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Abstract: In this article, the proof of the Riemann hypothesis is considered using the calculation of the Riemann ζ-function 

on a relativistic computer. The work lies at the junction of the direction known as "Beyond Turing", considering the application 

of the so-called "relativistic supercomputers" for solving non-computable problems and a direction devoted to the study of 

non-trivial zeros of the Riemann ζ-function. Considerations are given in favor of the validity of the Riemann hypothesis with 

respect to the distribution of non-trivial zeros of the ζ-function. 
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1. Introduction 

In the article [1] a relativistic Turing machine was 

suggested for calculation the Riemann ζ-function presented 

by the series which diverges for 1u <  [2].  
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Such an approach (known as "Beyond Turing") to solving 

problems beyond the range of problems solved by the 

classical Turing machine develops in a number of works 

since the 1980s of the last century (see, for example, [3]). 

The corresponding computing devices received a name of 

"relativistic supercomputers". An unchanging attribute of the 

proposed projects is black holes, as the sources of the metric 

required for their implementation. The approach developed 

below, so as in the author's previous articles [1, 4], is free 

from this necessity. The calculation of the sum of a divergent 

series (a non-computable problem) is regarded as a physical 

problem about the motion of a material point in a space-time 

which curvature is due to the calculation itself. One can 

imagine a relativistic Turing machine, the role of the head of 

which is performed by a material particle moving in 

accordance with relativistic equations of motion determined 

by the corresponding physical problem. In the article [1] the 

computations are performed for the critical line u = ½. Below 

are presented the calculations both in and outside it. 

Considerations are given in favor of the validity of the 

Riemann hypothesis with respect to the distribution of non-

trivial zeros of the ζ-function. 

2. Calculation the ζ-Function in the  

Critical Line 

In the article [1] was investigated the behavior in the 

complex plane of partial sums of the divergent series, 

representing the Riemann ζ -function (hereinafter, the ζ-

function)  
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where n, m are natural numbers, w=u+iv is a complex 

argument of the ζ -function. As was shown in [1] the behavior 

of (1) resembles the motion of a particle along the trajectory of 

a vortex for sufficiently large m. This physical problem defines 

the relativistic Turing machine used in this paper.  



 International Journal of Theoretical and Applied Mathematics 2017; 3(6): 219-224 220 

 

In the article [1] were received the expression for the 

interval ds and the relativistic equations of motion of the 

material particle moving along the vortex trajectory in its 

own frame of references 
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where we set /ɶr cω= , c is a speed of light. Here are used 

the asymptotic expressions for the radial and angle 

components of the speed of a particle which realizes the 

calculation 

/ , /rV r V rϕ ω δ= =                                (3) 

(ω, δ – are constants) for sufficiently large r in the polar 

coordinate system r, ϕ on the complex plane.  

Besides that, we use instead an angle element dϕ the length 

element along the vortex trajectory dl, which is defined as  
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The last equation in (4) will be used in the subsequent 

numerical calculations. In these variables, the equations of 

motion look as follows [1] 
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The solutions of these equations received in [1] describe 

the behavior of the particle above the horizon 0 /ɶr r b= , 

which corresponds A (r)=0. Integrating the last equation in 

(5) one can receive the equation [1] 
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C2-is a constant.  

To describe the behavior the particle under the horizon one 

must define a new metric which has no a fictitious singularity 

at r = r0. It is more convenient to use instead coordinates r, ϕ 

which are used in [1] coordinates r, l introduced earlier. 

To construct a metric suitable for 0r r< , following [5], we 

perform the transformation of coordinates , ,r t ρ τ→ 1
. 

