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Abstract: We discuss the thermal radiation effect on unsteady free-convective Couette flow of conducting fluid in the 

presence of transverse magnetic field. The mathematical model is highly nonlinear due to the effect of the thermal radiation. 

Both numerical solution by the finite difference method and the analytical solution of the steady state by the perturbation 

method are presented. The numerical solution at large time agrees with the analytic solution of the steady state. 
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1. Introduction 

Amount of efforts have been instilled in the study of 

unsteady laminar free convection phenomenon in a vertical 

channels owing to its importance to chemical, biomedical, 

and environmental engineering and sciences. The interest in 

this field relates to its great practical importance to variety of 

applications. For example, nuclear reactors, solid matrix heat 

exchangers, thermal insulation, surface catalysis of chemical 

reactions, oil recovery, dispersion of chemical contaminants 

in various processes, storage of nuclear waste materials, grain 

storage and drying and many others Jha et al. [13]. 

A number of studies have been performed to latch on to 

the transport mechanism of momentum and heat transfer in 

vertical channels. Indeed, several authors have surveyed 

thermal radiation effect on Magneto hydrodynamic free-

convection fluids in conjunction with other flow parameters 

[1, 4, 5, 7, 17, 19, 27]. The literatures on unsteady free 

convective fluid associated with Couette flow are numerous. 

Singh [26] considered the motion of fluid induced by the 

impulsive motion of one of the plates in the presence of 

convection currents due to asymmetric heating condition on 

the boundaries. Jha [12] further extended it for MHD case. 

Fang [6] investigated the Couette flow of a viscous, 

incompressible fluid with porous walls. Muhuri [18] 

researched on the Couette flow where one of the porous 

plates moves with impulsive and accelerated motion. 

Makinde and Maserumule [16] illustrated the thermal 

criticality and entropy analysis for a variable viscosity 

Couette flow. Jha [13, 12] examined the unsteady flow 

behavior of a natural convection Couette flow of viscous 

reactive fluid in a vertical channel. 

Also steady and unsteady Couette flows associated with 

magneto hydrodynamics have been subject of interest due to 

its applications ranging from desalination and viscos metric 

analysis. It also has application in many devices such as 

power generators, pumps accelerators, heating electrostatics, 

precipitation, polymer technology, petroleum industry, 

purification of molten metals from non-metallic inclusions 

and droplets-sprays Hazem [10]. Dash and Biswall [3] 

reported Couette flow of an incompressible viscoelastic fluid 

with a sudden motion on the lower wall with varying time 

where n is positive. Hayat et al. [9] studied the motion of a 

conducting Oldroyed-B fluid between two parallel plates 

where the lower plate is at rest while the upper oscillating in 

its own plane. Govindarajulu [8] have presented Couette-type 

flows in hydromagnetic with time-dependent suction and the 

fluid assumed to be viscous, incompressible and electrically 

conducting where the walls are taken to be non-conducting. 

Salama [21] studied flow formation in Couette motion in 

magneto hydrodynamics with time varying suction and 

taking into account the effects of heat and mass transfer. 

Khem et al. [14] analyzed Couette motion of an electrically 

conducting, viscous in compressible fluid through saturated 
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porous medium bounded by two insulated vertical porous 

plates. 

Sheikholeslami et al. [23] studied magnetic field effect on 

nanofluid flow and heat transfer is studied numerically using 

Control Volume based Finite Element Method. 

Sheikholeslami and Gorji-Bandpy [22] investigated the effect 

of external magnetic source on ferrofluid flow and heat 

transfer in an enclosure heated from below. Magneto 

hydrodynamic effect on natural convection heat transfer of 

Cu-water nanofluid in an enclosure with hot elliptic cylinder 

was also investigated in the work of Sheikholeslami et al. 

[24]. 

