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Abstract: The structures of the subgroups play an important role in the study of the nature of symmetric groups. We 

calculate the 11300 subgroups of the permutation group S7 by group-theoretical approach. The analytic expressions for the 

numbers of subgroups are obtained. The subgroups of the permutation group S7 are all represented in an alternative way for 

further analysis and applications. 
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1. Introduction 

The study of permutation groups is of significance for the 

development of group-theoretical approach [1, 2, 3]. On one 

hand, each row in the multiplication table of a finite group 

shows a permutation of group elements such that every finite 

group is a subgroup of a permutation group. On the other, the 

analysis of the tensor indices requires the theory of Young’s 

permutation operators. The survey of the structures of the 

subgroups is meaningful to understand the properties of the 

permutation groups. Many researches have discussed the 

computing the subgroups of permutation groups [4]. Since 

the order of the permutation group Sn, g = |��| = �! , 

increases rapidly with the increase of the number n, it is 

generally considered that it would be quite difficult to 

calculate the subgroups of a permutation group by group-

theoretical method when the number n is getting larger. The 

subgroups of S 7  mainly come from the computer program 

[5, 6, 7]. However, we believe that if we can calculate the 

subgroups of Sn through the group-theoretical method, then 

we can not only be independent of the computer program, but 

also we can study the properties of the subgroups of Sn with 

analytic methods, provide the explanation for the pretty huge 

numbers of subgroups of different orders. It also might be 

possible that the research indicates some useful information 

for the simplification of the computer programs. 

In the following section, we will make preliminary 

sketches of various non-isomorphic groups for a few finite 

groups. Then, we will analyze the properties of the group S 7  

and calculate the subgroups of the permutation group S 7  in 

section 3. In this section, the analytic expressions for the 

numbers of subgroups are also presented by the numbers of 

group elements in the classes. We discuss its possible 

applications with the results and represent the subgroups in 

an alternative way in section 4. We conclude in the final 

section after pointing out various directions for future 

investigations. 

2. Preliminaries 

In the finite group, one may try to know how many non-

isomorphic groups of a given order of n. Generally, the 

answer to this question is not yet given. Here, we present all 

non-isomorphic groups of orders less than 14. That is what 

we need to calculate the subgroups of the group S 7 . 

The Lagrange’s theorem [8, 9] states that for any finite 

group G, the order of every subgroup H of G divides the 

order of G. It implies that every group of prime order is 

cyclic. If the order of the finite group is a prime number, g = 

2, 3, 5, 7, 11, or 13, it can only be the cyclic group, denoted 

by 
� = ��, R,⋯ , �����，where R is a generator, �� = �, 

and E is the identity. 

If the order of a finite group is g = 2n (n = 2, 3, 5, 7), 

where n is a prime number, it can only be either the cyclic 

group C2n or the dihedral group Dn. 

If the order of the group is 8, there are five non-isomorphic 

groups [10, 11]. The first is the cyclic group C8. The second 

is the dihedral group D4, where two generators can be 

denoted by R and S0, satisfying �� = ��
� = �. The third is 

an Abelian group, 
�� = 
� × 
� , where the generators 
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satisfy �� = ��
� = �  and RS0=S0R. The fourth is also a 

commutative group, ��� = �� × 
� , and the generators 

satisfy ��
� = ��

� = ��
� = �. The fifth is a quaternion group 

Q8, the generators satisfy ��
� = ��

� = �. 

There are two non-isomorphic groups of order 9. One is 

the cyclic group C9. The other is a direct product of two 

cyclic groups, 
� × 
� , where the generators satisfy 	�� =
�� = �,, and RS=SR. 

If the order of the group is 12, there are five non-

isomorphic groups. The first is a cyclic group C12. The 

second is the dihedral group D6 where the generators 

satisfy	�� = ��
� = �. The third group is denoted by T or A4 

where the generators T 
2
 and R1 satisfy	(��)� = �� = � . 

The fourth is denoted by Q, and the generators is chosen as R 

and S, satisfying �� = �� = �. The fifth is the group C6h 

and the generators satisfy �� = ��
� = � and RS0=S0R. 