                                                             

1 A similar method was firstly applied by D. Finkelstein [5].  
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where f (r) –is a function chosen later from the condition that 

the fictitious singularity at 0r r= of the metric (2) be 

eliminated. Signs ± correspond to the motion in and out of 

the field center r = 0. Performing the calculations, we find 

that this is achieved by choosing  
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The expression for the interval (2) takes the form 

( )22 2 2 2( )ds cd f r d dlτ ρ= − −                  (9) 

The interval (9) has only the real singularity at the point r 

= 0. The metric (9) is synchronous (gττ =1) and nonstationary, 

as in the Schwarzschild case [5]. From (7) it follows the 

connection between the new and old coordinates 
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In variables ,ρ τ , there is no singularity on the horizon

1
0( )r c rρ τ−= Φ − = . The coordinate ρ  is everywhere 

spatial and τ − temporary (some clarifications are given 

below). The given values of r correspond to the world lines

с constρ τ− = . The world lines of a particle at rest relative 

to the reference frame described by coordinates ,ρ τ  are 

straight lines parallel to the axis τ .  

As shown in the article [1] the above reasoning describes 

the behavior of the ζ-function on the critical line u = ½. It 

contains both nontrivial zeros of the ζ-function and points 

that are not its zeros. For zeros zw w= , moving the particle 

along the world line in a finite interval of proper time ends at 

the center of the field r = 0. For other points nzw w=  that are 

not zeros of the ζ-function, the particle, moving along the 

world line, ends its approach to the center r = 0 at a point

( )nzr wζ= . The argument ( )nzwζ  is found based the 

considerations, which is given below. 

Using the methods of general theory of relativity we write 

out the system of equations of motion in the region below the 

horizon 
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where the expressions for the non-zero Christoffel symbols 

are used [5].  
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Note the contradictoriness of the transformations (7) and 

the followed expressions for the interval (9) and equations 

(11). Indeed, on the one hand, the coordinate system ρ, τ is 

synchronous, since the components of the metric tensor gα0 = 

0 (α = 1, ρ) [5]. On the other hand, it is impossible to 

synchronize watches of observers located on different sides 

of the horizon, since they can not exchange light signals. 

Therefore, strictly speaking, we can use transformations (7) 

and formulas (9) and (11) only above the horizon. Usually, 

this is sentenced to the fact that Finkelstein's coordinate 

system, in turn, is incomplete, which is overcome by 

introducing another, complete system, for example, Kruskal-

Szekeres [5]. As shown below, the incompleteness of the 

Finkelstein reference system is due to fundamental physical 

causes and can not be eliminated in this way. 

After the particle crossed the horizon, another system 

should be used to describe its motion 
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which doesn’t contain the time τ. Below is a more complete 

justification for excluding the time τ from the description. 

From the equation (12) and (10) we find  
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C3 is a constant. Bearing in mind that the solution of (13) 

must be sewn on the horizon with a similar solution (6), 

which is valid over the horizon we find 2
3C b= . 

Equations (6) and (13) can be integrated. The results of the 

numerical calculation are shown in Figure 1 

 

Figure 1. The phase portrait of the solutions of equations (6) (I) and (13) 

(II). The solid and the dashed lines show the two branches of the solution, 

dotted line – the horizon 0x ; ,P Q − are the branch points, where 1sr′ = ± .  

I: 0 2/ , / ; 1,5ɶx r r x x dr ds C′= > = = ; II: 0/ ɶx r r x= < ; 0 1,001x = . 

The qualitative behavior of the solution can be described 

as follows. In the moving system, the point representing the 

behavior of the particle placed above the horizon begins to 

move along the branch, for which 0sr′ >  corresponding to an 

increase the helix radius over time. In the branch point P 

1sr′ = , what corresponds ( )2
rϕ′ → ∞  or 0dϕ → , i.e. 

rotation is stopped. Then the particle goes to another branch, 

for which 0sr′ <  and, moving along this branch and rotating 

in the opposite direction, reaches the horizon 0r r= . More 

detailed picture of particle motion will be given below.  

Further, the particle will continue to move under the 

horizon. The particle continues its movement to another 

branching point Q, where 1sr′ =  too and changes the 

direction of its movement on the opposite one. After that, 

another cycle of periodic motion begins. 