In this paper, we discuss the behavior of the unsteady free-

convective Couette flow under the influence of the transverse 

magnetic field and the thermal radiation for a simple system 

consisting of two infinite vertical plates held at different 

temperature. We use the Roseland approximation to describe 

the radiative heat flux in the energy equation. We also present 

the numerical solution by the implicit finite difference 

method and the analytical solution of the steady state by the 

perturbation method for the governing time-dependent partial 

differential equations. We have found an excellent agreement 

between the numerical solution at the large time and the 

analytical solution of the steady state. Several graphs 

illustrating the effect of the various controlling parameters 

involved in the flow formation are presented. 

2. Governing Equations 

We consider a time dependent unsteady free convection 
Couette flow of a viscous, incompressible, electrically 
conducting and radiating fluid separated between two infinite 

vertical parallel plates of a distance H. At time 0t ′ ≤ , both 

the fluid and plates are assumed to be at rest at temperature 

0T . At some time 0t′ > , the temperature of the plate at 

0y′ =  rise to wT  and the plate starts moving on its own 

plane with impulsive motion with velocity U while the plate 

at a distance H from it is fixed. A strong homogeneous 

magnetic field of strength 0B  is imposed normal to the plates 

in the presence of an incident radiative heat flux of intensity 

rq , which is absorbed by the plate and transferred to the 

fluid. The Cartesian ( ),x y′ ′  co-ordinate systems are taken 

with x′ -axis along the moving plate in the upward direction 

and the y′ -axis normal to it as shown in Figure 1. The plates 

are infinite in length, the velocity and temperature are 

functions of y′  and t′  alone. Using Boussinesq’s 

approximation, the governing equations for the present 
physical situation in dimensional form as: 

( )
22
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The quantity rq  appearing on the right hand side of 

equation (2) represents the radiative heat flux in the x′  - 

direction. The radiative heat flux in the x′ - direction is 

considered insignificant in comparison with that in the y′  - 

direction. The radiative heat flux term in the problem is 

simplified by using the Rosseland diffusion approximation 

for an optically thick fluid according to Rashad [20]. 
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Figure 1. Schematic diagram of the problem. 

This approximation is valid for intensive absorption, that 

is, for an optically thick boundary layer. Hence, the 

Rosseland approximation has been used with positive result 

in a variety of problems ranging from the transport of 

radiation through gases at low density to the study of the 

effects of radiation on blast waves by nuclear explosion Ali et 

al. [2]. 

The relevant initial and boundary conditions are: 

{ 0

0

0 : 0, 0

, 0
:

0,

w

t u T T y H

u U T T at y
t

u T T at y H

′ ′ ′ ′ ′≤ = = ≤ ≤

′ ′ ′= = =′ >  ′ ′ ′= = =

                (4) 

Table 1. Nomenclature. 

Symbol Description Symbol Description

H Distance between two parallel plates t′  Dimensional time 

TC  Temperature difference parameter t  Dimensionless time 

g
 Acceleration due to gravity T ′  Dimensional temperature of the fluid 

0B  Applied magnetic field 0T  Initial temperature of fluid and plate ( )0t′ =  

0Nu  Nusselt number at 0y =  wT  Temperature of the plat 0y′ =  at 0t′ >  
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Symbol Description Symbol Description

1Nu  Nusselt number at 1y =  u′  Dimensional velocities 

M  Magnetic number u  Dimensionless velocities 

Gr  Grashof number U  Velocity of the plate at 0y′ =  

Pr  Prandtl number x′  Vertical co-ordinate, direction of the fluid 

R
 

Thermal radiation parameter y′  Dimensional co-ordinate perpendicular to the plate 

Greek Symbols 
Symbol Description Symbol Description 

β  Co-efficient of thermal expansion α  Thermal diffusivity 

κ ∗  Mean n abs σ  Stefan-Boltzmann constant 

K  Thermal conductivity θ  Dimensionless temperature 

ν  Kinematic viscosity ρ  Density of the fluid 

0τ  Dimensionless skin friction at 0y =  1τ  Dimensionless skin friction at 1y =  

1σ
 

Fluid electrical conductivity  

 
To obtain the solution of equation (1) and (2) subject to the 

initial and boundary condition (4) in dimensionless form, the 

following appropriate dimensionless quantities are 

introduced. 

