

International Journal of Transportation Engineering and Technology
2015; 1(1): 10-14
http://www.sciencepublishinggroup.com j/ijtet
doi: 10.11648/j.ijtet.20150101.12

Applying Multithreading for Multi-Rotors with FlyMaple

Nguyen Anh Quang, Ngo Khanh Hieu

Faculty of Transportation Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Viet Nam

Email address:
anh-quang.nguyen.1@ens.etsmtl.ca (N. A. Quang), ngokhanhhieu@hcmut.edu.vn (N. K. Hieu)

To cite this article:
Nguyen Anh Quang, Ngo Khanh Hieu. Applying Multithreading for Multi-Rotors with FlyMaple. International Journal of Transportation

Engineering and Technology. Vol. 1, No. 1, 2015, pp. 10-14. doi: 10.11648/j.ijtet.20150101.12

Received: January 29, 2016; Accepted: February 13, 2016; Published: March 11, 2016

Abstract: With the development of science and technology, the control boards nowadays not only have a higher working clock
rate but also supports multithreading. Like the effects of the multithreading processor with the development of computer sciences,
control boards supporting multithread is promised to change the world of Unmanned Vehicles. This article focuses on the
application of multithread for multi-rotors, a new section which has been recently researched by many universities and developers
in the world. After an overview about multithread and the related projects, this article will present the utilization of multithread
with FlyMaple, a new generation of control board which has some important advantages comparing to the older generations.

Keyword: Multithreading, Multi-Rotor, FlyMaple, Ardu Pilot, Free RTOS

1. Introduction

Multi-rotors is one of the most interested types of drone
because of their simplicity in hardware but complexity in
control algorithms. Nevertheless, solving the control
algorithms to get the outputs to control the rotors is not the
only task done by the control board, especially the
microcontroller. The microcontroller is the heart of the control
board and therefore the whole system, which is in charge for
every single task, from getting the values from the sensors,
communicating with other hardware systems to listening and
answering the controller or the ground control station. The
more requirements of the systems, the more calculation have to
be done as well as the more tasks have to be taken care of.
Therefore processing ability of the microcontroller have to be
increased. At first, we increased the MCU frequency of the
microcontroller, which will boost up the board and increase its
capacity. However, there are another solution for this problem.
Instead of increasing the clock rate of the microcontroller,
which is limited at some rates due to technologies and other
limitations [1], a microcontroller supporting multithread can
increase the ability of the whole system by reducing the
polling I/O time needed for every tasks. This benefits has been
recognized and experienced, some of them will be discussed in
the next part of this article. Multithread is promised to be the
trend of the future since it will push the limitations of the
control board to a higher level and open new opportunity for
developers and researchers.

2. Main

2.1. Threading and Multithreading

In general, for an application like multi-rotors, there are
many required tasks to make the system operate properly. In
order to increase the performance and optimize the efficiency
of the microcontroller, these tasks is separated into threads,
which are “small tasks that can be run independently” [2].
There are several ways that the microcontroller handles these
threads like preemptive or non-preemptive, FIFO or any
other scheduling solutions. Since these threads have to be
handled repeatedly in time, they are handled in a procedure
called cyclic. Fig. 1 presents a simple description for a single
threading.

Figure 1. Single threading cyclic.

 International Journal of Transportation Engineering and Technology 2015; 1(1): 10-14 11

By default, a thread might include several steps, such as
getting data, reading values or calculating… which can
include or not include the using the resources of the OS. In
some cases, one thread is called but then paused to wait for
some events, for example the data of the sensors. This pause
wastes an amount of time of the system since the
microcontroller has nothing to do. The multithreading
operating systems made it possible for one thread to run
while the thread above is waiting [2]. In other words,

multithreading system will try to fill the idle time of polling
I/O with other threads, so it can optimize the efficiency of a
microcontroller. Because there are tasks that can depend on
the results of the other tasks, for example sending the PWM
to the rotors must be proceed after calculating the PWM
values, while other tasks are not, tasks and threads
controlling a multi-rotors or any system can be put into
different cyclics, which can run threads concurrently.
Multithreading can be described as shown in Fig. 2.

