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Abstract: In this study are analyzed from point of view of laboratory and test-rehearsals the functioning of an illuminating sensor 

considering the fact that the measures and sensing must be realized to start of the response signal to the luminous efficiency described for their 

mean foreseen behavior given for the corresponding integral equation to their efficiency. Here are considered the efficiency function and the 

response signal of the sensor. The integral equation represents the functioning of the sensor submitted to a luminous efficiency λ, which will be 

relevant to the detection and measure of the illuminating curvature energy. Also are obtained images of spectra bandwidth of the mean 

curvature spectra and the dimensionless value λ. In this last point are established two important results, one theorem and one lemma in signal 

and systems analysis applied to the efficacies and efficiency of the illuminating sensor considering the energy spectra of the curvature, the 

luminous energy, and the illuminating energy density. Likewise, is determined the curvature energy as the first order derivative of illuminating 

energy density divided for the electric charge used in the photo-resistive component of the sensor. Also are obtained 2-dimensional geometrical 

models or behavior surfaces of curvature energy, efficiency and their efficacies accord with the laboratory results.  
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1. Introduction 

As has been studied, the illumination is the action of 

illuminating field ,ℵ whose illuminating flow that impact in a 

surface determines differentiated regions of clear and dark 

illuminating fields which establish a measure of the 

illuminating gradient as phenomena of a space affected by a 

light source [1]. 

Then the boundary between both regions is not a 

well-delimitated line and their energy require a weak topology 

[2] defined by a norm or length ,
.

s p
u This was observed 

from a point of experimental view using the gradients of 

illuminating field defining the condition between illuminating 

(clear and dark) fields, as the limit condition: 

lim ( ) lim .,
u u

u
υ υ

υ δ− +

→ →
∇ − = ℵ −ℵ = ℵ           (1) 

But from a point of electronic view what is happening with 

a sensor immerse in an illuminating field, which detects and 

measure the illuminating gradient in a geometrical enclosure 

through their mean curvature energy?  

Well, the illuminating field is re-interpreted as a Jacobi field, 

where the mean curvature energy stays in the domain 

1 2( , ) .H ω ω κ≤  We have considered the response signal of 

the illuminating sensor with capacitance characterized for

1/ ( ),R ϕ  to the co-cycles of curvature energy [3]: 

( )
( ) ,

t
R

inh t V e

λ
ϕ

 
− 
 =               (2) 

which to our illuminating sensor we have identified the 

boundary conditions given for: 

0
lim ( ) ,R
ϕ

ϕ
→

= ∞                 (3) 
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lim 0,
( )R R

λ
ϕ→∞

 
− = 
 

             (4) 

But considering the boundary condition (3), we have in 

equivalent way that (0) inh V= , and to the condition (4), we 

have ( ) 0.h ∞ =  

2. Dynamics Analysis 

2.1. The Response Signal as Response to Little Voltage 

Variations: The Curvature Energy Is Re-interpreted as 

Variations of Luminous Energy Density 

The response signal of voltage is the law of the process [1]  

( ) ( ),in C

dV
R V V

dt
ϕ λ= − −             (5) 

To the behavior of the sensor considering a complete 

transitory analysis of system along a time interval in the 

experimentation [4], we need to take the bordering conditions 

(3)-(4) adding the luminous efficacy interact with the response 

signal of voltage. Likewise, this interaction can stay 

established by the convolution: 

0

( )( ) ( ) ( ) ,

T

h t h t dλ τ λ τ τ∗ = −∫             (6) 

 

Figure 1. Illumining intensity versus resistance. See the TABLE 1, of [1]. 

Table 1. Illumining intensity versus resistance [1]. 

Lux Ohms Ω 

102 2400 Ω 

223 1200 Ω 

361 800 Ω 

508 600 Ω 

660 480 Ω 

818 400 Ω 

980 343 Ω 

However, we want the illuminating sensing considering the 

input voltage, which is defined for the initial condition 

(0) ,inh V= and the remainder of the resistance due the 

luminosity perceived by the sensor, which is defined by the 

perceived and thus flux luminous efficiency [4] ( ).tλ   

Also ( ),R ϕ is the value of the flux detected for the 

resistance, which is found in the intersection of the graph of 

the Figure 1. But this intersection satisfies from the argument 

of the exponential in the response signal that 

,
( )R kRϕ

λ
ϕ

Φ Φ= =                (7) 

which is a non-dimensional. In the case of the intersection, 

1.λ =  This corresponds to their normalization. However, 

what happens when is not normalized? 

