑜𝑠𝑥𝑛)

;𝑠𝑖𝑛𝑥𝑛(𝑓𝑛
1(𝑙𝑜𝑔𝐵)3;𝑓𝑛

2(𝑙𝑜𝑔𝐵)2)

𝐾𝛽𝑒𝛽𝑥𝑛((𝑙𝑜𝑔𝐵)2𝑠𝑖𝑛𝑥𝑛:(𝑙𝑜𝑔𝐵)3𝑐𝑜𝑠𝑥𝑛);𝐾𝑙𝑜𝑔𝐵𝑒𝛽𝑥𝑛(𝛽2𝑠𝑖𝑛𝑥𝑛:𝛽3𝑐𝑜𝑠𝑥𝑛)

;𝐾𝑠𝑖𝑛𝑥𝑛𝑒𝛽𝑥𝑛(𝛽2(𝑙𝑜𝑔𝐵)3;𝛽3(𝑙𝑜𝑔𝐵)2))

                       (17) 

𝛼2 =
𝛽(𝑓𝑛

1𝑠𝑖𝑛𝑥𝑛:𝑓𝑛
2𝑐𝑜𝑠𝑥𝑛);𝑓𝑛(𝛽2𝑠𝑖𝑛𝑥𝑛:𝛽3𝑐𝑜𝑠𝑥𝑛);𝑠𝑖𝑛𝑥𝑛(𝛽2𝑓𝑛

2;𝛽3𝑓𝑛
1)

𝐾𝛽𝐵𝑥𝑛((𝑙𝑜𝑔𝐵)2𝑠𝑖𝑛𝑥𝑛:(𝑙𝑜𝑔𝐵)3𝑐𝑜𝑠𝑥𝑛);𝐾𝐵𝑥𝑛 𝑙𝑜𝑔𝐵(𝛽2𝑠𝑖𝑛𝑥𝑛:𝛽3𝑐𝑜𝑠𝑥𝑛)

;𝐾𝐵𝑥𝑛𝑠𝑖𝑛𝑥𝑛 (𝛽2(𝑙𝑜𝑔𝐵)3;𝛽3(𝑙𝑜𝑔𝐵)2))

                        (18) 

𝛼3 =
𝛽(𝑙𝑜𝑔𝐵2𝑓𝑛

2;𝑙𝑜𝑔𝐵3𝑓𝑛
1);𝑙𝑜𝑔𝐵 (𝛽2𝑓𝑛

2;𝛽3𝑓𝑛
1):𝑓𝑛 (𝛽2𝑙𝑜𝑔𝐵3;𝛽3𝑙𝑜𝑔𝐵2)

𝐾𝛽𝐵𝑥𝑛((𝑙𝑜𝑔𝐵)2𝑠𝑖𝑛𝑥𝑛:(𝑙𝑜𝑔𝐵)3𝑐𝑜𝑠𝑥𝑛);𝐾𝐵𝑥𝑛 𝑙𝑜𝑔𝐵(𝛽2𝑠𝑖𝑛𝑥𝑛:𝛽3𝑐𝑜𝑠𝑥𝑛)

;𝐾𝐵𝑥𝑛𝑠𝑖𝑛𝑥𝑛 (𝛽2(𝑙𝑜𝑔𝐵)3;𝛽3(𝑙𝑜𝑔𝐵)2))

                         (19) 

3. Formation of Numerical Integration 

Since 𝐹(𝑥𝑛:1) = 𝑤(𝑥𝑛:1) and 𝐹(𝑥𝑛) = 𝑤(𝑥𝑛) 

Implies that  𝑤(𝑥𝑛:1) = 𝑤𝑛:1 and 𝑤(𝑥𝑛) = 𝑤𝑛                           (20) 

𝐹(𝑥𝑛:1) − 𝐹(𝑥𝑛) = 𝑤𝑛:1 − 𝑤𝑛  

Therefore, from (20) 