3. The Properties of the Subgroups 

of S 7  

Before we get started with the subgroups of S 7 , we need 

to be clear about the number of group elements in S 7 , 

! = |�"| = 7! = 5040 , and the number of its conjugate 

classes, gc =15. The 15 classes [α], the number of elements n 

[α] in the classes, the order of the elements and one 

representative element in each class are presented in Table 1. 

Table 1. Group elements and classes of the group S 7 .  

class [α] 
number of elements 

n [α] in the class [α] 
one element in the class 

order of 

elements 

[1111111] 1 (1) (2) (3) (4) (5) (6) (7) 1 

[211111] 21 (12) 2 

[22111] 105 (12) (34) 2 

[2221] 105 (12) (34) (56) 2 

[31111] 70 (123) 3 

[331] 280 (123) (456) 3 

[4111] 210 (1234) 4 

[421] 630 (1234) (56) 4 

[511] 504 (12345) 5 

[3211] 420 (123) (45) 6 

[322] 210 (123) (45) (67) 6 

[61] 840 (123456) 6 

[7] 720 (1234567) 7 

[52] 504 (12345) (67) 10 

[43] 420 (1234) (567) 12 

In the following, we will analyze the subgroups of S 7  of 

different orders for non-isomorphic subgroups. Although 

there are a considerable number of subgroups, it will be 

shown that the number can be connected with the numbers of 

group elements in the classes by analytical expressions. 

As can be seen, the subgroups of order 2 will take the form 

of {E, (12)} or {E, (12) (34)}, or {E, (12) (34) (56)}. Where 

there is an element of order 2, there is a subgroup of order 2. 

According to the number of elements in each classes in Table 

1, if we denote the total number of cyclic subgroups of order 

2 by N (2), then it is equal to the number of all elements of 

order 2, 

'(2) = �	[�] + �	[��] + �	[���] = 231.              (1) 

Therefore, there are 231 cyclic subgroups of order 2 in the 

permutation group S 7 . 

The subgroups of order 3 will look like {E, (123), (132)} 

or {E, (123) (456), (132) (465)}. If the total number of 

subgroups of order 3 is denoted by N(3), then the connection 

between N(3) and the number of elements in the classes is 

'(3) = �
� .�	[�] + �	[��]/ = 175.                (2) 

That is, there are 175 cyclic subgroup of order 3 in the 

group S 7 . 

The subgroups of order 4 of the group S 7  need to be 

analyzed carefully. According to the preliminaries, there are 

two non-isomorphic groups of order 4, a cyclic group and an 

inversion group. Notice that the table 1 indicates that 

elements of order 4 are included in the class [4] and the class 

[42]. The cyclic subgroups are like {E, (1234), (13) (24), 

(1432)} or {E, (1234) (56), (13) (24), (1432) (56)}. The 

number of the cyclic subgroup of order 4 is half of the 

number of all elements of order 4. The inversion subgroups 

might take the form of {E, (12), (34), (12) (34)} or {E, (12) 

(34), (13) (24), (14) (23)}. Since three elements, (56), (57) 

and (67), are all the elements of order 2 in S 7 , there will be 

other forms of inversion subgroups of order 4, such as {E, 

(12), (34) (56), (12) (34) (56)}, {E, (12) (34), (12) (56), (34) 

(56)} or {E, (12) (34), (13) (24) (56), (14) (23) (56)}. The 

number of inversion subgroup of order 4 is analyzed to 

be 	0�[��] + �
� �[��] + �[���] × 3 + �[��] + �[��] × 31 . 

Therefore, the analytical expression between the total number 

of the subgroups of order 4 and the number of elements in the 

classes is 

'(4) = �
� .�[�] + �[��]/ + 0�[��] + �

� �[��] + 3�[���] +
�[��] + 3�[��]1 = 420 + 875 = 1295.	          (3) 

The cyclic subgroups of order 5 are like {E, (12345), 

(13245), (14235), (15234)} and the total number of 

subgroups is calculated to be 

'(5) = �
� �	[�] = 126.                        (4) 

There are two non-isomorphic groups of order 6. Through 

careful analysis, it is found that the generators in the 735 

cyclic subgroups can be chosen like {(123456)} or {(123) 