For the data in Figure 1, the horizon 0 0 / 1.001ɶx r r= = . On 

the horizon, the radial velocity of the particle can be found 

from the equation 
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The ± signs correspond to two branches of the solution, 

shown in Figure 1. Solving equation (14) with allowance for 

(4) we obtain the value 0( ) /sr r δ ω′ ≈ ±  in which the higher 

order terms with respect to the small parameter / 1δ ω <<  

were omitted.  

This scenario is typical for the argument w of the ζ-

function, which corresponds to its non-zero value w ≠ wnz. 

Therefore, the particle will not fall to the center of the field r 

= 0, but only reach the branch point Q, whose character is the 

same as for the point P in Figure 1. The argument ( )wζ  is 

determined by the angle ϕ at which branching takes place, i.e. 

1sr′ = ±  in the formula (4).  

A point chosen arbitrarily on the critical line will almost 

always not be a zero of the ζ-function: w ≠ wnz. Therefore, the 

choice of the conditions under which equation (13) is solved 

does not affect the nature of the solution. 

Consider the calculation of the ζ-function for an argument 

which coincides with its zero: w = wz. The trajectory of the 

particle realizing this calculation belongs to the special 

trajectories of equations (13). Along it, the angle ϕ does not 

change, i.e. dϕ = 0, and dl = ±dr, and the relation (4) ceases 

to work. Nevertheless, the solution (13) obtained can be used 

by putting in it rϕ′ = ∞ . The result is shown in Figure 2. 
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Figure 2. The phase portrait of the solution of equation (13) for computing 
the zero of the ζ-function. The notation and data are the same as in Figure 1: 

0/ 1.001, /ɶx r r x x dr ds′= < = = . 

3. Calculation of the ζ-Function Outside 

the Critical Line
2
 

Since the details of calculating the ζ-function outside the 

critical line in many respects repeat its computation on the 

critical line, we omit many of them and confine ourselves 

mainly to the study of the special trajectories of the equations 

of motion under the horizon that are related to the zeros of 

the ζ -function. As for the case of the critical line, the motion 

of the particle realizing computation resembles the motion 

along the trajectory of a vortex. In a fixed coordinate system 

, , ,r z tϕ′ ′ ′ ′  (we use cylindrical spatial coordinates) the 

interval looks as follows 
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,r ϕ′ ′ −  are polar coordinates in the plane (x, y). Then we 

make the transformation to vortex’s own frame of reference, 

in which each point of the vortex is at rest 
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where Vr and Vϕ are given by the expressions [1] 
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For the first expression in (16) to be the total differential, 

we must put 1
1( ) rr C Vβ −= , C1 is a constant. In its own frame 

of reference, the interval looks as follows  

                                                             

2 In the paper [1] was made an erroneous conclusion about the inapplicability of 

the proposed model of the relativistic Turing machine outside the critical line. 
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If we put 1 /C cδ ω= , 1γ =  and use the previous 

expressions for the radial and angle components of the 

particle’s speed (3) the formulas (18) go into the analogous 

formulas for the critical line (2). 

From the similarity of expressions (18) and (2), we 

conclude that the behavior of the computation particle 

outside the critical line resembles its behavior on the critical 

line. In particular, the equations of motion of the computing 

particle above the horizon look the same as the equations (5) 

described above, with the obvious substitutions (17) instead 

(3). The metric under the horizon is constructed similarly to 

(7) with the same substitutions. The same can be said about 

the equations of motion of a particle under the horizon, an 

analog of equations (12). To solve the question of the 

presence (or absence) of the zeros of the ζ -function outside 

the critical line, we must investigate the possibility of 

existence under the horizon the special trajectories, similar to 

the one whose phase portrait is depicted in Figure 2. Thus, 

the problem reduces to investigating solutions of the equation 

(analog (13)) 

3

( ) ( )

Cdr

ds A r B r

′
= ±

−
                           (19) 

3С′  is a constant, and A and B are given by the expressions 

(18), and in B (r) ( ) 1
rϕ

−
′  is set equal to zero. 

