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Abstract: In this paper we study the uniform approximation of the generalized cut function by sigmoidal Erlang cumulative 

distribution function (Ecdf). The results are relevant for applied insurance mathematics and are intended for the actuary when 

preparing the strategy “Insurance responsibility”. Numerical examples are presented using CAS MATHEMATICA. 
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1. Introduction 

One of the most significant goals of any insurance risk 

activity is to achieve a satisfactory model for the probability 

distribution of the total claim amount [1]. 

The analysis of the collective risk model assuming Erlang 

loss, when the claim frequency follows the discrete 

generalized Lindley distribution, is considered in [1]–[3]. 

We study the uniform approximation of the cut function by 

Erlang cumulative distribution function (Ecdf). We find an 

expression for the error of the uniform approximation. 

The estimates obtained give more insights on the 

parameters in the strategy “Insurance responsibility” [4]–[7]. 

2. Preliminaries 

2.1. The Erlang Cumulative Distribution Function (Ecdf) 

Based on the exponential distribution A. K. Erlang used the 

stage method to construct the so–called Erlang distribution 

function of order k  with (Ecdf) defined by: 

1

=0

( )
( ; ; ) = 1 ; , 0,

!

k t n

n

e t
F t k t

n

λ λλ λ
− −

− ≥∑     (1) 

where k  is called the shape parameter (integer), and the 

parameter λ  is called the rate parameter. 

The distribution is now used in the fields of statistic 

processes, teletraffic engineering, biomathematics, etc. 

We have 
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From (3) we find that (1) has an inflection point at: 
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where > 1k . 

2.2. The Generalized Cut Function Associated to the (Ecdf) 

The associate to the (Ecdf) cut function  is defined 

by 

EcdfC
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3. Approximation of the Cut Function (5) 

by Function (1) 

We next focus on the approximation of the cut function 

( )Ecd fC t  by (Ecdf). 

Note that the slope of the function ( )Ecd fC t  on the interval 

1 2= [ , ]t t∆  is ( ; ; )F t k λ∗′ . 

 

Figure 1. The cut and the (Ecdf) functions with = 10k , = 1λ , = 9∗t , 

1 = 5.86851t , 2 = 13.4583t , 1( ;10;1) = 0.0751968F t , 2( ;10;1) = 0.862373F t , 

uniform distance = 1 0.862373 = 0.137627−ρ . 

In addition 
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where ( )kΓ  is a complete gamma function, and ( , 1)k kΓ −  

is the incomplete gamma function. 

On the other hand 
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crosses the lines = 0y  and = 1y  at the points 
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respectively. 

 

Figure 2. The cut and the (Ecdf) functions with = 21k , = 2λ , = 10∗t , 

1 = 7.5184t , 2 = 13.1468t , 1( ;21;2) = 0.084519F t , 2( ;21;2) = 0.873205F t , 

uniform distance = 1 0.873205 = 0.126795−ρ . 

 

Figure 3. The cut and the (Ecdf) functions with = 61k , = 1λ , = 60∗t , 

1 = 50.9446t , 2 = 70.3878t , 1( ;61;1) = 0.0929865F t , 2( ;61;1) = 0.882485F t , 

uniform distance = 1 0.882485 = 0.117515−ρ . 

Then, noticing that the largest uniform distance ρ  

between the cut and (Ecdf) functions is achieved at the 

endpoints of the underlying interval ∆  we have the 
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following 

Theorem. The function defined by (1): i) is the (Ecdf) 

function of best uniform one-sided approximation to function 

( )Ecd fC t  in the interval ∆ ; ii) approximates the cut function 

( )Ecd fC t  in uniform metric with an error 

1 2= max{ ( ; ; ),1 ( ; ; )}.F t k F t kρ λ λ−       (6) 

We propose a software module within the programming 

environment CAS Mathematica for the sensitivity analysis of 

the considered approximation model. 

The module offers the following possibilities: 

i) generation of the cut function ( )Ecd fC t  associated to the 

Erlang cumulative distribution function under user-defined 

values for k  and λ ; 

ii) automatic check of the condition that guarantees the 

existence of cumulative curve; 

iii) computing the value of the best uniform approximation 

of cut function ( )Ecd fC t  by (Ecdf); 

iv) computing the parameters for the actuary when 

preparing the strategy ”Insurance responsibility”; 

v) software tools for animation and visualization. 