(45)} or {(123) (45) (67)}. There are 910 dihedral subgroup 

D3, the generators can be chosen as {(123), (23)} or {(123), 

(23) (45)} or {(123), (23) (45) (67)} or {(123) (456), (23) 

(56)} or {(123) (456), (15) (24) (36)}. Therefore, the total 

number of the subgroups of order 6 in S 7  is verified to be 

'(6) = �
� .�[�] + �[���] + �[��]/ + 0�� �[�] + �

� �[�] × 6 +
�
� �[�] × 3 + �

��[�] × 3 + �
� �[��]1 = 735 + 910 = 1645.	  (5) 

The cyclic subgroups of order 7 are like {E, (1234567), 

(1357246), (1473625), (1526374), (1642753), (1765432)} 

and the total number of subgroups is 
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'(7) = �
� �	["] = 120.                            (6) 

The preliminaries indicate that there are five non-

isomorphic groups of order 8. It can be found that there is no 

cyclic subgroup of order 8 or subgroup which is isomorphic 

to the quaternion group. There are 1050 dihedral subgroup 

D4, the generators can be chosen like {(1234), (13)} or 

{(1234), (13) (56)} or {(1234) (56), (12) (34)} or {(1234) 

(56), (12) (34) (56)}. There are 315 subgroups of order 8 

which is isomorphic to C4h, the generators can be chosen like 

{(1234) (56), (56)}. There are 210 subgroups of order 8 

which is isomorphic to D2h, the generators can be chosen like 

{(12) (34), (12) (56), (12)} or {(12) (34), (13) (24) (56), 

(56)}. The connection between the total number of subgroups 

N(8) and the numbers of elements in the classes nα are found 

to be 

N(8) = 0�� �[�] + �
� �[�] × 3 + �

��[��] + �
� �[��]1 + 0�� �[��]1 +

0�[���] + �
� �[��] × 31=1050+315+210=1575.      (7) 

There is no cyclic subgroup C9 in the permutation group 

S 7 . The subgroups of order 9 in S 7  can be expressed 

as 	
� × 
� , such as {E, (123), (132), (456), (465), (123) 

(456), (132) (465), (123) (465), (132) (456)}. It is found that 

there are 70 subgroups of order 9, 

'(9) = �
� �	[��] = 70.                          (8) 

There are 378 subgroups of order 10. The generators in the 

126 cyclic groups C10 can be taken like {(12345) (67)}. 

There are 252 dihedral groups D5, the generators can be like 

{(12345), (15) (24)} or {(12345), (15) (24) (67)}. The 

calculate-expression is 

'(10) = �
� �[6�] + �

��[6] × 2 = 378.            (9) 

Using the means of similar analysis, there are 1715 

subgroups of order 12. The generators in the 105 cyclic 

groups C12 can be like {(1234) (567)}. There are 1155 

dihedral groups D6, the generators can be chosen as {(123) 

(45), (12)} or {(123) (45), (12) (67)} or {(123456), (14) (23) 

(56)} or {(123) (45) (67), (12)} or { (123) (45) (67), (12) 

(45)} or {(123) (45) (67), (12) (46) (57)}. There are 140 

subgroups of order 12 which are isomorphic to C6h, the 

generators can be like {(123) (45) (67), (67)} or {(123) (45) 

(67), (46) (57)}. There are 210 subgroups of order 12 which 

are isomorphic to A4, the generators can be like {(13) (24), 

(243)} or {(13) (24), (243) (567)} or {(15) (34), (146) 

(253)}. There are 105 subgroups of order 12 which are 

isomorphic to the group Q, the generators can be like {(123) 

(46) (57), (23) (4567)}. 

There are 120 subgroups of order 14, the generators can be 

chosen as {(1234567), (12) (37) (46)}. 