𝑤𝑛:1 − 𝑤𝑛 = 𝐾(𝛼1𝑒𝛽𝑥𝑛+1 + 𝛼2𝐵𝑥𝑛+1 + 𝛼3𝑐𝑜𝑠𝑥𝑛:1)  − 𝐾(𝛼1𝑒𝛽𝑥𝑛 + 𝛼2𝐵𝑥𝑛 + 𝛼3𝑐𝑜𝑠𝑥𝑛)            (21) 

= 𝐾𝛼1[𝑒𝛽𝑥𝑛+1 − 𝑒𝛽𝑥𝑛] − 𝐾𝛼2[𝐵𝑥𝑛+1 − 𝐵𝑥𝑛] + 𝐾𝛼3[𝑐𝑜𝑠𝑥𝑛:1 − 𝑐𝑜𝑠𝑥𝑛]                    (22) 
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Recall [1], that 𝑥𝑛 = 𝑎 + 𝑛𝑕, 𝑥𝑛:1 = 𝑎 + (𝑛 + 1)𝑕 with 𝑛 = 0,1,2 …                   (23) 

by expansion 

𝑤𝑛:1 − 𝑤𝑛 = 𝐾𝛼1𝑒𝛽𝑥𝑛(𝑒𝛽𝑕 − 1) − 𝐾𝛼2𝐵𝑥𝑛(𝐵𝑕 − 1) + 𝐾𝛼3𝑐𝑜𝑠(𝑥𝑛 + 𝑕) − 𝑐𝑜𝑠𝑥𝑛              (24) 

Substituting for 𝛼1, 𝛼2, and 𝛼3 in (24), we have 

𝑤𝑛:1 = 𝑤𝑛 + 𝑃 + 𝑄 + 𝑅                                      (25) 

where 

𝑃 =
(𝑒𝛽ℎ;1)[(𝑓𝑛(𝑙𝑜𝑔 𝐵)2;𝑓𝑛

1𝑙𝑜𝑔𝐵;𝑓𝑛
1(𝑙𝑜𝑔𝐵)3:𝑓𝑛

2(𝑙𝑜𝑔𝐵)2)𝑠𝑖𝑛𝑥𝑛:(𝑓𝑛(𝑙𝑜𝑔𝐵)3;𝑓𝑛
2𝑙𝑜𝑔𝐵)𝑐𝑜𝑠𝑥𝑛]

(𝛽(𝑙𝑜𝑔𝐵)2;𝛽2𝑙𝑜𝑔𝐵;𝛽2(𝑙𝑜𝑔𝐵)3:𝛽3(𝑙𝑜𝑔𝐵)2)𝑠𝑖𝑛𝑥𝑛:(𝛽(𝑙𝑜𝑔𝐵)3;𝛽3𝑙𝑜𝑔𝐵)𝑐𝑜𝑠𝑥𝑛
   

𝑄 =
(𝐵ℎ;1)[(𝛽𝑓𝑛

1;𝛽2𝑓𝑛;𝛽2𝑓𝑛
2:𝛽3𝑓𝑛

1)𝑠𝑖𝑛𝑥𝑛:(𝛽𝑓𝑛
2;𝛽3𝑓𝑛)𝑐𝑜𝑠𝑥𝑛]

(𝛽(𝑙𝑜𝑔𝐵)2;𝛽2𝑙𝑜𝑔𝐵;𝛽2(𝑙𝑜𝑔𝐵)3:𝛽3(𝑙𝑜𝑔𝐵)2)𝑠𝑖𝑛𝑥𝑛:(𝛽(𝑙𝑜𝑔𝐵)3;𝛽3𝑙𝑜𝑔𝐵)𝑐𝑜𝑠𝑥𝑛
   

𝑅 =
[𝑐𝑜𝑠(𝑥𝑛:𝑕);𝑐𝑜𝑠𝑥𝑛][𝛽𝑓𝑛

2𝑙𝑜𝑔𝐵2;𝛽2𝑓𝑛
2𝑙𝑜𝑔𝐵;𝛽2𝑓𝑛𝑙𝑜𝑔𝐵3;𝛽𝑓𝑛

1𝑙𝑜𝑔𝐵3:𝛽3𝑓𝑛
1𝑙𝑜𝑔𝐵 :𝛽3𝑓𝑛 𝑙𝑜𝑔𝐵2]

