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Abstract: In this paper, the authors propose a frequency domain multichannel Wiener filter for distributed microphone 

speech enhancement using acoustic arrays. The current state-of-the-art single channel estimators achieve noticeable 

performance gains using the to-noise ratio (SNR) and segmental signal-to-noise ratio (SSNR) objective measures, which 

measure noise reduction, but only achieve marginal performance gains using the Log-Likelihood Ratio (LLR) and Perceptual 

Evaluation of Speech Quality (PESQ) objective metrics, which correlate better than SNR and SSNR with speech distortion and 

overall speech quality. By extending the traditional single channel Wiener filter to multiple distributed channels through 

minimum mean-square error (MMSE) estimation of the complex real and imaginary components, the approach presented here 

demonstrates increases in the SSNR, LLR, and PESQ objective measures. Experimental results show that the new 

multichannel Wiener filter using distributed microphones produces gains of 5.0 dB (SSNR improvement), 0.7 (LLR output), 

and 0.8 (PESQ output) averaged across the 0 dB, 5 dB, and 10 dB input SNRs over the baseline single channel Wiener filter. 
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1. Introduction 

Wiener filtering is an optimal and a traditional baseline 

method for performing speech enhancement in either the 

time-domain [1] or frequency-domain [2] on noisy signals, 

which was originally developed and implemented for single 

channel microphones. For single channel methods, the work 

typically concentrates on frequency domain statistical 

estimators derived in the minimum mean-square error 

(MMSE) sense for estimation of the spectral amplitude [3-

5] or complex real and imaginary components [2]. Through 

modifications to the statistical prior models or estimator 

equations, Andrianakis [6], Erkelens [7], Plourde [8], and 

You [9] demonstrated only marginal improvements over the 

corresponding baseline methods in the objective measures 

of Segmental Signal-to-Noise Ratio (SSNR), Log-

Likelihood Ratio (LLR) and Perceptual Evaluation of 

Speech Quality (PESQ), which serve to predict noise 

reduction, speech distortion, and overall speech quality 

[10]. In order to achieve further gains in performance, these 

single channel estimators can be extended to multiple 

microphones [11, 12], particularly the distributed 

microphone paradigm [13]. 

Current multichannel Wiener filtering techniques can be 

categorized typically into methods using dual channel 

microphones [14] and microphone arrays [15-17]. The 

fundamental characteristics of those techniques depend on 

the assumptions of the microphone configurations. Whereas 

dual channel microphones require a reference noise 

microphone [14], microphone arrays [18] require close-

spacing of the microphone elements and a priori knowledge 

of the geometry. For both of these microphone 

configurations, the noise is assumed to be correlated across 

the microphone channels. In contrast, these assumptions are 

no longer valid for distributed microphones since the 

microphones are widely dispersed to provide broad acoustic 

coverage over a given region and the ambient noise is 

incoherent across the channels [19]. The goal of this work is 

to develop and implement the multichannel Wiener filter for 

distributed microphones without the strict array 
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assumptions [18] and illustrate improvements in SSNR, 

LLR, and PESQ with the additional microphone 

information. 

The remainder of this paper is organized into the following 

sections: distributed microphone system (Section 0), 

multichannel Wiener filter (Section 0), simulation experiments 

and results (Section 0), and conclusion (Section 0). 

2. Distributed Microphone System 

Consider an arbitrary array of M  microphones, where a 

particular microphone is represented as [ ]1,...,i M∈ . At 

each microphone i , the unknown, omni-directional, 

spatially-stationary source signal ( )s t  is captured as time-

delayed and attenuated coherent clean signals ( )i ic s t τ−  

corrupted by additive and uncorrelated noise ( )in t  with 

time-invariant attenuation factors ic  and time-delays iτ . 