There are no subgroups of order 11 or 13 in the group S 7  

according to the Lagrange’s theorem. The subgroups, whose 

order are more than 14, can be deduced from the results what 

we have gotten and the analysis of the structures of the 

subgroups. Due to the length limit, we take the subgroup of 

order 16 as example. Refer to the subgroups of order 8 which 

are isomorphic to the group D4, we find that the subgroups of 

order 16 are isomorphic to D4h, such as {E, (1234), (13) (24), 

(1432), (13), (14) (23), (24), (12) (34), (56), (1234) (56), (13) 

(24) (56), (1432) (56), (12) (34) (56), (13) (56), (14) (23) 

(56), (24) (56)}. The total number of subgroups of order 16 is 

calculated to be 315, 

'(16) = �
� �[����] × 3 = 315.                   (10) 

Similarly, the subgroups of order 18 can be referred to the 

subgroups of order 9, the subgroups of order 21 can be 

referred to the subgroups of order 7, the subgroups of order 

144 can be referred to the subgroups of order 72, etc., and the 

analytical expressions can all be get through careful analysis. 

The subgroups of orders larger than 240 can be get directly 

from the analysis of the properties of the permutation group. 

Calculate the number of 6-combinations of 7, C"
� = 7, then 

we know that there are 7 subgroups of order 720 which are 

isomorphic to S6, correspondingly, there are 7 subgroups of 

order 360 which are isomorphic to A6. We have 1 subgroup 

of order 2520, which is denoted by A7, composed by all even 

permutations of S 7 . On the basis of the calculation, it is 

found that when we calculate the subgroups of order m of the 

permutation group Sn, we can make full use of the results 

about the subgroups of order less than m of Sn and the results 

of subgroups of order m of S(n-1). 

4. Discussions 

In general, a group can be described by the generators. 

Since the choice of the generators is not unique, researchers 

have different choices. A group can also be described by 

giving all of the elements, whereas it appears to be 

redundant, especially when the order of the group is large. 

These two methods have been used in previous calculations. 

Here, for the convenience of analysis, we represent the 

subgroups in an alternative way, as shown in Table 2. 

The subgroups of the permutation group S 7  are 

represented in the form of 	[8�]9: 	[8�]9; ⋯		[8<]9= ,  where 

[8�], [8�]	⋯	and [8<] are the classes of the group S 7 . The 

expression means that this subgroup is a group of order 

{>� + >� + ⋯+ >< + 1 }. Excluding the identity, there are q 

classes in this group and there are ><  elements in the class 

[8<] . Another distinct advantage of this expression is the 

order of the elements can be determined as soon as one sees 

the class [8<] in the expression. For example, the expression 

of [222]
1
 [33]

2
 [6]

2
 represents that in the group of order 6, 

there is one element of order 2 in the class [222], two 

elements of order 3 in the class [33] and two elements of 

order 6 in the class [6]. 

The presented research would widen the application of the 

Cayley’s theorem [12, 13, 14]. The theorem stated that every 

finite group of order n is isomorphic to a subgroup of a 

permutation group Sn. The order of the corresponding 

permutation subgroup, directly from the Cayley’s theorem, is 

usually the same as the order of Sn, i.e., n!. To study a group 
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of order n! would be more difficult than to study a group of 

order n. Generally, it is not always an easy task to find the 

corresponding permutation subgroup with the same order as 

an arbitrary finite group. Now, we have obtained 11300 

subgroups of S 7 . The expressions of these subgroups can 

reveal how many classes are included and how many 

elements there are in each class. These results would be quite 

useful in the study of the structures and properties of finite 

groups. 

It is known that there are many non-isomorphic groups for 

a given order n and there are also several expressions consist 

of different classes for the isomorphic groups. When we 

choose the most appropriate form for a finite group, it should 

be noticed that the group elements of same order in different 

classes might have different meanings in the applications. 

Take for instance, the elements of order 2 in the octahedron 

group O. It can be found that the elements in the class [2] and 

the class [22] are all the elements of order 2. However, the 

elements in the class [2] represent the rotation around the 2-

fold axes connecting the midpoints of two opposite edges, 

while the elements in the class [22] represent the rotations 

around the three coordinate axes through the angle π 

respectively. The permutation subgroup which is isomorphic 

to the group O is {E, (123), (132), (234), (243), (124), (142), 

(134), (143), (12) (34), (13) (24), (14) (23), (12), (13), (14), 

(23), (24), (34), (1234), (1243), (1324), (1432), (1342), 

(1423) }. Therefore, among several forms of the subgroups of 

order 24 which are all isomorphic to the group O in the Table 

2, the appropriate form of the corresponding permutation 

subgroup for the group O should be [2]
6
 [22]

3
 [3]

8
 [4]

6
. 