According to the meaning of the calculation procedure 

implemented by the Turing machine, its particle-head must 

stop, having received the result of the calculation (if it is a 

matter of calculating zero)
3
. At the stopping point 0r = , all 

the derivatives of r with respect to s of finite order must 

vanish: ( )
0

n
sr =  ( 1n ≥  is an arbitrary integer). Substituting 

in (19) the expressions for the velocities (17), we find that at

0, sr r′→  ~ rγ
. For the n-th derivative of r we obtain the 

estimation ( )n
sr ~

1n nr γ − +
. In the limit n → ∞, we find that the 

stopping condition is satisfied for γ> 1 or u> ½. Hence we 

conclude that in the strip 0 <u <½, the zeros of the ζ-function 

are absent. Since the zeros of the ζ-functions should be 

symmetrically disposed with respect to the critical line, they 

are absent in the strip ½ <u <1 too. 

The obtained result testifies to the truthiness of the 

                                                             

3 If the calculated value is nonzero, then the particle, as shown above, does not 

stop. The result is determined by some characteristic feature of the trajectory, as 

described above. 
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Riemann hypothesis about that all non-trivial zeroes of the ζ 

–function are located at the critical line 

4. Some Geometrical Aspects of the 

Model Proposed 

To better understand in details the motion of the 

computing particle and what happens at the branch points P 

and Q, we do an embedding of a two-dimensional space with 

the metric (2) into a three-dimensional space with the 

Euclidean metric 

2 2 2 2 2
dL dr r d dzϕ= + +                         (20) 

dL – is an element of length. The spatial part of the two-

dimensional metric (2) is written in the form 

[ ]2 2 21 ( )r d B r drϕ + −                            (21) 

Comparing (20) and (21), we find that the metric (2) can 

be regarded as an induced metric on a two-dimensional 

surface of rotation (relative to the OZ axis) in a three-

dimensional Euclidean space whose equation has the form 

( ) ( )

r

z r B r dr= −∫                              (22) 

The integral in (22) can only be determined numerically. 

For the calculation data shown in Figure 1, the result of 

calculation (22) is shown in Figure 3 

 

Figure 3. The result of the calculation by formula (22) in the neighborhood 

of the point P; Xm, k =mcos (φk), Ym, k =msin (φk), φk =2πk/13, k=1..13, Zm=z 

(rm) (21). The calculation is made for the upper branch of the solution in 

Figure 1. The graph is non-uniformly stretched (in the upper part - larger) 

along the radial coordinate r by replacing rm by m. 

The branch points P in Figure 3 are located in a circle of 

large radius. In order to obtain a complete surface, it is 

necessary to perform similar constructions for the remaining 

three branches-one (lower) above the horizon and two (upper 

and lower) below the horizon. As a result, a torus-like surface 

will appear on which the trajectory of the particle realizing 

the computation is located. The large and small torus radii 

(dimensionless) for the data in Figure 1 are respectively 1,33 

and 0,62. The three-dimensional trajectory of the vortex is 

located on the surface of the torus, passing from one part 

(conditionally, the upper one) to the other (lower) and vice 

versa at the points P and Q. 

Let's say two words about the physics of the problem 

under consideration. Two flat models of vortices are known 

in hydromechanics: a vortex-sink and a vortex-source [6]. 

The present examination combines the two sides of the 

phenomenon into single one, which corresponds to 

experiments with real vortices, for example, whirlpools, 

which have two areas of flow: convergent (surface) and 

divergent (in deep). In this case, the drain and source power 

are zero, i.e. the constituent vortices nourish each other. 

5. Discussions 

B. Riemann formulated his famous hypothesis in 1859. So 

far, it has neither a clear proof nor a refutation. D. Gilbert in 

1900 included it in the number of cardinal problems of 

mathematics under number 8. At present, the Clay 

Mathematic’s Institute has included it among the seven 

problems of the millennium, for the solution of which a prize 

of 1 million US dollars will be paid. 