(𝛽(𝑙𝑜𝑔𝐵)2;𝛽2𝑙𝑜𝑔𝐵;𝛽2(𝑙𝑜𝑔𝐵)3:𝛽3(𝑙𝑜𝑔𝐵)2)𝑠𝑖𝑛𝑥𝑛:(𝛽(𝑙𝑜𝑔𝐵)3;𝛽3𝑙𝑜𝑔𝐵)𝑐𝑜𝑠𝑥𝑛
   

Equation (25) is the new numerical integration for solution 

of the first order differential equation. 

4. Implementation of the Integration (25) 

to Solve Microbial Growth Problem 

Problem 1: A Bacteria Culture is taken and known to grow at a 

rate proportional to the amount present. After one hour, 1000 

strands of the bacteria are observed in the culture, and after 

three hours, 2100 strands were observed. Find (i) 

An expression for the approximate number of strands of 

the bacteria present in the culture at any time 𝑥 

(ii) The approximate number of strands of the bacteria 

originally in the culture. [1] 

MATHEMATICAL INTERPRETATION OF THE PROB-

LEM: 

Let  𝐵𝑁(𝑥) denote the number of bacteria strands in the 

culture at time (𝑥). 

Hence, using the general model 

𝑑𝐵𝑁

𝑑𝑡
− 𝐾𝐵𝑁 = 0              (26) 

which is both linear and separable. 

Therefore when solved, 𝐵𝑁(𝑥) = 𝐶𝑒𝑘𝑥 

At  𝑥 = 1, 𝐵𝑁 = 1000, 𝑕𝑒𝑛𝑐𝑒 1000 = 𝐶𝑒𝑘𝑖. 𝑒 𝐵𝑁(1) =

1000 

At  𝑥 = 3, 𝐵𝑁 = 2100, 𝑕𝑒𝑛𝑐𝑒 2100 = 𝐶𝑒3𝑘𝑖. 𝑒 𝐵𝑁(3) =

2100 

Solving the two, 

𝐾 = 0.371 𝑎𝑛𝑑 𝐶 = 690  

Hence, 

𝐵𝑁(𝑥) = 690𝑒0.371𝑥, is an expression for the amount of 

bacteria present at any time 𝑥, this can be seen in the table 

below: 

Table 1. The approximated value of strands at time 𝑥 = 1 (hour), 𝐵𝑁 = 1000. 

XN EXACT VALUE NUMERICAL VALUE ABSOLUTE ERROR 

[0.00] [6.900000000000000e+02] [6.900000000000000e+02] [0.000000000000000] 

[0.10] [7.160778840233803e+02] [7.160797887769264e+02] [0.001904753546114] 

[0.20] [7.431416518597050e+02] [7.431453099924750e+02] [0.003658132769942] 

[0.30] [7.712285674083900e+02] [7.712338211738768e+02] [0.005253765486827] 

[0.40] [8.003772966540263e+02] [8.003839880634949e+02] [0.006691409468658] 

[0.50] [8.306279623334798e+02] [8.306359378448428e+02] [0.007975511363043] 

[0.60] [8.620222005488230e+02] [8.620313143803757e+02] [0.009113831552668] 
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XN EXACT VALUE NUMERICAL VALUE ABSOLUTE ERROR 

[0.70] [8.946032192663178e+02] [8.946133355370953e+02] [0.010116270777530] 

[0.80] [9.284158587292990e+02] [9.284268526788766e+02] [0.010993949577596] 

[0.90] [9.635066538705012e+02] [9.635184124074153e+02] [0.011758536914158] 

[1.00] [9.999238988403082e+02] [9.999363206367847e+02] [0.012421796476474] 

 
Figure 1. The Bar graph analysis of Exact and Numerical Solutions of time (1hour) and 1000 Strands. 