Without loss of generality, the first microphone, 1i = , is 

assumed as the reference microphone with 1 1c = . Based on 

this distributed microphone scenario, the propagation model 

in the time-domain is given as 

( ) ( ) ( )i i iy t c s t n t= + ,                            (1) 

which can be accurately time-aligned through simple cross-

correlation methods [20]. The frequency domain 

representation of (1) is expressed as 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, , ,

, , , , ,

i i i

iR iI i R I i
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, (2) 

without the explicit dependencies on the frame λ  and 

frequency bin k , where the noisy and clean real R  and 

imaginary I  spectral components are written in compact 

form as ( ), ,i R I
Y  and ,R IS . 

3. Multichannel Wiener Filter 

As a basic approach to speech enhancement, the 

multichannel Wiener filter is derived for distributed 

microphones as an extension to the single channel Wiener 

filter [2]. Through Bayes rule, the MMSE estimate of the real 

and imaginary spectral components of the clean spectral 

source 
,R IS  is expressed as 
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,                              (3) 

which simply involves a single integration over the real RS  

or imaginary IS  spectral components rather than a double 

integration over both the spectral amplitude A  and spectral 

phase α . 

A Statistical Models 

Based on the form of the distributions given in [2], 

Gaussian models are assumed for both the speech prior 

likelihood 

( )
2

,

, 2

1
exp

R I
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σπσ
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and noise likelihood 
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where 
2

Sσ  and 2

iNσ  are the speech and noise spectral 

variances. Since the MMSE estimator in (3) consists of a 

noise likelihood with M noisy microphone observations 

( ) ( ) ( ){ }1, , 2, , , ,
, ,...,

R I R I M R I
Y Y Y  conditioned on the true real and 

imaginary spectral components 
,R IS , the noise likelihood in 

(5) must account for all the available information, not simply 

at the i th
 microphone. Under the assumption of a diffuse 

noise field [21], the spectral real and imaginary noise 

components are uncorrelated as shown in 

( ) ( )( ) ( )( ) ( )( )2

,, ,
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,..., exp
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For the distributed microphone MMSE estimator that will 

be derived from (3), the relationship in (6) allows for the 

estimation of the noise statistics at each of the corresponding 

microphones. 

B Optimal Multichannel MMSE Estimator 

By substitution of Gaussian statistical models for the 

speech prior (4) and noise likelihood (6), the MMSE 

estimator in (3) is written as 
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where 
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After splitting the integral in both the numerator and denominator in (7) each into two separate integrals and utilizing the 

relationship 3.462.1 in [22], the integration over 
,R IS  produces the results 
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where ( )D• •  is the parabolic cylinder function defined by 9.240 in [22] and 
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with 
2 2 2

iS i Scσ σ= . The arguments to the parabolic cylinder functions are simplified to and defined as 
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using the same notation as in [2]. Through the substitution of the constant term and definition in (11) and (12), the MMSE 

estimator in (7) is rewritten as 

( )( ) ( )( )
( )( ) ( )( ) ( )

1 1

2 2

2 2
2 2, ,

, ,

1 1, ,

1 1

2 2ˆ
2 2

1 1

R I R IS S
R I R IM M

R I R I
i i

i i

D N D N
S N

D N D N

σ σ

ξ ξ

− −− +

+
− −+ −

= =

   
    −
    = =
    ++ +    

   
∑ ∑

.                      (13) 



 International Journal of Theoretical and Applied Mathematics 2016; 2(2): 115-120 118 

 

 
By simplification of (13), the closed-form multichannel 

Wiener filter solution ,
ˆ

R I
S  is represented as 

( ), ,
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which is applied to the real and imaginary spectral 

components of the noisy observation signals for distributed 

microphones. From the form of (14), it is simply a weighted 

SNR sum of the noisy observations ( ), ,i R I
Y  and normalized 

by the sum of the a priori SNR iξ . For the case of 1M = , 

the MMSE estimate for S  simplifies as 

ˆˆ ˆ ˆ ˆ
1 1 1

∠ ∠ = = + = + =  + + + 

j S j Y

R I R IS S e S jS Y j Y Y e
ξ ξ ξ

ξ ξ ξ
,                                      (15) 

which is the single channel noise reduction Wiener filter as 

stated in [2]. 