( )
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( ) ( )

2
0

2 2 2 2
0 0 1 0 0

0 0

, , , , 4 ,

, , ,

w

T w w

w

t t H y y H u u U Pr R T T K

C T T T M B H Gr g H T T U

T T T T

υ υ α σ κ

σ υρ β υ

θ

∗ ′ ′ ′= = = = = −
 = − = = −
 ′= − −

                                                 (5) 

Using the dimensionless quantities introduced in equation 

(5), the dimensionless form of equations (1) and (2) are: 

2
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( )
2

3

2

4
1

3
T

R
Pr C

t y

θ θθ∂ ∂ = + + ∂ ∂ 
[ ]

2
2

4 TR C
y

θθ  ∂+ +  ∂ 
   (7) 

while the dimensionless initial and boundary conditions are 
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                    (8) 

3. Analytical Solution 

The governing equations presented in the previous section 

are highly nonlinear and exhibited no analytical solutions due 

to thermal radiation effect. In general analytical solution are 

very useful in validating computer routines of complicated 

time dependent two or three-dimensional free convective and 

radiating conducting fluid and comparison with experimental 

data. It is therefore of interest to reduce the governing 

equations of the present problem to the form that can be 

solved analytically. A special case of the present problem that 

exhibit analytical solution is the problem of steady state 

MHD natural convection Couette flow trapped between two 

infinite vertical plates in the presence of thermal radiation 

effects. The resulting steady state equations and boundary 

conditions for this special case can be written as: 

2
2

2
0
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Gr M u

dy
θ= + −                                  (9) 
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     (10) 
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                      (11) 

In order to obtain approximate analytical solutions of 

equation (9) and (10) subject to the boundary condition (3. 

11), we employ a regular perturbation method by taking a 

power series expansion in the radiation parameter R  such as: 

( ) ( ) ( ) ( ) ( )
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⋯

   (12) 

where R  is the radiation parameter (1). The second and high 

order terms of $R$ give correction to 0θ  and 0u that account 

for thermal radiation effect. Substituting equation (12) in (9) 

and (10) and equating the like power of R , one can obtain 

the required solution of the governing momentum and energy 
equations as: 

( ) ( )
( ) ( ) ( )
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2 3

1 2 3 4 5 62 2 2

1 1M GrGr y sinh My
u y sinh M My R K K K y K y K y K y

sinh MM M sinh M M
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
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( ) ( ) ( )( ) ( ) ( )2 2 3 41 2 4 3 1 3y y R B y y B y y y yθ  = − + − − − + −
 

                                      (14) 

From (13), the steady-state skin frictions on the boundaries are: 
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Equally from (14) the steady state heat transfer on the 

boundaries are: 

( )2
0
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        (18) 

4. Numerical Solution Procedure 

The momentum and energy equations given in equations 

(6) and (7) are solved numerically using implicit finite 

difference method. The time derivatives in both equations are 

approximated using backward difference formula as: 
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,
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while the first and second order space derivatives are 

approximated by the central difference formula. 
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Replacing j  by ( )1j +  in (19), (20), (21), (22) and (23) 

gives an iterative system, which does not restrict the time 

step. Thus the transport equations (6) and (7) at the grid point 

( ),i j  are linearized. The momentum Equation reads: 

( )
1 11

21
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2j i j jj i
j ji ii i i
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and the energy equation becomes: 
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with the following new boundary conditions: 

,0 ,0

0, 0,

, ,
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0, 1
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i i
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M j M j

u for all i

u

u
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( ) ( ) 3, , 10
exact num

abs u uθ θ −− <                 (27) 

 

 

5. Result Validation 

In order to confirm the validity of this numerical solution, 

the numerical result are compared with analytical solution 

derived for steady state problem using perturbation 

technique. A series of numerical experiments shows that 

steady state velocity and temperature occurs when the 

dimensionless time approaches to the values of Prandtl 

number of the fluid. During the course of numerical 

computation, an excellent agreement is found between 

unsteady and steady state solutions at large values of time see 

Figures 2 and 3 respectively. 
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Figure 2. Velocity profile (R = 0.1, CT = 0.01, M = 1) . 