Table 2. The approximated value of strands at time 𝑥 = 3 (hour), 𝐵𝑁 = 2100. 

XN EXACT VALUE NUMERICAL VALUE ABSOLUTE ERROR 

[1.00] [9.999238988403082e+02] [9.999363206367847e+02] [0.012421796476474] 

[1.10] [1.037717713779482e+03] [1.037730709089806e+03] [0.012995310323049] 

[1.20] [1.076940113965789e+03] [1.076953604307765e+03] [0.013490341976649] 

[1.30] [1.117645081458867e+03] [1.117658999268484e+03] [0.013917809617396] 

[1.40] [1.159888639359365e+03] [1.159902927711315e+03] [0.014288351950654] 

[1.50] [1.203728928786705e+03] [1.203743541271387e+03] [0.014612484682402] 

[1.60] [1.249226288661646e+03] [1.249241189529282e+03] [0.014900867635333] 

[1.70] [1.296443338345589e+03] [1.296458503086325e+03] [0.015164740735827] 

[1.80] [1.345445063113798e+03] [1.345460479779864e+03] [0.015416666066358] 

[1.90] [1.396298902254159e+03] [1.396314574157198e+03] [0.015671903039674] 

[2.00] [1.449074839057345e+03] [1.449090790331349e+03] [0.015951274004237] 

[2.10] [1.503845490193300e+03] [1.503861778346467e+03] [0.016288153166215] 

[2.20] [1.560686184267167e+03] [1.560702934185552e+03] [0.016749918384903] 

[2.30] [1.619674967396317e+03] [1.619692503558144e+03] [0.017536161826911] 

[2.40] [1.680891364439784e+03] [1.680911689610851e+03] [0.020325171067043] 

[2.50] [1.744426237563714e+03] [1.744444764708992e+03] [0.018527145278085] 
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XN EXACT VALUE NUMERICAL VALUE ABSOLUTE ERROR 

[2.60] [1.810361320250889e+03] [1.810379186443232e+03] [0.017866192343490] 

[2.70] [1.878788232127490e+03] [1.878805718020890e+03] [0.017485893399225] 

[2.80] [1.949801305920745e+03] [1.949818553207653e+03] [0.017247286907832] 

[2.90] [2.023498339839777e+03] [2.023515445991693e+03] [0.017106151916323] 

[3.00] [2.099980799476793e+03] [2.099997845148666e+03] [0.017045671873348] 

 
Figure 2. The Bar graph analysis of Exact and Numerical Solutions of time (3hour) and 2100 Strands. 

b. We require 𝐵𝑁(𝑥) 𝑎𝑡 𝑥 = 0. 

Substituting 𝑥 = 0 into 𝐵𝑁(𝑥) = 690𝑒0.371𝑥 = 690. 

This can be seen in Table 1 above where 𝑥 = 0, 𝐵𝑁(0) =

690. 

Problem 2: After two and half hour, Bacteria Count is taken 

and known to grow at a rate proportional to the amount pre-

sent. 1500 strands of the bacteria are observed in the culture, 

and after five and half hours, 3500 strands were observed. 

Find 

An expression for the approximate number of strands of the 

bacteria present in the culture at any time 𝑥. 

The approximate number of strands of the bacteria origi-

nally in the culture. 

MATHEMATICAL INTERPRETATION: 

Let  𝐵𝑁(𝑥) denote the number of bacteria strands in the 

culture at time (𝑥). 

