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Abstract: This paper presents that the structural controllability and observability can be used for a class of discrete event 

systems modeled by industry-standard N-squared diagrams. The main results of this paper provide analytical assessment of 

large scale industrial system properties before the software simulation and hardware demonstration; therefore it offers immense 

savings in verification time and cost. The dynamics of N-squared diagrams are represented by linear time-invariant systems 

over the Boolean algebra. Structural controllability and structural observability of discrete event systems are transformed to 

“standard” controllability and observability problems in traditional linear systems over real numbers. The rank of the 

controllability and observability matrices determine not only the structural controllability and observability, but also which 

discrete nodes cannot be reached by the initial states and which discrete states have no outgoing paths to the output nodes, 

respectively. This rank condition is extremely easy to be verified through computer software, such as MATLAB, it can be used 

in large scale industrial systems or communication networks. 
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1. Introduction 

Discrete event systems are dynamic systems whose 

evolutions are driven by asynchronous discrete transitions 

triggered by physical events. Examples of discrete event 

systems are communication networks [1], queueing systems 

[2], and hysteretic structural systems [3]. This paper has 

adopted N 2 diagrams or N 2 charts in [4] to model such 

discrete event systems. N 2 diagrams are an industry standard 

method for modelling large scale discrete event systems. The 

advantage is that the matrix-like structure can provide state 

space representations of system evolutions. 

Major questions in discrete event systems include whether 

operational states can be reached from the initial states, or 

whether operational states can reach the final or exit states. 

These questions can be formulated similarly as structural 

controllability and structural observability ([5, 6, 7]) in event 

graphs. Recall that an event graph is structurally controllable 

if there exists a path from at least one input transition into 

each internal transition. An event graph is structurally 

observable if there exists a path to at least one output 

transition from each internal transition.  

Most recent study in structural controllability and 

observability did not focus on finding alternative methodologies 

to determine systems’ structural controllability and 

observability, rather emphasize on expanding a more general 

class of discrete-event systems, such as switching linear systems 

[8], controller synthesis for supervisory controller [9], as well as 

exploring more applications in networked systems [10] and fault 

Diagnosability [11]. This paper presents an alternative method to 

determine which nodes are reachable from the start nodes and 

which nodes can reach the final nodes for industrial discrete 

event systems modeled as N 2 diagrams, present state of the art 

relies upon expensive laboratory testing. In author’s previous 

work [3], an analytical rank test is established for the 

reachability analysis from the initial nodes of N 2 diagrams. This 

paper continues this research and studies the structural 

controllability and observability for discrete event systems 

modeled as N 2 diagrams. Such a system is called structurally 

observable if, for any discrete state, there exists a path to at least 

one final node (or output node). In order to obtain the structural 

observability test, the discrete event dynamics modeled as N 2 

diagrams are described by a linear time-invariant system over 



 International Journal of Theoretical and Applied Mathematics 2017; 3(6): 239-243 240 
 

the Boolean algebra. Therefore, the structural observability is 

transformed to standard observability construction. This paper 

provides an analytical observability test using the rank condition 

of the traditional observability matrix, and therefore, it greatly 

reduces the verification time and cost prior to hardware 

demonstration. The rank of the observability matrix determines 

not only the structural observability, but also which discrete 

nodes have no outgoing paths to the output nodes. The 

observability condition provides analytical assessment of the 

system properties before the software simulation and hardware 

demonstration, therefore the main results offer immense savings 

in verification time and cost. 

This paper is organized as follows. Section 2 introduces 

the definition of the N 2 diagram. Section 3 defines structural 

controllability and observability in N 2 diagram. Section 4 

applied the main results to a supervisory servo controller 

modelled as an N 2 diagram. Section 4 presents the 

conclusion and future research directions. 

2. N 2 Diagram Modeling 

The N 2 diagram/chart is a matrix-like squared diagram 

that represents functional or physical system interfaces, and it 

can be used to identify, define, analyze, design, and control 

many human machine interfaced systems, such as industrial 

systems, manufacturing systems, and communication 

networks, e.g., hysteretic structural control systems [3] and 

seismic damping systems [4]. Their matrix-like structure can 

easily lead to state representations of discrete event system 

and provide qualitative assessment of system properties prior 

to expensive testing on physical systems. 