We have a coefficient, which vary depending of the 

illumining efficacy 1 . Then we can to the general case a 

function ( ),tλ to time sufficiently large of sensor functioning. 

Likewise, and consider the convolution (6), the behavior of 

our photo-resistance due the luminous flux given by (7) and 

the limit condition (4), we can write de following integral 

equation that will describe the efficiency of our illuminating 

sensor in a sufficiently large time period [5, 6]: 

0

( ) (0) ( ) ( ) ( ) ,t h t h t dη λ τ λ τ τ
∞

= + −∫         (8) 

The kernel ( ),h t τ− obeys to the interaction, for one side of 

the response signal of system and for other the efficacy of the 

sensor to realize the sensing process.  

2.2. The Behavior of the Luminous Efficacy and Efficiency. 

Efficiency to Optimize the Illumination 

The behavior of the luminous efficacy and efficiency will 

be obtained solving the integral equation (8). Likewise, 

applying the Laplace transform to both members of (8) we 

have: 

( ) ( ) {( )(t)}

( ) ( ) ( ),

in

in

p V p h

V p p p

λΗ = Λ + ∗
= Λ + Η Λ

L
       (9) 

where 

( )
( ) ,

( ( ))in

p
p

V p

ΗΛ =
+ Η

             (10) 

                                                             

1 The illuminating efficacy comes given as:
e,

0

e

e, 

0

( )

,

d

d

ω

λ

ω ω

λ

ω

∞

∞

Λ Φ
Φ= =

Φ
Φ

∫

∫

  

here ,Φ  is the illuminating flux, e,Φ is the radiant flux, e, ,λΦ is the spectral 

radiant flux and ( ),ωΛ is the spectral luminous efficacy. Here ( ),ωΛ is the spectral 

density of a function plated to the non-dimensional ( ).tλ  
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which explicitly considering the signal response of the system 

with 1,λ = we have that (10) takes the form: 

1
( ) ,

( ) 1

( )
in

p
R

V p
R

ϕ
ϕ

Λ =
 ++ 
 

            (11) 

which exists in the space 
( ) 1

Re .
( )

R
p

R

ϕ
ϕ

+> −  

Then applying ,
−1

L to (11) we find that: 

( ) 1

( )1
( ) ( ),

R

R

in

t
t e t

V

ϕ
ϕλ

 +− 
 = u             (12) 

See the solution (12) to an input voltage (Figure 2). In 

addition, we have their Heaviside support surface (Figure 3). 

 

Figure 2. Efficiency curve of illuminating sensor, considering the input 

voltage of 5 .inV Volts=  

 

Figure 3. Heaviside support surface to the solution (12). 

 

Figure 4. Example of efficacy ,Λ of the sensor with following flux and 

resistance data to a resonance arbitrary:
7000,000

.
16(7,000,000) 7,000,001)ω
 −
 + 

 

The tendency to the equilibrium of the response signal stays 

guarantied in a sufficiently short interval to the efficacy. 

Indeed, the efficacy to each 0 ,t t≤  will be the function:  

21
( ) ( ),

2

t

in

t e u t
V

λ
π

−=               (13) 

which show a behavior tending to the equilibrium or stable in 

an interval 0 .t t≤  Indeed, we consider as initial condition

0 0( ),tλ λ=   

0 0 02( ) 2( ) 2( )
0 0 0 0( ) ( ) ( ) ,

t t t t t t
e u t e u t e u tλ λ λ λ− − − − − −− = −  

when 0 ,t t≤ if 02
0 0 ,

t
eλ λ ε −− < and the limit  

02( )
0 0lim ( ) 0,

t t

t
e u t λ λ− −

→∞
− =  

Thus, the solution (13) is asymptotic stable in the short 

interval, which the sensor detect the change of illuminating.  

Note that 02
0 0 0( ) 1 / 2 ( ) 0,

t
int V e u tλ λ π −= = → when 

0 0.t → This can be analyzed in the figures 2 and 5.  

2.3. Experiments and Results in Laboratory 

The meaning of (12) is the fact of that the response of 

system goes being more rapid (effective) conforms go 

decreasing the light scattering, being applied a constant 

voltage sufficiently large in the time. However, what we have 

in efficiency? 

Efficacy not implies efficiency necessarily. To this, we 

require the geodesic behavior under action of the system 
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response signal.  

The efficacy is given in each time as response in frequency 

(illuminating efficacy). Then this comes given as
2
: 

( )
( ) ,

( ( ) ( ) 1)in

R

V R R j

ϕω
ϕ ϕ ω

Λ =
+ +

          (14) 

See the Figure 4, with some flux and resistance data. 