Hence, consider 

𝑑𝐵𝑁

𝑑𝑡
− 𝐾𝐵𝑁 = 0  

which is both linear and separable 

At  𝑥 = 2.5, 𝐵𝑁 = 1500, 𝑕𝑒𝑛𝑐𝑒 1500 =

𝐶𝑒2.5𝑘𝑖. 𝑒 𝐵𝑁(2.5) = 1500 

At  𝑥 = 5.5, 𝐵𝑁 = 3500, 𝑕𝑒𝑛𝑐𝑒 3500 =

𝐶𝑒5.5𝑘𝑖. 𝑒 𝐵𝑁(5.5) = 3500 

Solving the two, 

𝐾 = 1 3⁄ 𝑙𝑛(7/3) = 0.2824 𝑎𝑛𝑑 𝐶 = 740  

Hence, 

(a (i))  𝐵𝑁(𝑥) = 740𝑒0.2824𝑥 , is an expression for the 

amount of bacteria present at any time t, this can be seen in 

the table below: 

Table 3. The approximated value of strands at time 𝑥 = 2.5 (hour), 𝐵𝑁 = 1500. 

XN NUMERICAL VALUE EXACT VALUE ABSOLUTE ERROR 

[0.00] [7.400000000000000e+02] [7.400000000000000e+02] [0.000000000000000] 

[0.10] [7.611940193364643e+02] [7.611954714643300e+02] [0.001452127865718] 
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XN NUMERICAL VALUE EXACT VALUE ABSOLUTE ERROR 

[0.20] [7.829952571355008e+02] [7.829980348348699e+02] [0.002777699369176] 

[0.30] [8.054211076484687e+02] [8.054250787591524e+02] [0.003971110683665] 

[0.40] [8.284894584619219e+02] [8.284944899395517e+02] [0.005031477629814] 

[0.50] [8.522187059356297e+02] [8.522246673988334e+02] [0.005961463203676] 

[0.60] [8.766277709962579e+02] [8.766345371543065e+02] [0.006766158048549] 

[0.70] [9.017361151942914e+02] [9.017435673122800e+02] [0.007452117988578] 

[0.80] [9.275637569999386e+02] [9.275717835948619e+02] [0.008026594923308] 

[0.90] [9.541312883582614e+02] [9.541397853114870e+02] [0.008496953225631] 

[1.00] [9.814598915475674e+02] [9.814687617879083e+02] [0.008870240340912] 

[1.10] [1.009571356394995e+03] [1.009580509265756e+03] [0.009152870760431] 

[1.20] [1.038488097906053e+03] [1.038497448286142e+03] [0.009350380089018] 

[1.30] [1.068233174366297e+03] [1.068242641571181e+03] [0.009467204883777] 

[1.40] [1.098830305978242e+03] [1.098839812417671e+03] [0.009506439429060] 

[1.50] [1.130303894110867e+03] [1.130313363617628e+03] [0.009469506761207] 

[1.60] [1.162679041272865e+03] [1.162688396920748e+03] [0.009355647882330] 

[1.70] [1.195981571996938e+03] [1.195990733054317e+03] [0.009161057378833] 

[1.80] [1.230238054998969e+03] [1.230246932316555e+03] [0.008877317586212] 

[1.90] [1.265475827418515e+03] [1.265484315759792e+03] [0.008488341277143] 

[2.00] [1.301723023199130e+03] [1.301730986980392e+03] [0.007963781261424] 

[2.10] [1.339008611873735e+03] [1.339015854532793e+03] [0.007242659057738] 

[2.20] [1.377362472291458e+03] [1.377368654985544e+03] [0.006182694086192] 

[2.30] [1.416815649015988e+03] [1.416819976637718e+03] [0.004327621729999] 

[2.40] [1.457403569206754e+03] [1.457401283914634e+03] [0.002285292120177] 

[2.50] [1.499142956754331e+03] [1.499144942462323e+03] [0.001985707992390] 

[2.60] [1.542080660279232e+03] [1.542084244960776e+03] [0.003584681543998] 

 
Figure 3. The Bar graph analysis of Exact and Numerical Solutions of time (2.5hour) and 1500 Strands. 
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a (ii) The approximate number of strands, expression for the amount of bacteria present at time 𝑥 = 5.5 (hour), 𝐵𝑁  = 3500. 