Figure 2. Multithreading cyclic.

Table 1. Comparison between single thread and multithread.

 Single Thread Multithread

Advantages
• Easy to program and threading
• Avoidable some scheduling problems

• Increase the performance of the microcontroller
• Avoid overheating when increase the timer clock rate.
• Safe money from hardware in case of building a system.

Disadvantages • Cannot get the maximum efficiency of the system.

• Overhear may happen while switching between threads
• Hard to program and scheduling
• Some problems with scheduling might happen such as deadlock, order

violation, etc. [2]

In case of controlling a multi-rotors, multithreading can be

implemented as shown in Fig.3.

Figure 3. Application of multithreading in controlling UAV.

Fig. 3 introduces a simple multithreading system for
controlling an UAV with 3 cyclics, each of them are
independent with others. Communication reads values from
external system such as the GPS, RC or Ground Control
Station. Calculation handles the internal sensors and the

calculating procedure. Memory I/O is in charge of interaction
with the memory system and memorizing the flight
characteristics. This structure has been successfully
implemented in ArduPilot, a popular framework to create the
firmware for the UAVs. Depending on the desires and the
specifications of the systems, the number of cyclics can
increase or decrease. However, the principle of the system
remains the same.

There are both pros and cons of multithreading comparing
to the original single threading. Table 1 gives some of these
points.

Even though multithreading has some limits and problems
as shown above, the benefits of this solution comparing to
single thread has been proved in many researches [3] [4],
therefore, in case of a real-time, complex system such as a
multi-rotors, multithread is the key to adapt the increasing
requirements of users and developers.

12 Nguyen Anh Quang and Ngo Khanh Hieu: Applying Multithreading for Multi-Rotors with FlyMaple

2.2. Multi-Rotors Projects Using Multithreading

At this time, using multithread for multi-rotors has been
implemented and experimented in various projects. In order to
experiment different algorithms and solutions for indoor
quadrotor navigation, G. Angeletti and his team used a
Gumstix board, which has a 400MHz ARM processor with
Linux distribution to apply the multithread [5]. In 2013, S. H.
Yoo and his team used the ChibiOS, a real-time operating
system, on a STM32F4 microcontroller to create a
multithreading control system for their quadrotor in the 2013
International Aerial Robotics Competition [6]. Utilization of
multithreading in multi-rotors can also be found in [7] [8], etc.

In the commercial market, one of the most famous control
board which can use multithread to support the system is
PX4FMU/PIXHAWK. Using a Cortex-M4F microcontroller,
which is supported by POSIX RTOS, this control board not
only can run with the clock rate at 168MHz, extremely fast
comparing with the older boards such as APM2.5 and 2.6,
but also able to be multithreaded. AeroCore from Gumstix is
another commercial control board supporting multithread.
Unlike the PX4, AeroCore uses the Cortex-M4 running
NuttX RTOS, provides user with a Linux platform, supports
users with all of the facilities of a Linux system. In order to
support these new generations of hardware, many group, like
ArduPilot, has created the multithreading scheduler in their
framework. The multithread of PIXHAWK in ArduPilot can
be described as in Fig. 4.

Figure 4. PX4 multithreading in ArduPilot.

2.3. FlyMaple Control Board and FreeRTOS

FlyMaple is also a new generation of control board, which
is armed to applications in robotics and complicated system
control. Using the ARM Cortex-M3, FlyMaple can operate
with the clock rate at 72 MHz. This value is not as good as
the PIXHAWK, however, it is also really amazing comparing
to other APM control board. Although it has some limitations
while comparing with the PIXHAWK, this control board is
still acceptable since it has a more reasonable price, 70 USD1
compares to nearly 200 USD of the others2.