The efficiency is given by the red color region (see the 

figure 5 A), and B)), which goes being degraded outside of the 

sensing region. However, their efficacy is related with 

curvature energy through the variation of the illuminating 

energy density.  

 

 

Figure 5. A). Efficiency given by the curvature energy zone. B). Curvature 

energy or spectra. 

The variation of the illuminating energy density on the 

electric charge unit (derived of the voltage) is their curvature 

energy. 

Indeed, we consider the relation between the illuminating 

flux ,Φ and the illuminating energy density ,ξ given in [1]. 

Then is clear that illuminating energy density is the rate of the 

                                                             

2 This spectral density can be resumed as: 
1 1

( ) .
2inV

Λ ω
ω

=
+

 

luminous energy in a volume. Then their curvature energy will 

be the variation respect to the time of illuminating energy 

density multiplied for the reciprocal of electric charge 

obtained for the electrons flow.  

Indeed, we consider the following result.  

Lemma (F. Bulnes) 2. 3. 1. The curvature energy is the 

variation of the illuminating energy density on the electric 

charge [7] obtained  

1
,

d

Q ds

ξκ =                   (15) 

Proof. We consider the illuminating energy density as: 

3

sec
,

s Joule

Vol meter
ξ Φ × = = 

 
            (16) 

Remember that the illuminating flux unit is, 

.Lumen Joule=  For other way, curvature energy is given by  

3 3

1
,

lumen Joule

Coulumb meter Coulumb meter
κ    = =   ×   

 

If we derivate the luminous energy given (which has a 

linear behavior) by 

,E sν = Φ                   (17) 

We have 
3

.
joule

Vol meter

Φ  = 
 

Then multiplying this for1/ ,Q

we have dimensions of curvature energy. Thus (15) is a change 

rate of illuminating energy density respect to the time. 

It is energy or has energy character, which spectrally is 

curvature energy [1].  

These variations are given as variations of response

( ) ( ),G ω ω ω= Ξ  where their dimensions are 

3

1 sec
.

sec

Joule

meter

××  The dimensions curvature energy also are 

obtained multiplying for 1/ .Q  

Then the Fourier transform in this case is the identity 

transformation [5, 8], '( ) .
j sd

e s ds
ds

ωξ ξ
∞

−

−∞

= ∫  This prove the 

proposition.  

Then the region (enveloping) where is subjacent the 

efficiency is the bounded between geodesic curves whose 

spectra is in the interval 1 2( , ) .H ω ω κ≤ Indeed, 

experimentally we have the efficacy to some resonances 

1 2 3, , ,ω ω ω … (see the Figures 12, 13 and 14 A), B), and C) in 

the final paper). 

We can to enunciate the principle valid in the nature and 

established in our sensor device:  

“The efficiency is the sum of their efficacies” 

Then we can give the following result. 

Theorem (F. Bulnes) 2. 3. 1. The efficiency of illuminating 

sensor MLCGD is the following sum  
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( )
0

21 1
( ) ( 1) ( ) ( ) ,

2 ! 2

n

n j t

in n

t
t u t e d

V n

ωλ ω ω
π π

∞∞

= −∞

= − = Λ∑ ∫   (18) 

where ( ),ωΛ is the efficacy to the corresponding resonance .ω  

The functions (2 ) / !,nt n are obtained with much 

approximation in laboratory to the cases 1,n = and 2n =  (see 

the figures 1 and figure 13 in the end of the paper). 

Proof. We consider the power series of 2 ( ),te u t− which is 

the inverse Fourier transform ( ).tλ   

In the energy signals context all polynomial functions 

derived of (2 ) / !,nt n [5] have very little contributions to the 

efficiency, except to cases 0,n = 1,n =  and 2.n = To 

2,n > the efficacies are less meaning to the behavior of 

( ),tλ  to different distance between light source and 

illuminating sensor/LDR (see the Figure 6, Figure 7, Figure 8 

and Figure 9).  

 

Figure 6. Evaluation of efficacies and efficiency of the sensor though their transitory analysis and of response variation. 

 

Figure 7. Electromechanical component of Geometrical sensor of mean curvature [10, 11]. 

However, discrete Fourier series can approximate the efficacies where the Heaviside function is the response voltage along 

the sensing process.  

Likewise, we consider the efficacies measure in direct time of 0, to 2, seconds with increments to second centesimos. In the 

Fourier transform were obtained the values to the frequencies of 0 100Hzω≤ ≤ , with respects conjugates (see the Figure 8, 

and Figure 9).  
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Figure 8. Discrete Fourier transform: Spectra of magnitude. 