Table 4. The approximated value of strands at time 𝑥 = 5.5 (hour), 𝐵𝑁 = 3500. 

XN NUMERICAL VALUE EXACT VALUE ABSOLUTE ERROR 

[2.50] [1.499142956754331e+03] [1.499144942462323e+03] [0.001985707992390] 

[2.60] [1.542080660279232e+03] [1.542084244960776e+03] [0.003584681543998] 

[2.70] [1.586248878558372e+03] [1.586253437676532e+03] [0.004559118159932] 

[2.80] [1.631682492046569e+03] [1.631687747775814e+03] [0.005255729244254] 

[2.90] [1.678417614250424e+03] [1.678423411419974e+03] [0.005797169550533] 

[3.00] [1.726491460768530e+03] [1.726497702665671e+03] [0.006241897141308] 

[3.10] [1.775942340117185e+03] [1.775948963192809e+03] [0.006623075623565] 

[3.20] [1.826809670957244e+03] [1.826816632883971e+03] [0.006961926727172] 

[3.30] [1.879134007933489e+03] [1.879141281279721e+03] [0.007273346232523] 

[3.40] [1.932957071317150e+03] [1.932964639934869e+03] [0.007568617719244] 

[3.50] [1.988321778832438e+03] [1.988329635701488e+03] [0.007856869050784] 

[3.60] [2.045272279039605e+03] [2.045280424965263e+03] [0.008145925657345] 

[3.70] [2.103853986009496e+03] [2.103862428862431e+03] [0.008442852934422] 

[3.80] [2.164113615173862e+03] [2.164122369505444e+03] [0.008754331581258] 

[3.90] [2.226099220303008e+03] [2.226108307246215e+03] [0.009086943206967] 

[4.00] [2.289860231594508e+03] [2.289869679006682e+03] [0.009447412173813] 

[4.10] [2.355447494872385e+03] [2.355457337707251e+03] [0.009842834866049] 

[4.20] [2.422913311902861e+03] [2.422923592824576e+03] [0.010280921714639] 

[4.30] [2.492311481833677e+03] [2.492322252111015e+03] [0.010770277337997] 

[4.40] [2.563697343759523e+03] [2.563708664509035e+03] [0.011320749511924] 

[4.50] [2.637127820405147e+03] [2.637139764294787e+03] [0.011943889640406] 

[4.60] [2.712661462896397e+03] [2.712674116486085e+03] [0.012653589688398] 

[4.70] [2.790358496550046e+03] [2.790371963550961e+03] [0.013467000914716] 

[4.80] [2.870280867539193e+03] [2.870295273454084e+03] [0.014405914890631] 

[4.90] [2.952492290146399e+03] [2.952507789079351e+03] [0.015498932951232] 

[5.00] [3.037058294018004e+03] [3.037075079068058e+03] [0.016785050053841] 

[5.10] [3.124046270169809e+03] [3.124064590113213e+03] [0.018319943404094] 

[5.20] [3.213525512879304e+03] [3.213545700751685e+03] [0.020187872380575] 

[5.30] [3.305567250164846e+03] [3.305589776697094e+03] [0.022526532247866] 

[5.40] [3.400244641220348e+03] [3.400270227757587e+03] [0.025586537239178] 

[5.50] [3.497632660495767e+03] [3.497662566383866e+03] [0.029905888099620] 

[5.60] [3.597807433386859e+03] [3.597844467894197e+03] [0.037034507338376] 

[5.70] [3.700839388350303e+03] [3.700895832424399e+03] [0.056444074095907] 

[5.80] [3.806869796429933e+03] [3.806898848652250e+03] [0.029052222316750] 

[5.90] [3.915916951661997e+03] [3.915938059347115e+03] [0.021107685117386] 
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XN NUMERICAL VALUE EXACT VALUE ABSOLUTE ERROR 

[6.00] [4.028083883464806e+03] [4.028100428797081e+03] [0.016545332275200] 

 
Figure 4. The Bar graph analysis of Exact and Numerical Solutions of time (5.5hour) and 3500 Strands. 

b. The approximate number of strands of the bacteria originally in the culture 

We require 𝐵𝑁(𝑥) 𝑎𝑡 𝑥 = 0. 