A popular historical review of the problem and directions 

of its investigation were given in the book [7]. Most 

researchers of the problem believe that the Riemann 

hypothesis is correct, but opposite statements are also found 

[8]. The papers devoted to the proof of the Riemann 

hypothesis can be divided into works constructing proofs 

using purely mathematical methods [9-13] and works in 

which its relation to various physical problems is noted [14, 

15] and accordingly using physical methods of proof. 

Special mention should be made of the papers of A. Turing 

devoted to a numerical study of the zeros of ζ-function on a 

classical computer. Note that Turing himself considered the 

Riemann hypothesis to be erroneous and his investigations 

were aimed at finding nontrivial zeros of the ζ -function 

outside the critical line. A review of the papers of A. Turing 

is made in the report [16]. 

The present paper, like the previous work of the author [1, 

4], is devoted to the calculation of the values of ζ-function on 

a relativistic computer realizing the idea of a relativistic 

Turing machine.  

As shown in the author's paper [17], the ζ -function 

calculations for real arguments are connected by certain 

contradictions that are resolved if we assume that the 

geometry of the numerical continuum is different from the 

Euclidean one. 

Note that the distinctive feature of the results obtained is 

the presentation of calculation as the process (as it really is) 

and the introduction of the concept of time, what is not 

typical for traditional mathematics, that claims its statements 

are timeless. 

The question of the accuracy of relativistic computations 

has not yet received its final solution. The accuracy of the 
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calculation of ζ (-1) obtained in [4] corresponds to an error of 

3.5%. If we consider this calculation as yet another 

confirmation of the general theory of relativity, then in 

accuracy it is considerably inferior to the others 

(experimental). As regards the accuracy of the computation 

of the ζ-function for the complex argument presented in the 

present paper, from this point of view these results allow us 

to speak of secession of zeros from other values rather than 

of calculation. Therefore, the further direction of work on 

relativistic calculations will be an increase in their accuracy. 

Let us say a few words about the derivation of the 

equations (12). Formally, they are obtained if we set dτ = 0 in 

the transformation formulas to the Finkelstein coordinates 

(7); what means the suggestion that under the horizon time 

"does not flow", or, more precisely, there is no very concept 

of time. This assumption can be justified if more deeply than 

is usually done, to consider the nature of phenomena under 

the horizon of events. As shown in the article [18], the 

electromagnetic vacuum below the horizon is unstable and 

solutions of the Maxwell equations in the form of light waves 

are absent. It follows that all the arguments concerning the 

behavior of light geodesics, given, for example in [5], and 

stated above, are valid only over the horizon, where the 

vacuum is stable. Instead of light waves (photons), the 

solutions of the Maxwell equations below the horizon have a 

tunneling character and the notion of time is inapplicable to 

them. They resemble the so-called “tunneling states” in a 

solids [19]. For the latter, the use of the concept of time and 

the corresponding description leads to paradoxes, for 

example, to an infinite speed of propagation [20]. 

6. Conclusion 

In this article, a physical proof of the Riemann Hypothesis 

is presented. 

For this, like in the previous paper of the author [1] the 

computation of the Riemann ζ-function represented by a 

divergent series in the plane of the complex argument w=u + 

iv is performed using the methods of the general theory of 

relativity. The calculation is performed by a relativistic 

Turing machine, the role of the head of which is played by 

some material particle moving in accordance with the 

equations of motion found. It is shown that the non-

computable (in the sense of Turing) problem of computation 

of the sum of a divergent series becomes computable due to 

the transition to the moving system of reference.  

In contrast to [1], where calculations of the ζ-functions were 

performed on the critical line only in this article, the calculations 

also are made beyond the critical line. It was shown that whereas 

in the critical line there are two types of solutions of the 

relativistic equations of motion for the material particles 

realizing calculation that correspond to zeros and nonzero values 

of the ζ-functions outside it, there is only one type of solution 

corresponding to non-zero values of the ζ -function. 

This gives grounds for asserting that there are no zeros of 

the ζ –function outside the critical line, which is a proof of 

the Riemann hypothesis. 
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