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Abstract: Mathematical model that allowed qualitative and quantitative description of the interactions between the host 

immune system, breast cancer cells, and a cancer vaccine was presented with a system of differential equations. Key immune 

components used in the vaccine were cytotoxic T lymphocytes (CTLs), macrophages, Natural Killer (NK) and helper T cells. 

The parameters of the model were based on experimental and clinical results from published articles. MATLAB software tool 

was used to generate data from the model and results were analyzed and discussed. Findings supported clinical studies that 

maximum immune activation was needed to reduce the cancer cells. Thus, for a given breast cancer growth rate, there was an 

optimal activation that maximized the response of the immune system. It was also observed that given a sufficiently high rate 

of CTLs, natural killer, or helper T cells infiltration resulted in significant tumor elimination. However, varying CTLs and 

Macrophages activation rates caused a chaotic behavior of the tumor. Thus, optimizing large M1:M2 ratios verses large/small 

numbers of tumor-infiltrating macrophages on long term patient survival were necessary in improving breast cancer therapies.  
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1. Introduction 

Diagnosis and management of breast cancer has undergone 

many changes over the past few decades. While 

mammographic screening is still the primary method for 

diagnosing breast cancer, technologies such as magnetic 

resonance imaging (MRI) and positron emission tomography 

(PET) scans are finding some cancers missed by 

mammograms. Furthermore, microarray technology shows 

promise for predicting aggressiveness of cancer and assisting 

physicians in determining the best type of therapy a patient 

needs. Despite these innovations in diagnosis and concurrent 

improvements in treatment, many women still die of breast 

cancer. It remains the commonest malignancy in women in 

United States with an estimated 268,670 new cases of 

invasive breast cancer [1] and about 40,920 women are 

expected to die in 2019 from the disease [2]. The complexity 

of the disease morphology, biological heterogeneity, 

tendency for the disease to become resistant to 

chemotherapy, and several molecular pathways of the disease 

are some of the reasons given for the high incidence and 

mortality rates.  

The role of the immune system in controlling breast tumor 

progression has been studied by many authors [2-6] and 

significant development has been made in the treatment of 

breast cancer, especially with the growing use of cancer 

vaccines [7-9]. The breast cancer tumor microenvironment is 

composed of a variety of immune cells that can control or 

capture the malignant progression. Research has shown that 

immune system plays an antagonistic role in the tumoral 

environment of breast cancer. Even though the immune’s 

primary goal of preventing tumor formation is through 

immune surveillance, some immune cells promote alternate 

inflammatory pathways that suppress adaptive immunity and 

create a state of immunotolerance [11-13]. Immune infiltrates 

in breast cancer are mainly composed of T lymphocytes 

(≈75%), together with B lymphocytes (<20%), monocytes 

(<10%), and natural killer cells (<5%) [11, 13]. The T CD3+ 

lymphocytes are divided into CD8+ and CD4+ T helper (Th) 

cells and CD4+ regulatory T cells (Treg). The CD4+ 

lymphocytes are composed of all Th subsets, with a mixture 

of activating and suppressive activities [11]. Although studies 

have stated diversity in the tumoral immune 

microenvironment of breast cancer, there has not been any 
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indication of other immune cell subsets with higher prognosis 

indicator than tumor-infiltrative lymphocytes (TILs) level.  

The association between tumor-infiltrative lymphocytes 

(TILs) and prognosis in primary breast carcinoma has been 

studied [4, 14-19]. TILs have been associated with poor-

prognosis clinicopathologic characteristics, including 

estrogen receptor (ER) negativity, higher tumor grade, high 

levels of Ki-67, larger tumor size, and positive lymph nodes 

[6, 20-23]. Despite this, high TILs level as an independent 

indicator of good prognosis has been validated in large 

cohorts of patients. To mention a few, a high level of TILs is 

associated with improved distant disease–free survival, 

disease-free survival (DFS), and overall survival (OS) [6, 14, 

24-28]. The promising evidence supporting the prognostic 

and predictive role of TILs has elicited the standardization of 

TIL evaluation in breast cancer [19].  