 

Figure 9. Discrete Fourier transform: Spectra of phase. 

3. Photonics-Electronics Remarks 

The immediate effect in low frequencies generates minor 

resistance, thus there is more electrical conductivity [7]. The 

photons in major frequencies have minor collision capacity 

of effective mode with electrons to carry them to an energy 

level such that can be became in valence electrons [12-15]. 

The captor sensor device of mean light has a response of 

oscillating transitory type and is approximately stabilized in 

60 seconds average. This happens when instantaneously is 

energized the light source and light incidence on said sensor.  

Then in function of the light intensity, there is a 

proportional variation in electrical resistance. 

The change of photo-sensible material state during a time, 

as phenomena, is nearest related with the efficacy that each 

incident light color.  

We can establish a behavior surface of the efficiency due 
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the frequency and resistance to infinite efficacies obtained to 

different resonances 1 2 3, , , ,ω ω ω … and the behavior of ,R  

established in the experiments (see the Figure 10). The 

efficiency always will be positive in a frequency regime.  

 

Figure 10. Andy’s” Surface of efficiency ( ( ), ),Rλ λ ϕ ω= depending of frequency and resistance. This surface include all curves resistive effect (figures 8) 

also. 

The efficiency is the infinite sum of efficacies as was proved in the before section and to our sensor this is satisfied.  

The curvature energy of the illuminating sensor in functioning under low resistance. This can be viewed through average 

behavior surface (Figure 11).  

 

Figure 11. The curvature energy [9] surface to low resistance of the sensor.  
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Figure 12. The efficacy is asymptotically stable to short time intervals. 

 

Figure 13. The efficacy given by (13). The function considered was ( ) (1/ 36)exp{ 2 } ( ).x x u xλ = −  

LABORATORY CURVES 

RESISTIVE EFFECT [Ω] TO DIFFERENT DISTANCE BETWEEN 

LIGHT SOURCE AND SENSOR/LDR 
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Figure 14. Comparison photo-resistive response ( )R ϕ of the captor Sensor of mean light and LDR A). To distance 0.12m. B). To distance 0.24 m. C). To 

distance 0.40m. 

4. Conclusion 

The illuminating sensor designed and created obeys to 

geometrical principles, which establish their functioning in 

an optimal way through their mean curvature energy in a 

dynamical system that consider response signal average 

expressed by their integral equation. This last, evaluated 

through the efficacy and efficiency of the system in 

continuous functioning to different light resonances and size 

of the space to illuminate (see the Figure 12, Figure 13 and 

Figure 14). The proposed sensor is so only an example of the 

several applications of the our concept of curvature energy as 

field observable in the sensor theory context and the frontier 

with the microscopic field theory to establish more results in 
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spectral analysis that can useful in the design and 

development of other advanced electronic devices. The 

theorem 2. 3. 1, is an example of the spectral analysis results 

that establish a general way to obtain an analytic efficiency 

expression to be evaluated considering efficacies until of 

certain order. The efficiency is 2-dimensional function whose 

active parameters are the resistance and resonance to sensors 

based in a photo-resistive component. The Andy’s surface is 

a geometrical model that determines the global behavior of 

this function. 
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Technical Notation 

K −  Curvature as general concept of roundness property. 

Also used in the paper as Gaussian curvature in a point  

λ − Non-dimensional value of efficacy in a particular time 

0.t  

1 2( , )H ω ω − 2 − Dimensional spectral mean curvature. 

( )tλ − Efficiency to large time interval. In addition, this 

function is the curve of energy required to the sensing 

efficacy. This function is solution of the integral equation to 

describe the mean behavior of the illuminating sensor.  

V − Voltage. 

( )ωΛ −  Efficacy to a resonance ω .  

A −  Area. 

( )R ϕ − Photo-Resistance due to the light flux ϕ .  

κ − Curvature as value. 

( )h t − Response signal of the sensor.  

( )pΛ − Transitory state of the efficiency function 

( ) 1
Re .

( )

R
p

R

ϕ
ϕ

+∀ > −  

ξ − Illuminating energy density. 

( )ωΞ − Spectra of illuminating energy density.  

Gκ − Gaussian curvature in the sense of the value of their 

integral. 

Eν − Luminous energy. 

( , )pκ ϕ − Spectral curvature in the Radon space. 

−L Laplace Operator of Laplace transform. 

1 2( , )κ ω ω − Spectral curvature in the Fourier space. 

inV − Input voltage.  

LDR- 

MLCGD-Mean Light Captor Geometrical Device. 

( )u t −  Heaviside function. 
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