An example of a supervisory servo controller in shown in 

Figure 1, and its corresponding N 2 diagram is shown in 

Table 1. For any given system having a set of n distinct 

operating states, the corresponding N 2 diagram consists of n 

discrete states placed on the diagonal entries in the N 2 

diagram. For instance, the first entry is placed on the top left 

corner, i.e. s1 denotes the Start mode, s2 denotes the Init 

mode, s3 denotes the Standby mode, s4 denotes the Operate 

mode, s5 denotes the Test mode, and the final or exist state is 

placed on the lower right corner of the N 2 diagram, i.e. s6 

denotes the Shutdown mode. Transitions from the higher 

nodes to the lower nodes are placed in the top right triangle 

of the N 2 diagram and transitions from the lower nodes to 

higher nodes are placed in the bottom left triangle of the N 2 

diagram. For instance, transition from Standby mode to 

Shutdown mode is denoted as t26 and placed in the the entry 

B 6 and transition from Test mode to Standby mode is 

denoted as t53 and placed in the entry E 3, etc.  

Table 1. N 2 diagram of a supervisory servo controller. 

 1 2 3 4 5 6 

A s1 t12     

B  s2 t23   t26 

C   s3 t34 t35 t36 

D   t43 s4 t45 t46 

E   t53  s5 t56 

F      s6 

 

Figure 1. Bubble chart state diagram for a supervisory servo controller. 

There are a few assumptions [4] on which the N 2 diagram 

is constructed, such as the uniqueness of each state, at least 

one active state at a time, and at most one active transition at 

a time. N 2 diagrams are related to the state space 

representation in traditional linear systems. The N 2 diagram 

can be written in terms of a linear system over a Boolean 

semiring ( ), ,B R= ∨ ∧ , as ∨  is the logic OR operation, and 

∧  is the logic AND operation: 

( ) ( )( 1) ( ) ( ) ( ) ,

( ) ( ),

x k A k x k B u k

y k C x k

+ = ∧ ∨ ∧
 = ∧

     (1) 

where Eq. (1) replace the traditional matrix operation using 

Addition (+) and Multiplication ( × ) in linear systems by the 

logic OR ( ∨ ) and AND ( ∧ ), respectively. The state variable 

x (k) denotes whether the mode is active or not by indicating 

0 or 1, respectively, using Boolean operations. The output 

variable y (k) denotes the exist or final node. In Eq. (1) only 

A (k) is a time varying matrix because at every discrete event, 

only the active modes are marked 1, otherwise they are 

marked 0 in the A (k) matrix.  

For example, the N 2 diagram of the supervisory servo 

controller shown in Table 1 can be modelled as Eq. (1) with 

B and C matrices defined as  

[ ]

1

0

0
, 0 0 0 0 0 1 ,

0

0

0

B C

 
 
 
 

= = 
 
 
 
  

                  (2) 

and the time-varying A (k) matrix would be varying at each 

event, for instance,  

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0
(1) ,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

A
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 
 
 
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where only one entry A (1)2, 1 from mode s1, there is a only 

one transition t12 is possible. The next Section will review the 

definitions of structural controllability and observability and 

present the connection with classical controllability and 

observability matrix in linear systems. 

3. Structural Controllability and 

Structural Observability 

Recall that a discrete event graph [5, 6] is structurally 

controllable if there exists at least one outgoing path from 

one input transition into each internal transition. A 

discrete event graph is called structurally observable if 

there exists at least one path reaching to the output 

transition from each internal transition. In practical 

industrial applications, users often need to find out which 

operational modes cannot be reached from the initial mode 

under any conditions, and which operational modes cannot 

exist in the final nodes. These questions are modified 

problems from structural controllability and observability 

in discrete event graph. 

Definition 1: A discrete event system modelled as an N 2 

diagram is called structurally controllable for any discrete 

state, if there exists at least one path from the initial node. It 

is called structurally observable if, for any discrete state, 

there exists at least one path to the final node or output node.  

The next proposition shows that that the structural 

controllability and observability of discrete event systems in 

an N 2 diagram can be determined using the rank conditions 

of the controllability and observability matrices in the 

traditional linear system.  

Proposition 1 [3]: If the following matrix  

1( , ) nCtrb A B B A B A B− = ∧ ∧ ⋯              (3) 

has no zero rows, then the discrete event system modelled as 

an N 2 diagram is structurally controllable, where A  is the 

transpose of the truth table of the N 2 diagram.  

Proposition 2 [3]: If the following matrix  

1
( , )

n
Ctrb A B B A B A B

− = × × ⋯              (4) 

has no zero rows, then the discrete event system modelled as 

an N 2 diagram is structurally controllable, where A  is the 

transpose of the truth table of the N 2 diagram.  