Currently, one approach in combating breast cancer 

progression is to use cancer vaccine that triggers the patient’s 

immune system to identify the foreign antigens by 

stimulating cytotoxic T lymphocytes (CTL) [9-10, 31-33]. 

The vaccination components consist of lymphocytes, which 

include: helper T lymphocytes (Th), dendritic cells (DC), 

macrophages, or reprogrammed oncolytic viruses [35-37]. 

Such vaccines are known to help prevent cancer growth 

through stimulation of the patient’s immune system or by 

directly attacking a cancer growth [8, 33]. As therapeutic 

agents, the immune system act as modulators from early 

evolution to metastatic stage and also affect tumor response 

to chemotherapy. However, researchers have found many 

issues to the vaccine development process as it displays the 

ability of antigen mimicry, a process by which tumor cells 

produce antigens with specific patterns of the host that can 

help cancer evade immune processing and development. 

Tumor antigen imitation with self-antigen occurs since 

tumor-specific antigens (TSA) and tumor-associated (TAA) 

antigens are either mutated or overexpressed self-proteins, 

respectively (P53 and CEA). In addition, immune 

microenvironment is not static. It evolves within the tumor 

and changes with therapeutic intervention. 

Thus, more studies are needed to better understand these 

findings. As our understanding of the relationship between 

breast cancer morphology and immunity improves, it should 

provide new or effective progress in immunotherapy for 

breast cancer patients. The main issue is that it is virtually 

impossible to asses the impact of every particular molecular 

event using classical molecular biological methodology due 

to the complexity of the immune systems interaction with the 

cancer tumor. As a result, most experimental and clinical 

studies have focused on the role played by cytotoxic T cells 

in tumor elimination and neglected roles played by helper T 

cells [38-39, 42], dendritic cells [40-41], or macrophages 

[38-42]. To understand how the immune system works to 

eradicate breast cancer, it is necessary to identify its key 

components. 

The Immune Microenvironment: T cells are one of the 

most important components of the immune system in the 

fight against any cancer. They originate from pluripotent 

haematopoietic stem cells in the bone marrow which migrate 

to the thymus where they mature into naive T cells. The 

naive T cells move to the lymph nodes where they become 

activated on contact with their cognate antigens. Activated T 

cells proliferate rapidly to produce a substantial army of 

antigen-specific T cells. These short lived T cells are then 

transported through the blood vessels to the tumor where 

they bind to and kill infected cells and also produce cytokines 

that recruit other immune cells to the tumor. This process 

continues until either the tumor has been removed or the 

tumor adapts to, and evades the targeting T cells [43]. There 

are two populations of T cells, helper and cytotoxic, which 

are distinguished by their expression of CD4 and CD8 

proteins, respectively. Helper T cells are initiated by antigen 

presented with a major histocompatibility complex (MHC) 

class II molecule. Cytotoxic T cells are activated by antigen 

existing with an MHC class I molecule. Once activated the 

helper and cytotoxic T cells perform complementary 

functions to eliminate the tumor. In addition, the Helper T 

cells distinguish into subgroups categorized by the specific 

cytokines that they produce. In this way, they regulate 

multiple aspects of an immune response such as promoting 

proliferation of cytotoxic T cells, recruiting and promoting 

cells of the innate immune response, and controlling levels of 

inflammation at the tumor environment [44]. Therefore, the 

balance between the different T cell subsets is determinant 

for efficient antitumor activity. 

Macrophages are the most versatile types of immune cells 

and one of the key regulators of breast cancer 

immunotherapy. They can display different phenotypes, in 

response to the type, concentration and longevity of exposure 

to stimulating agents [45]. The two extreme macrophages 

phenotypes are represented by the M1 and M2 cells. M1 cells 

are pro-inflammatory and may be induced by various endo- 

and exo-genous stimuli e.g.  lipopolysaccharide, 

myramildipeptid. M2 cells do not have pro-inflammatory 

properties and may be induced by IL-4, IL-13, IL-10, TGF-

beta or glucocorticoids which directly affects cancer cells. 