To summarize, on the basis of theoretical calculation and 

analysis, there are 11300 subgroups of the permutation group 

S 7 . Besides two trivial subgroups, there are 231 cyclic 

subgroups of order 2, 175 cyclic subgroups of order 3, 1295 

subgroups of order 4, 126 cyclic subgroups of order 5, 1645 

subgroups of order 6, 120 cyclic subgroups of order 7, 1575 

subgroups of order 8, 70 subgroups of order 9, 378 subgroups 

of order 10, 1715 subgroups of order 12, 120 subgroups of 

order 14, 315 subgroups of order 16, 350 subgroups of order 

18, 378 subgroups of order 20, 120 subgroups of order 21, 

1435 subgroups of order 24, 245 subgroups of order 36, 126 

subgroups of order 40, 120 subgroups of order 42, 315 

subgroups of order 48, 63 subgroups of order 60, 175 

subgroups of order 72, 105 subgroups of order 120, 35 

subgroups of order 144, 30 subgroups of order 168, 21 

subgroups of order 240, 7 subgroups of order 360, 7 

subgroups of order 720, 1 subgroup of order 2520. The 

subgroups have all been expressed by the classes [α] of the 

group S 7  in Table 2. 

Table 2. The 11300 subgroups of the group S 7 .  

Order m Total number of the subgroups N(m) subgroups expressed by the classes number for each form of subgroup 

1 1 [1]1 1 

2 231 

[2]1 21 

[22]1 105 

[222]1 105 

3 175 
[3]2 35 

[33]2 140 

4 1295 

[22]1 [4]2 105 

[22]1 [42]2 315 

[2]2 [22]1 105 

[22]3 35 

[22]3 105 

[2]1 [22]1 [222]1 315 

[22]1 [222]2 315 

5 126 [5]4 126 

6 1645 

[2]1 [3]2 [32]2 210 

[222]1 [33]2 [6]2 420 

[22]1 [3]2 [322]2 105 

[222]3 [3]2 105 

[2]3 [3]2 35 

[22]3 [3]2 210 

[22]3 [33]2 420 

[222]3 [33]2 140 

7 120 [7]6 120 

8 1575 

[2]2 [22]3 [4]2 105 

[22]3 [222]2 [4]2 315 

[2]2 [22]1 [222]2 [42]2 315 

[22]5 [42]2 315 

[2]3 [22]3 [222]1 105 

[2]1 [22]3 [222]3 105 

[2]1 [22]1 [222]1 [4]2 [42]2 315 

9 70 [3]4 [33]4 70 

10 378 

[22]5 [5]4 126 

[222]5 [5]4 126 

[2]1 [5]4 [52]4 126 



 International Journal of Theoretical and Applied Mathematics 2017; 3(1): 19-24 23 

 

Order m Total number of the subgroups N(m) subgroups expressed by the classes number for each form of subgroup 