Since Cortex-M3 is the MCU of FlyMaple, there are two
solutions to implement a multithreading firmware for this
board. The first solution, which will be discussed in this
section, is creating a new firmware for this board. In order to

1 http://www.dfrobot.com
2 https://store.3drobotics.com/products/3dr-pixhawk

do that, multiple RTOSes will be mentioned and compared to
find the most suitable one. Upgrading the existent, ready-to-
used framework is the second solution and will be presented
in the next part of this article.

Cortex-M3 architecture is supported by several RTOSes,
including FreeRTOS, CooCox CoOS and ChibiOS. All of
these operating systems are free and opened, and more
importantly, supports multithread and multi-tasks. In his
work, N. D. Bui summarized the compatibility of these
RTOSes with FlyMaple [9]. Table 2 shows the results of his
work.

Table 2. RTOSes and FlyMaple.

 ChibiOS CooCox CoOS FreeRTOS

Compatible with
MapleIDE3

No Yes* Yes

Additional hardware
required

Yes No No

Additional configurations
/ toolchain modifications
required

Yes Yes No

Officially recommended No No Yes

*Tested by individual

From this result, it can be seen that FreeRTOS is the most
suitable and convenient RTOS for FlyMaple. Therefore, it
has been used to create the multitasking/multithreading
firmware for this control board. In his project, N. D. Bui
proposed a multitasking system based on the idea of Fig. 5.
From this system, with some changes, a multitasking can
changed into a multitasking/multithreading system.

Another project uses FreeRTOS for FlyMaple and
successfully implemented the multithread is FlyMaple
Project of OpenDrone 4 . This group used multithread for
getting the values from the sensors and then calculating the
PWM outputs.

One way or another, the projects above proved the
compatibility of FreeRTOS and FlyMaple, as in the theory.
However, both of them has one major limitation. In the
FlyMaple project, the tasks for communication between the
drone and the GCS has not been created. Even though multi-
rotors can operate without the GCS in manual mode, the
GCS is very important in case of auto mode. In his work, N.
D. Bui created the communication tasks and then proposed a
simple syntax for communicating with the self-developed
GCS. His work is admirable, yet it is not standardized. Since
the communicating protocol does not follow any standard,
the portability and therefore the applicability is limited.
However, this problem can be overcome with some simple
modifications. By adding the libraries of MAVLink protocol
and then construct a system for answering and responding
based on this protocol, the new firmware will become
compatible with any GCS supporting MAVLink such as
Mission Planner.

3 MapleIDE: Maple Integrated development environment, developed in the
Maple project of LeafLabs
4 https://github.com/opendrone/flymaple

 International Journal of Transportation Engineering and Technology 2015; 1(1): 10-14 13

Figure 5. Quadricopter multi-tasks in DARTS diagram.

2.4. Multithread in ArduPilot for FlyMaple

FlyMaple is one of the boards supported by ArduPilot.
However, because of the differences in architecture between
this board and the wide-used board such as APM and
PIXHAWK, ArduPilot does not fully support FlyMaple. One
of the missing facility is multithread. In fact, the scheduler of
ArduPilot for FlyMaple does not differ from that of APM
older boards [10]. The only difference between FlyMaple and
old version APM is that the main loop of FlyMaple can be
run at 400Hz, meanwhile, this value for old boards is just
100Hz.

Even though there are many modifications have to be done
to apply multithread for FlyMaple in this framework, there
are still some benefits comparing to the first one. One of the
most important benefits that ArduPilot is a ready-to-used
framework, with all of the drivers for sensors, calculating
process, communication protocol, etc. The second benefits
lies on its supporting tools. ArduPilot offers developers with
two simulations, Hardware In The Loop (HITL) and
Software In The Loop (SITL). Depending on the
requirements, users can choose the type of simulation and
test the modified code before experimenting with the real
system.

Fig. 6 suggests the architecture for the multithread for
FlyMaple in ArduPilot. This structure is based on the
multithreading structure of PIXHAWK and the proposed
architecture of FlyMaple Project.