While it is widely accepted that the activated M1 cells have 

anti-tumor properties and the alternatively activated M2 cells 

have pro-tumor properties, many macrophages inside the 

tumor microenvironment have markers characterizing mixed 

phenotypes [46-47]. Therefore, in spite of the fact that 

macrophages often constitute between 50 to 80 percent of the 

most common cell types in breast tumors [47], their plasticity 

makes it difficult to fully understand their pro-tumor/anti-

tumor roles, as well as their pro-viral/anti-viral roles. As 

recently emphasized in Denton et al., (2016), the 

macrophages can support these therapies through the 

suppression of the anti-viral immune response, in the case of 

M2 while they may impede oncolytic therapies through the 

promotion of an anti-viral immune response that leads to 

viral clearance, but may also enhance the virus-mediated 

activation of the anti-tumor immune response (in the case of 

M1), [48].  

Dendritic cells (DCs) are a heterogeneous group of 

antigen-presenting cells (APCs) with two major subsets, 

IFN-γ
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conventional DCs (cDCs) and plasmacytoid DCs (pDCs). In 

vitro and ex vivo observations suggest that DCs play a 

crucial role in the link between innate and adaptive immunity 

under inflammatory conditions but also induce 

immunological tolerance to maintain immune homeostasis 

under steady-state conditions. The communication between 

the innate and adaptive systems is carried out by cytokines 

that bind to cells, and by cell-cell interactions between 

dendritic cells and lymphocytes (e.g. T-cells) in lymph 

nodes. This interaction is so crucial that the adaptive 

response cannot occur without an innate immune system. 

Natural killer (NK) cells are a subset of cytotoxic 

lymphocyte that functions predominantly in the innate 

immune response. Evidence suggests that NK cells play an 

important role in the initial and developed stages of breast 

cancer [49]. Cancer cells are killed by releasing small 

cytoplasmic granules of proteins containing perforin and 

granzyme that cause the formation of pores in the plasma 

membrane of the target cell leading it to die by apoptosis 

[50]. NK cells have been shown to secrete Interferon gamma 

( ) in regions of breast cancer sites [49-51]. 

Consequently,  causes target cells to begin up-

regulating cancer specific MHC class I molecules, possibly 

as a result of the switch by cells to instigate expression of the 

immunoproteosome. Thus, these results provide a possible 

mechanism by which NK cells magnify the anti-cancer 

response through stimulation of aberrant cells to initiate 

antigens recognized by CTLs. Studies have indicated that NK 

cells are frequently deficient or dysfunctional in patients with 

breast cancer malignancy, indicating that this may be a key 

factor in cancer immunoevasion and progression [52]. 

Therefore, it is imperative that our understanding of immune 

system interaction should include NK cell regulation and 

adaptation. 

Given the current expanding knowledge of the immune 

microenvironment and its interaction with breast cancer cells, 

work needs to be done to explore the potential and 

optimization of helper T cells, macrophages, and NK cells in 

addition to the cytotoxic T cells in the next advancement of 

the diseases’ treatment. Nevertheless, clinical and 

experimental studies fall short of incorporating these key 

immune components in the comprehensive study of breast 

cancer progression and treatment. In a cooperative effort with 

clinicians and research oncologists, however, there exists an 

array of mathematical models on breast cancer progression 

and treatment. Most of the proposed models typically does 

not involve immune system or were over simplified by 

targeting only the CTLs cells [57-63]. Mathematical models 

must focus on mimicking the most important elements of the 

multifaceted process of the disease [53-60]. When data is 

generated, these models provide insight and validity to a 

complex biological system for clinical research without the 

utilization of human or animal models, entirely bypassing 

ethics boards completely.  