12 1715 

[22]1 [3]2 [322]2 [4]2 [43]4 105 

[2]4 [22]3 [3]2 [32]2 210 

[2]1 [22]3 [222]3 [3]2 [32]2 210 

[22]3 [222]4 [33]2 [6]2 420 

[2]3 [22]1[222]3 [3]2 [322]2 105 

[22]7 [3]2 [322]2 105 

[22]1 [222]6 [3]2 [322]2 105 

[22]3 [3]2 [322]6 35 

[2]2 [22]1 [3]2 [32]4 [322]2 105 

[3]8 [22]3 35 

[33]8 [22]3 70 

[33]8 [22]3 105 

[22]1 [3]2 [322]2 [42]6 105 

14 120 [7]6 [222]7 120 

16 315 [2]3 [22]5 [222]3 [4]2 [42]2 315 

18 350 

[2]3 [3]4 [32]6 [33]4 140 

[22]9 [3]4 [33]4 70 

[222]3 [3]4 [33]4 [6]6 140 

20 378 

[22]5 [4]10 [5]4 126 

[22]5 [42]10 [5]4 126 

[2]1 [22]5 [222]5 [5]4 [52]4 126 

21 120 [7]6 [33]14 120 

24 1435 

[2]6 [22]3 [3]8 [4]6 35 

[22]9 [3]8 [42]6 105 

[2]1 [22]3 [222]3 [3]8 [32]8 105 

[22]3 [222]6 [33]8 [4]6 105 

[22]9 [33]8 [42]6 210 

[2]3 [22]3 [222]1 [33]8 [6]8 105 

[22]9 [33]8 [42]6 105 

[2]2 [22]3 [3]2 [32]4 [322]6 [4]2 [43]4 105 

[2]3 [22]1 [222]3 [3]2 [322]2 [4]2 [42]6 [43]4 105 

[22]7 [222]6 [3]2 [322]2 [4]2 [43]4 105 

[2]5 [22]7 [222]3 [3]2 [32]4 [322]2 105 

[2]2 [22]1 [222]6 [3]2 [32]4 [322]2 [42]6 105 

[22]9 [3]2 [322]6 [42]6 105 

[2]3 [22]3 [222]9 [3]2 [322]6 35 

36 245 

[2]6 [22]9 [3]4 [32]12 [33]4 70 

[22]9 [222]6 [3]4 [33]4 [6]12 70 

[22]9 [3]4 [33]4 [42]18 70 

[22]3 [3]10 [322]6 [33]16 35 

40 126 [2]1 [22]5 [222]5 [4]10 [42]10 [5]4 [52]4 126 

42 120 [222]7 [33]14 [6]14 [7]6 120 

48 315 

[2]7 [22]9 [222]3 [3]8 [32]8 [4]6 [42]6 105 

[2]3 [22]9 [222]7 [33]8 [4]6 [42]6 [6]8 105 

[2]5 [22]9 [222]9 [3]2 [32]4 [322]6 [4]2 [42]6 [43]4 105 

60 63 
[22]15 [3]20 [5]24 21 

[22]15 [33]20 [5]24 42 

72 175 

[2]6 [22]9 [222]6 [3]4 [32]12 [33]4 [42]18 [6]12 70 

[2]3 [22]3 [222]9 [3]10 [32]24 [322]6 [33]16 35 

[2]6 [22]3 [3]10 [32]12 [322]6 [33]16 [4]6 [43]12 35 

[22]21 [3]10 [322]6 [33]16 [42]18 35 

120 105 

[2]10 [22]15[3]20 [32]20 [4]30 [5]24 21 

[22]15 [222]10 [33]20 [4]30 [5]24 [6]20 42 

[2]1[22]15 [222]15 [3]20 [32]20 [5]24 [52]24 21 

[22]25 [3]20 [322]20 [42]30 [5]24 21 

144 35 [2]9 [22]21 [222]9 [3]10 [32]36 [322]6 [33]16 [4]6 [42]18 [43]12 35 

168 30 [22]21 [33]56 [42]42 [7]48 30 

240 21 [2]11 [22]25 [222]15 [3]20 [32]40 [322]20 [4]30 [42]30 [5]24 [52]24 21 

360 7 [22]45 [3]40 [33]40 [42]90 [5]144 7 

720 7 [2]15 [22]45 [222]15 [3]40 [32]120 [33]40 [4]90 [42]90 [5]144 [6]120 7 

2520 1 [22]105 [3]70 [322]210 [33]280 [42]630 [5]504 [7]720 1 

5040 1 
[2]21 [22]105 [222]105 [3]70 [32]420 [322]210 [33]280 [4]210 [42]630 

[43]420 [5]504 [52]504 [6]840 [7]720 
1 
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5. Conclusions 

In this article, we calculate the 11300 subgroups of S 7  by 

group-theoretical approach and represent all the subgroups in 

an alternative way for further analysis and applications. 

Although the total number of the subgroups of S 7  is 

considerable large, we provide an explanation by several 

analytical formulae of N(m) and nα, where N(m) denotes the 

number of subgroups of order m and nα is the number of 

elements in the class [α]. The research shows the power of 

the group-theoretical approach and will be quite useful in 

analyzing the properties of the permutation groups. It will 

also be helpful in the study of the finite groups with the 

familiar theorem of Cayley. Further, how to apply this 

method to simplify the computer program is also an 

interesting subject to study in the future. 
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