4. Simulation Experiments and Results 

To evaluate the proposed optimal multichannel Wiener 

filter derived in (14), distributed multiple microphone noisy 

signals were simulated using the TIMIT [23] and NOISEX 

[24] corpora for constructing the attenuated clean speech 

signals and noise signals with input SNRs ranging from -10 

dB to 10 dB. The analysis conditions consisted of frames of 

256 samples (25.6 ms) with 50% overlap using Hanning 

windows. Noise estimation was performed on an initial 

silence of 5 frames. The decision-directed (DD) [3] 

smoothing approach was utilized to estimate ξ  with 

0.98
SNR

α =  using thresholds of 
25 10

min 10ξ −=  and 

min
40γ = . The microphones were assumed to be equal 

distance from the source signal, and the corresponding unity 

attenuation factors were estimated using the signal powers of 

the noisy signals across an entire utterance [25]. Objective 

measures of SSNR [26], LLR [27], and PESQ [28] were 

utilized to measure the noise reduction, speech distortion, and 

overall quality [10] averaged over ten enhanced signals, 

which were reconstructed using the overlap-add technique. 

Figure 1 shows the SSNR improvement, LLR output, and 

PESQ output as a function of the number of microphones in 

the array, where LLR (range of 0-2; lower scores indicate 

better performance) and PESQ (range of 0.5-4.5; higher 

scores indicate better performance). 

 

Figure 1. SSNR Improvement, LLR Output, and PESQ Output for the Multichannel Wiener Filter (-10 dB = diamond, -5 dB = asterisk, 0 dB = right-pointing 

triangle, 5 dB = five-pointed star, and 10 dB = square). 
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The multichannel Wiener filter achieved significant 

increases in noise reduction, decreases in speech distortion, 

and increases in overall quality at middle to higher input 

SNRs (0 dB – 10 dB) across the three different noise types 

for increasing number of microphones over the baseline 

single channel Wiener filter. In specific terms, the gains were 

approximately 4 dB, 5 dB, and 6 dB (SSNR improvement); 

0.5, 0.7, and 0.8 (LLR output); and 0.8, 0.8, and 0.8 (PESQ 

output) for the 0 dB – 10 dB input SNR cases with the 

inclusion of the additional microphone information. By 

further examining the trends in the figure, it should be 

apparent that the performance of the optimal filter was robust 

to the various input SNR levels and different noise types. The 

multichannel Wiener filter simply functions well in a variety 

of noisy environments. At the lower input SNRs (-10 dB and 

-5 dB), the gains for the SSNR improvement (1 dB and 2 

dB), LLR output (0.2 and 0.3), and PESQ output (0.5 and 

0.7) were not as pronounced as with the middle to higher 

input SNRs (0 dB – 10 dB). The reasons are that the filter 

requires estimation of the noise and attenuation factors at 

each of the microphones, which are more difficult to estimate 

in the noisier of the two input SNR groups. Overall, the 

multichannel Wiener filter shows distinct performance 

benefits with the incorporation of the additional microphones 

measured by the SSNR, LLR, and PESQ objective measures. 

5. Conclusion 

In this letter, the multichannel Wiener filter was derived for 

multichannel speech enhancement in the distributed 

microphone paradigm. The emphasis of this work was to 

illustrate that the inclusion of the additional microphone 

information provides increases in noise reduction, decreases in 

speech distortion, and increases in overall speech quality as 

measured by SSNR as well as the LLR and PESQ objective 

metrics. Based on the experimental results, the multichannel 

Wiener filter achieved increases of approximately 5.0 dB 

(SSNR improvement), 0.7 (LLR output), and 0.8 (PESQ 

output) averaged across the 0 dB, 5 dB, and 10 dB input SNRs 

compared to the single channel Wiener filter baseline with less 

noticeable gains at lower input SNRs.  
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