Substituting 𝑥 = 0 into 𝐵𝑁(𝑥) = 740𝑒0.2824𝑥 

where 𝑥 = 0, 𝐵𝑁(0) = 740. 

Table 5. The approximated value of strands at time 𝑥 = 0 (hour), 𝐵𝑁 = 740. 

XN NUMERICAL VALUE EXACT VALUE ABSOLUTE ERROR 

[0.00] [7.400000000000000e+02] [7.400000000000000e+02] [0.000000000000000] 

[0.10] [7.611940193364643e+02] [7.611954714643300e+02] [0.001452127865718] 

[0.20] [7.829952571355008e+02] [7.829980348348699e+02] [0.002777699369176] 

[0.30] [8.054211076484687e+02] [8.054250787591524e+02] [0.003971110683665] 

[0.40] [8.284894584619219e+02] [8.284944899395517e+02] [0.005031477629814] 

[0.50] [8.522187059356297e+02] [8.522246673988334e+02] [0.005961463203676] 

[0.60] [8.766277709962579e+02] [8.766345371543065e+02] [0.006766158048549] 

[0.70] [9.017361151942914e+02] [9.017435673122800e+02] [0.007452117988578] 

[0.80] [9.275637569999386e+02] [9.275717835948619e+02] [0.008026594923308] 

[0.90] [9.541312883582614e+02] [9.541397853114870e+02] [0.008496953225631] 

[1.00] [9.814598915475674e+02] [9.814687617879083e+02] [0.008870240340912] 
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Figure 5. The Bar graph analysis of Exact and Numerical Solutions of time (0.0 hour) and 740 Strands. 

5. Discussion 

It is of note that Numerical methods are to give approxi-

mated values, hence the efficiency of the method is shown in 

the tables such that the approximated values of the bacteria in 

the colony at the given period is approximated equal to the 

exact values. 

The figures in Table 1, indicates the approximated value of 

strands 𝐵𝑁  = 1000, at time 𝑥 = 1 (hour). However, from the 

table, the approximated value of strands at 1 hour time 

is 999.99 ≈  1000. 

The figures in Table 2 is the approximated value of 

strands 𝐵𝑁  = 2100 at time 𝑥 = 3 (hour), Which from the table 

the values gotten is 2099.981 ≈ 2100. 

The figures in Table 3 is the approximated value of 

strands 𝐵𝑁  = 1500 at time 𝑥 = 2.5 (hour). The last figure in the 

table showed 1499.95 ≈ 1500. 

Similarly, the figures in Table 4 gives the approximated 

value of strands 𝐵𝑁  = 3500 at time 𝑥 = 5.5 (hour). From the 

last figure of time 𝑥 = 5.5 hour, the approximated value ob-

tained is 3497.63 ≈ 3500. 

6. Conclusion 

Looking at the figures in the tables, clearly it showed the 

level of convergency which could be observed from the nu-

merical solution as it tends to the exact solution indicated in 

the bar graphs at any point in time, hence we have a robust 

numerical method which could favourably performed effec-

tively. The errors obtained are significantly tends to zero 

which shows the zero stability of the method. The method can 

still be applied further to solve bacteria growth problem as 

identified by many scholars solving analytically. Therefore, 

numerical integration for solving microbial growth problem 

using gompertz function approach was developed and im-

plemented. 

Abbreviations 

𝐵𝑁 = 𝐵𝑁(𝑡)  The Population of Bacteria Cells 

𝑟  The Constant Intrinsic Growth of Cells, 

with 𝑟 > 0 

𝐾  The Carrying Capacity of the Growth, That 

is, the Maximum Size That It Can Achieve 

with the Available Nutrients 
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