 

Figure 3. Temperature profile ( 0.1, 0.01)= =TR C . 

6. Result and Discussion 

Numerical solutions for time dependent momentum and 
energy equations using implicit finite difference method are 
performed to see the impact of various dimensionless 
parameters controlling the present physical situation. The 
effect of essential governing parameters, such as magnetic 

parameter ( 0.1, 0.01, 1)= = =TR C M , the radiation 

parameter ( )R , the temperature difference TC , the Grashof 

number and the Prandtl number ( )Pr are reported. Fixed 

values selected for numerical computation are 0.01TC = ,

1M = , 0.1R =  and Pr  is chosen as 0.71 and 7.0 that 

physically represent air and water, respectively. The value of 

 is taken to indicate the state of the plates. It can be 

negative, zero or positive depending on the temperature of 

the plate. Therefore 0Gr <  relate to an external heating of 

the moving plate, while 0Gr > corresponds to external 

cooling of the moving plate. In the present treatise, time is 

chosen between 0.05 8.5t≤ ≤  so as to capture the unsteady 

behavior of both velocity and temperature. In the numerical 
computation the numerical values of R  are in the range of 

0 0.8≤ ≤R . Because large value of R , lead to finite time 

temperature blow up. Since the terms associated with R  in 
energy equation are strong heat sources Makinde and 
Chiyoka [21]. 

Gr
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Figure 4. Velocity profile ( )0.1, 0.01, 5TR C Gr= = =
. 

 

Figure 5. Velocity profile ( )0.2, 1, 5R M Gr= = =
. 

Figure 2 illustrates the velocity profile due to change in 

Gr  for fixed values of other parameter. From this Figure, 

velocity significantly enhanced with the increase in Gr . It is 

clearly observed form Figure 2a and b, that, the velocity of 
air and water takes reverse flow and attains steady state as 

time increases ( )0Gr < . It also reveals from Figure 2a and b 

that for 0Gr > , the velocity of air and water increases with 

time and reached its steady state value. It is important to 

mention here that, 0Gr = represent a physical situation when 

flow formation is only due to the movement of one of the 
boundary (Couette flow). 
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Figure 6. Velocity profile ( )0.2, 1, 5TC M Gr= = =
. 

Figure 3 reports that the increase in time strengthens the 

temperature until it reached its steady state value. Also, 

temperature decreases with increase in Prandtl number. This 

is due to the inverse relation between Prandtl number and 

thermal diffusivity of fluid. 

Figure 4a and b depicts the effect of magnetic parameter 

on velocity for fixed values of the remaining parameters. It is 

observed that as the magnetic parameter increases the 

velocity decreases. This is true since the imposition of a 

magnetic field to an electrically conducting fluid creates a 

drag-force. This is an important controlling mechanism in 

nuclear energy systems heat transfer, where enhancing the 

magnetic field can reduce momentum development [24]. 
Figure 5a and b shows the role of the temperature 

difference parameter ( )TC  on unsteady and steady state 

velocity when other parameters are fixed. The temperature 
difference parameter is found to enhance velocity with little 
effect. However, it is clear that increase in time increases the 
velocity significantly. The velocity is also found to attain a 
steady state as the dimensionless time approaches to the 
values of Prandtl number of the fluid. 

From Figure 6a and b it is clear that radiation parameter 

( )R  enhanced both unsteady and steady state velocity. These 

Figures further reflects that the time required to reach steady 

state is higher in case of water ( )7.0Pr =  than air 

( )0.71Pr = . In both cases the time needed to attain steady 

state velocity increases with increase in R . 