Proposition 3: If the following matrix  

1

( , )

n

C

C A
Obsv A C

C A −

 
 ∧ =
 
 

∧  

⋮
                                  (5) 

has no zero columns, then the discrete event system modelled 

as an N 2 diagram is structurally observable, where A  is the 

transpose of the truth table of the N 2 diagram.  

Proofs: Matrix C=[0 0 …. 1] which means that the final 

node or exit node is reachable from itself. The matrix  
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where each entry is either 1 or 0 depending on whether the 

corresponding nodes can reach the final node, respectively. 

The matrix  
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where the entry aij is non-zero if and only if the node j is 

reached from the node i. Continuing the calculation along 

with the observability matrix row by row, then if any column 

of the observability is zero, by definition, there is no path 

leading the node j to the final node.  

Proposition 4: If the following matrix  

1

( , )
⋮

n

C

C A
Obsv A C

C A −

 
 × =
 
 

×  

                        (6) 

has no zero columns, then the discrete event system modelled 

as an N 2 diagram is structurally controllable, where A  is 

the transpose of the truth table of the N 2 diagram.  

The proof is similar to proposition 4, therefore it is omitted 

here.  

Remarks: The difference between Eq. (3) and Eq. (4) is 

that the matrix operations are using Boolean OR/AND, and 

traditional addition/multiplication, respectively. The same 

holds for Eq. (5) and Eq. (6).  

4. Application to the Supervisory Servo 

Controller 

In order to show the applicability of the theoretical results 

presented in Section 3, consider for example, the state A  of 

the supervisory servo controller, i.e. the transpose of the truth 

table of the N 2 diagram, is given as  
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1 0 0 0 0 0

1 1 0 0 0 0

0 1 1 1 1 0
,

0 0 0 1 0 0

0 0 0 1 1 0

0 1 0 1 1 1

A

 
 
 
 

=  
 
 
 
  

 

and B and C matrices are given in Eq. (2). Then the 

controllability matrix in Boolean semring is given as 

( )

1 1 1 1 1 1

0 1 1 1 1 1

0 0 1 1 1 1
, .

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 1 1

ctrb A B

 
 
 
 

=  
 
 
 
  

 

Therefore, the 4
th

 row and the 5
th

 row are both zeros in the 

two controllability matrices, and therefore, the node 4 

“Operation” and the node 5 “Test” are never reached by the 

initial mode “Start”. The reachability matrix in traditional 

real numbers provides the same answer as above: 

( )

1 1 1 1 1 1

0 1 2 3 4 5

0 0 1 3 6 10
, .

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 3 6 10

ctrb A B

 
 
 
 

=  
 
 
 
  

 

Similarly, the observability matrix in Boolean semring is 

given as  

( )

0 0 0 0 0 1

0 1 0 1 1 1

1 1 0 1 1 1
, ,

1 1 0 1 1 1

1 1 0 1 1 1

1 1 0 1 1 1

obsv A C

 
 
 
 

=  
 
 
 
  

 

Therefore, the 3
rd

 column contains zeros in two 

controllability matrices, and therefore, the node 3 “Standby” 

cannot reach the final mode “Shutdown”. In fact, the 

production line will be in the deadlock situation between the 

internal loops without turning off the system. The 

observability matrix in traditional real numbers provides the 

same answer as above: 

( )

0 0 0 0 0 1

0 1 0 1 1 1

1 2 0 3 2 1
, .

3 3 0 6 3 1

6 4 0 10 4 1

10 5 0 15 5 1

obsv A C

 
 
 
 

=  
 
 
 
  

 

This supervisory servo controller has 6 nodes. The rank 

condition can be easily expanded into a large scale discrete-

event model without increasing the computational 

complexity.  

5. Conclusion 

This paper presents state space representations of N 2 

diagrams over the Boolean semiring and an analytical result 

for the structural observability of discrete event systems 

modelled by N 2 diagrams. The rank condition of the 

observability matrix determines whether internal discrete 

nodes can reach the final node and which nodes are the 

unobservable nodes. Therefore, it provides an analytical 

method to determine whether a discrete event system can get 

into and out of operational modes as required prior to 

hardware demonstration. It provides tremendous savings in 

verification time and cost. Future research can focus on 

stochastic N 2 diagrams, in which discrete transitions are 

modelled by probabilities of random variables. Potential 

applications can be found in genetic regulatory networks 

arising in biological systems. 
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