Since FlyMaple does not have the memory additional
hardware like PIXHAWK, there are only two thread as
shown above. The most important thread is timer, which is in
charge of calculating the outputs from the inputs of sensors
and the desired Euler angles. The second one, which has a
lower priority, will be responsible for communication
between control board, GPS system and GCS/RC. However,
this is just the basic multithreading system, in case of other
requirements, a more threads system can be created based on

this principle. As ArduPilot is a multi-target and multi-
application framework, the modification suggested here can
be used in various type of multi-rotors. That is also one
benefits of the second solution proposed in this article.

Figure 6. Suggested Multithread for FlyMaple with ArduPilot.

3. Conclusions

As discussed above, multithread is the rising trend of the
control architecture for multi-rotors. Because of its
reasonable price, FlyMaple is a promising control board to
implement and experiment the multithreading control system.
The two methods discussed in this article, each of them has
their own pros and cons, however still can be done. The
limits of our work at this moment is obviously the lacking of
the successful implementation. That is one of the future work
in this project.

Another future work is testing the behavior of the ready-
to-used-multithreading-system like PIXHAWK, from this
result and the result of FlyMaple, more comparisons can be
done to increase our understanding with the multithread and
its applications for multi-rotors.

14 Nguyen Anh Quang and Ngo Khanh Hieu: Applying Multithreading for Multi-Rotors with FlyMaple

Abbreviations

MCU Microcontroller unit
RTOS Real Time Operation System
I/O Inputs/Outputs
UAV Unmanned Aerial Vehicle
FIFO First In First Out
OS Operating System
PWM Pulse Width Modulation
RC Remote Controller

References

[1] Emery D. Berger, Ting Yang, Tongping Liu, Gene Novark,
Grace: Safe Multithreading Programming for C/C++, Object -
Oriented Programming, Systems, Languages, and
Applications, Orlando, 2009.

[2] Intel, Intel Hyper-Threading Technology - Technical User's
Guide, 2003.

[3] F. Ruini, Distributed Contrl for collective behaviour in micro-
unmanned aerial vehicles, PhD Thesis, 2011.

[4] Patrick Fabiani et al, A multi-thread decisional architechture
for real-time planning under uncertainty, The International
Conference on Automated Planning and Scheduling (ICAPS
2007), 2007.

[5] G. Angeletti, J. R. Pereira Valente, L.Iocchi, D. Nardi,
Autonomous Indoor Hovering with a Quadrotor, SIMPAR
2008, 2008.

[6] S. H. Yoo et al, Autonomous Aerial Robotics Team - 2013,
International Aerial Roboics Competition, Oregon State
University, 2013.

[7] F. D. Azevedo, Complete system for quadcopter control,
Graduation Thesis Porto Alegre, 2014.

[8] O. Berthold, An Approach to UAV Controller Prototyping
with Linux, Berlin, 2011.

[9] N. D. BÙI, Embedded System for Quadricopter, Internship
report, Poitiers, France, 2014.

[10] A. D. Group, “Learning Ardupilot – Threading”. 3Drobotics,
<dev.ardupilot.com/wiki/learning-the-ardupilot-
codebase/learning-ardupilot-threading/> (access Sep 2015).

Biography

Nguyen Anh Quang is a senior student
from Department of Aerospace Engineering,
Ho Chi Minh City University of
Technology. As a student of P. F. I. E. V
program, he has spent 5 months at
Laboratory of Computer Science and
Automatic Control for Systems (LIAS),
ISAE-ENSMA, France for his graduation
project.

Ngo Khanh Hieu (1978, HCM City)
received Bachelor degree in Aeronautical
Engineering (2001) – Ho Chi Minh City
University of Technology, M. S. degree in
Mechanics (2002) and PhD. degree in
Computer Science (2008) from ENSMA,
France. Work experience: Control-
Command Systems, Flight Mechanics, R &
D, Educator. Head of the Aerospace

Engineering Lab., Ho Chi Minh City University of Technology.