4. Application and Conclusions 

The results are relevant for applied insurance mathematics. 

For example, when preparing the strategy ”Risk in 

Perspective”, the actuary approximately fixes: the probability 

distribution, for example - Erlang distribution (based on 

accumulated statistics for the study insured event); number of 

damaged objects (random variable); probability of losses for 

this number of objects and total losses, depending on the 

number of damaged objects. 

In the above-mentioned strategy it is essential to sketch the 

curve analysis of cumulative probability of accumulation with 

increasing number of damaged objects and the amount of 

compensation likely to happen (strategy “Insurance 

Perspective”). 

 

Figure 4. The cut and the (Ecdf) functions with = 500k , = 1λ , = 499∗t , 

1 = 471.665t , 2 = 527.668t , 1( ;500;1) = 0.100808F t , 2( ;500;1) = 0.890666F t , 

uniform distance = 1 0.890666 = 0.109334−ρ . 

 

Figure 5. The uniform distance ρ  and 2( ; ; )F t k λ  for some k . The 

function 2( ; ; )F t k λ  visually depicts a “law of diminishing marginal 

returns”. 

The detailed study of this sigmoid function, which is a good 

approximation of the cut function associated to the (Ecdf) 

gives good information for the actuary with respect to the 

minimum sample of the general aggregation of the damaged 

objects, whose losses must be covered, and thus the 

percentage of the insured event that are occurred 

(strategy ”Insurance responsibility”, according to the law of 

diminishing marginal returns), and at a later stage for the 

formation of a support plan for the formation insurance policy. 

Certain interest is the inverse task at a fixed actuarial 

percent achieved liability insurance to determine the 

magnitude ρ  (in this case, it is probability of losses after the 

number of the injured object - K of the sample). 

Satisfactory answer to this question gives determining the 

value of the best uniform approximation of cut function 

( )Ecd fC t  by (Ecdf) - the subject of current research. 

Some results for Erlang distributed moments of impulses 

are given by Agarwal, Hristova, O’Regan, Kopanov in [8]. 

The Hausdorff ([24], [25]) and uniform approximation of 

the interval step function by the logistic and other sigmoid 

functions such as Burr cdf, generalized Burr function, Lindley 

cdf, transmuted Lindley function, exponentiated Lindley 

function, Gompertz function, transmuted Rayleigh function, 

etc., are discussed from various approximation, computational 

and modelling aspects in [9]–[28]. 

For the hyper–Erlang distribution model and its 

applications in wireless network and mobile computing 

system, see [22]. 

For the hypoexponential distribution, or the generalized 

Erlang distribution, see [23]. 

Based on the methodology proposed in the present note, the 

reader may formulate the corresponding approximation 

problems on his/her own. 

Remark. Consider the following transmuted Erlang 

cumulative distribution function (tEcdf) 

2
( ; ; ; ) = (1 ) ( ; ; ) ( ; ; )F t k F t k F t kλ µ µ λ µ λ∗ + −  

where | | 1µ ≤ . 

For some comparisons of the (tEcdf) and (Ecdf), see Fig. 6 

– Fig. 8. 

From this graphics it can be seen that the "saturation" is 

faster (for fixed k  and λ ) and µ  increasing tends to 1. 

This circumstance can be successfully used by the actuary 

of the insurance company. 
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Figure 6. The tEcdf (red) and Ecdf (thick) with = 10k , = 1λ , = 0.5µ . 

 

Figure 7. The tEcdf (red) and ECDF (thick) with = 10k , = 1λ , = 0.7µ . 

Web application (intellectual property) to clarify the 

mathematical mechanism of insurance and reinsurance in all 

three phases "Risk in perspective", "Insurance perspective" 

and "Insurance liability" for insurance events governed by the 

Erlang Distribution is developed. 

 

Figure 8. The tEcdf (red) and ECDF (thick) with = 10k , = 1λ , = 0.9µ . 
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