 

Figure 7. Temperature profile ( )0.2R =
. 



 International Journal of Theoretical and Applied Mathematics 2018; 4(1): 8-21 15 
 

 

Figure 8. Temperature profile ( )0.2TC =
. 

Figures 7 and 8 shows the variations in the temperature 

profile due to temperature difference ( )TC  and radiation ( )R  

parameters when other parameters are fixed. These Figures 

explain that an increase in TC and R  increases the 

temperature profiles until the steady state value is reached. 

Also it is obvious from these Figures that as the value of TC

and R is increases, the corresponding values of steady state 

temperature increases. It is interesting to report that the time 
require to reach steady state is higher in Figures 7b and 8b in 
comparison to 7a and 8a. This is true since thermal 
diffusivity reduces as Prandtl number increases. Furthermore 
as time increases, the temperature increases until the steady 
state value is attained see figure 7 and 8. 
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Figure 9. Skin friction against R : (a & c) at 0=y , (b & d) at 1=y . 

 

 

Figure 10. Skin friction against TC : (a & c) a 0=y t, (b & d) at 1=y . 
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In Figures 9 through 12, the variation of skin friction for 

air ( )0.71Pr =  and water ( )7.0Pr =  at the plate y = 0 and

y = 1 are narrated for fixed values of the other parameters. 

Figures 9a b, c, and d depict the variation of skin friction at 

0y =  and 1y =  due to different values of radiation 

parameter ( )R  and time ( )t . From these Figures is noted that 

skin friction increases with increase in radiation and 

dimensionless time ( )t  on both plates. The physical fact is 

that, an increase in radiation parameter creates more heat to 
the fluid leading to an increase in temperature, which 
consequently increases the convection current. 

Figure 10a, b, c, and d illustrate the variation effect of 

temperature difference ( )TC  and dimensionless time ( )t on 

skin friction at 0y =  and 1y = respectively when other 

parameters remain constant. It can be seen from the figures 

that an increase in TC  or t  enhances the skin-friction on 

both plates and at length procure its steady state value. 
Figures 11a b, c, and d show the contribution effect of 

Grashof number ( )Gr on skin friction in both walls for fixed 

values of other controlling parameters. It is observed that the 

skin friction is elevated with the increase of Gr . Also, the 

values of skin friction are found to be higher in Figures 11c 

and d at 1y =  in comparison with Figures 11a and b ( )0y = . 

Figure 12a, b, c, and d, presents a variation of skin friction 

at 0y =  and 1y = for different values of magnetic number 

( )M  and fixed values of other parameters. It is interesting to 

mention that skin friction decreases as magnetic parameter 

( )M  increases. In contrast, as the dimensionless time ( )t  

increases the skin friction increases. 

 

 

Figure 11. Skin friction against Gr  (a & c) at 0=y , (b & d) at 1=y . 
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Figure 12. Skin friction against M : (a & c) at 0=y , (b & d) at 1=y . 
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Figure 13. Nusselt number against R : (a & c) at 0=y , (b & d) at 1=y . 

 

 

Figure 14. Nusselt number against TC : (a & c) a 0=y t, (b & d) at 1=y . 
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Figures 13 and 14 show influence of radiation parameter 

and temperature difference parameter on Nusselt number at 

0=y  and 1=y  respectively. It is observed that as R  and TC

increases the values of Nusselt number decreases at 0=y  and 

increases with increase in R  and TC  at 1=y . 

7. Conclusion 

In order to visualize the flow formation of free-convective 

Couette flow of conducting fluid in presence of thermal 

radiation and transverse magnetic field, numerical as well as 

analytical solutions are obtained. The influence of the 

dimensionless controlling parameters on velocity 

temperature, skin friction and Nusselt number are 

demonstrated in figures and discussed. In the absence of 

thermal radiation and magnetic field the results agree with 

available result of Singh [9]. Furthermore, in the absence of 

radiation, the results are in excellent agreement with Jha [10]. 

From the results obtained, the findings are. 

i. Velocity and temperature increases with increase in time. 

ii. Skin-friction increases with increase in time, while 

Nusselt number decreases with increase in time at 

0y =  and increases with time at 1y = . 

iii. The time required for the velocity, temperature, skin-

friction and Nusselt number to attain steady-state 

strongly rest on the dimensionless parameters 

, , ,TM R C Gr  and Pr . 

iv. The results are found in good agreement between 

steady state and unsteady state after some sufficiently 

large time ( )t  

Appendix 

1,= +TB C     

2 4 4 4 6
1 4 4 8 8 ,= + − +K B Gr M Gr M BGr M Gr M  

2 4
2 4 8 ,= +K B Gr Gr M  

2 2
3 2 3 4 3 8 ,= + − +K B Gr Gr BGr BGr M  

2 2
4 5 62 4 , 4 3, 3= + = =K B Gr Gr M K BGr K Gr  

 

References 

[1] Jha B. K., Samaila A. K. and Ajibade A. O., “Unsteady 
natural convection coutte flow of a reactive viscous fluid in a 
vertical channel,” Computational Mathematics and Modeling, 
vol. 24(3), pp. 432-440, 2013. 

[2] El-Hakiem M. A., “MHD oscillatory on free convection-
radiation through a porous medium with constant suction 
velocity,” Journal of Magnetism and Magnetic Material, vol. 
220, 271-276, 2000. 

[3] Mansour M. A. and El-Shaer N. A., “Radiation effect on 

magnetohydrodynamic natural convection flows saturated in 
porous media,” Journal of Magnetism and Magnetic Materials, 
vol. 237, pp. 325-341, 2001. 

[4] Ghaly A. Y., “Radiation on a certain MHD free-convection 
flow,” Chaos, Solitons and Fractals,” vol. 13, pp. 1843-1850, 
2002. 

[5] Srinivas S. and Muthraj R., “Effect of radiation and space 
porosity on MHD mixed convection flow in a vertical channel 
using homotopy analysis method,” Communication in 
Nonlinear Science and Numerical Simulation, vol. 15, pp. 
2098-2108, 2010. 

[6] Abdul Hamid R., Arifin Md. N. and Nazar R., “ Effects of 
radiation, joule heating and viscous dissipation on MHD 
marangoni convection over a flat surface with suction and 
injection,” World Applied Sciences Journal, vol. 21, pp. 933-
938, 2013. 

[7] Rajput U. S. and Sahu P. K., “ Combined effect of MHD and 
radiation on unsteady transient free convection flow between 
two long vertical parallel plates with constant temperature and 
mass diffusion,” General Math Notes, vol. 6(1), pp. 25-39, 
2011. 

[8] Dulal P. and Babulal T., “ Influence of hall current and 
thermal radiation on MHD convective heat and mass transfer 
in a rotating porous channel with chemical reaction,” 
International Journal of Engineering Mathematics, Article ID 
367064, 13 pp., 2013. 

[9] Sing A. K., “Natural convection in unsteady Coutte motion,” 
Defence Science Journal,” vol. 38(1), pp. 35-41, 1988. 

[10] Jha B. K. “Natural convection in unsteady MHD Coutte flow” 
Heat and Mass Transfer vol. 37, pp 329–331, 2002. 

[11] Fang T., “A note on the incompressible Couette flow with 
porous walls,” International Communication in Heat and Mass 
Transfer,” vol. 31(1), pp. 31- 41, 2004. 

[12] Muhuri P. K., “Flow formation in Couette motion in 
magnetohydrodynamics with suction,” Journal of Physics 
Society of Japan, vol. 18(11), pp. 1671- 1675, 1963. 

[13] Makinde O. D. and Maserumule R. L., “ The effect of thermal 
radiation on the heat and mass transfer flow of a variable 
viscosity fluid past a vertical porous plate permeated by a 
transverse magnetic field,” Chemical Engineering 
Communications, vol. 195(12), pp. 1575-1584, 2008. 

[14] Jha B. K., Samaila A. K. and Ajibade A. O., 
“Unsteady/Steady free convection Couette flow of reactive 
viscous fluid in a vertical channel formed by two vertical 
porous plates,” International Scholarly Research Network, 
Article ID 794741, 10 pp., 2012. 

[15] Hazem A. A., “Unsteady MHD Cuette flow of a viscoelastic 
fluid with heat transfer,” Kragujevac Journal of Science, vol. 
32, pp. 5-15, 2010. 

[16] Dash G. C. and Biswal S., “Commencement of Couette flow 
on Oldroyd with heat sources,” Indian Journal of pure and 
Applied Mathematics, vol. 20(3), pp. 267-275, 1989. 

[17] Hayat T., Nadeen S. and Asghar S., “Hydrodymagnetic 
Couette flow of an Oldroyd-B fluid in a rotating system,” 
International Journal of Engineering Science, vol. 42, pp. 65-
78, 2004. 



 International Journal of Theoretical and Applied Mathematics 2018; 4(1): 8-21 21 
 

[18] Govindarajulu T., “Couette flow in hydromagnetics with time-
dependent suction,” Indian Journal of pure and applied 
Mathematics, vol. 9(12), pp. 135-1364, 1973. 

[19] Salama F. A., “Convective heat and mass transfer in a non-
newtonian flow formation in a Couette motion in 
magnetohydrodynamics with time-varying suction. Thermal 
Science, vol. 15(3), pp. 749-758, 2011. 

[20] Khem C., Rakesh K. and Shavnam S., “ Hydromagnetic 
oscillatory vertical Couette flow of radiating fluid through 
porous medium with slip and jump boundary conditions,” 
International Journal of Physical and Mathematical Sciences, 
vol. 3(1), pp. 82-90, 2012. 

[21] Makinde, O. D., Chinyoka, T. 2010. Numerical investigation 
of transient heat transfer to hydromagnetic channel flowwith 
radiative heat and convective cooling. Communication in 
Nonlinear Science and Numerical Simulation, 15, 3919–3930. 

[22] Ali Agha, H., Bouaziz, M. N, Hanini, S., 2014. “Free 
convection boundary layer flow from a vertical flat plate 
embedded in a Darcy porous medium filled with a nanofluid: 
Effects of Magnetic field and thermal radiation”. Arab Journal 
of Science Engineering 39, 8331–8340. 

[23] Rashad, A., M., 2009. “Pertubation analysis for radiative 

effect on free convection flows in porous medium in the 
presence of preasure work and viscours dissipation”. 
Communication in Nonlinear Science and Numerical 
Simulation, Vol., 14, 140–153. 

[24] Sing A. K., “Effect of heat source/sink and radiative heat 
transfer on hydromagnetic natural convective flow through a 
vertical channel,” Computational thermal Sciences vol. 2(4), 
pp. 323-332, 2010. 

[25] Sheikholeslami M. Gorji-Bandpy, Ganji D. D. Rana, P. and 
Soheil Soleimani,“Magnetohydrodynamic free convection of 
Al2O3–water nanofluidconsidering Thermophoresis and 
Brownian motion effects” Computers and Fliuds, Vol. (94), pp. 
147–160, 2014. 

[26] Mohsen Sheikholeslami, M. and Gorji-Bandpy, M., “Free 
convection of ferrofluid in a cavity heated from below in the 
presence of an external magnetic field.” Powder Technology, 
Vol. (256), pp. 490–498, 2014. 

[27] Sheikholeslami M. Gorji-Bandpy, Ganji, D. D. Rana, P. and 
Soheil Soleimani, “Effects of MHD on Cu–waternanofluid 
flow and heat transfer by means of CVFEM CVFEM,” 
Journal of Magnetism and Magnetic Materials, Vol. (349), pp. 
188–200, 2014. 

 