In this study, a mathematical modeling approach 

incorporating breast cancer cells interactions with helper T, 

CTL, macrophages, and NK cells is developed. The model 

uses frameworks of differential equations that allow 

qualitative and quantitative description of the interactions 

between the host immune system and the breast cancer cells. 

Data generated from the model would help examine the 

impact of each of the key components on the cancer cells and 

the different effects of immunosuppression at various stages 

of tumor development. As clinical studies have shown that 

enhanced immune activation correlates with patient outcomes 

[29, 36, 47], we focus on understanding where in parametric 

space are these activations optimized. Thus, the goal of this 

paper is to use mathematical modeling approach to help gain 

more insight of immune macroenvironment and breat tumor-

infiltrative lymphocytes and to determine which epitopes 

produce a strong immune response. 

The rest of the paper is arranged as follows: Model 

assumptions and mathematical equationa are formulated in 

section 2. Parameter estimations and model findings are 

discussed in sections 3 and 4 respectively. Therapeutic 

implications and conclusion are summarized in section 5.  

2. Model Assumptions and Mechanisms 

of Cancer-Immunity Interaction 

We state the cancer-immunity mechanisms assumptions 

and develop a mathematical model of tumor dynamics in 

response to an immune vaccine activation in this section.  

2.1. Model’s Assumptions 

The biological assumptions taken into consideration during 

the model formulation are as follows: 

(1) With the exception of some other minor contributors, 

four types of immune cells – T-cell, NK cells, helper T 

cells, and macrophages are considered to play a 

significant role in fighting against breast cancer cells. 

NK cells and CTLs can kill tumor cells [67-69] and the 

activation of cell-mediated immunity is regulated by 

macrophages and others [69]. 

(2) The T cells are abundant in their naïve stage and 

differentiate into CD4, CD8, and CD4 regulatory cells 

through simplification of the maturation process in the 

thymus. This model assumes a linear transitional state 

from the naïve to mature states. 

(3) The interactions between the cancer and immune cells 

depend on the functioning cancer vascular system. In 

addition to supplying the cancer with blood, nutrients, 

oxygen, and removing waste, the vascular system (VS) 

also supplies immune effector cells with a means to 

infiltrate and attack cancer cells within the cancer bed. 

(4) The cancer cells grow logistically in the absence of an 

immune system response. 

(5) Cancer cells have the potential to engender cytocidal 

activity in previously naïve and non-cytotoxic cells. 

(6) As part of the innate immune system, Natural Killer 

cells are always present and active in the model, even 

in the absence of cancer cells 

(7) The Interactions between breast cancer and immune 

IFN γ−
IFN γ−
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cells depend on a functioning cancer vascular system.  

Figure 1 illustrates the schematic interactions between the 

cancer cells and the key elements of the immune system 

selected for our model. Also, the variables and parameters 

defined in our model equations and their values are presented 

in Tables 1 and 2 respectively.  

 

Figure 1. Shows the importance of each of the four key immune components and their interaction with the cancer cells.  

Table 1. Dependent variables and cancer parameters used in our model equations. 

Symbol Definition 
 Mass, in grams, at time  of the cancer cells  
 

Mass, in grams, at time  of immature Vascular Systems within the cancer 
 

Length of mature (existing) cancer microvessels 
 Cancer perfusion length density given by v=cL/c; 
 Per capita growth rate function of cancer cells 

 Stimulatory immune cells capable of attacking cancer cells 
 CTL cells 

 Rate at which macrophages, NK, and T-helper cells kill cancer cells 

 Rate at which CTLs kill cancer cells 
 Per capita growth rate of a single cell type as a function of blood supply 

 
Partial pressure of cancer oxygen measured in mmHg 

 
Maximum cell reproduction 

 
Mortality rates 

 Effect of oxygen sensitivity on parenchyma reproduction rate 
 

Oxygen sensitivity of the parenchyma mortality 

 How quickly the cancer oxygen partial pressure response to changes in perfusion 
 The angiogenesis signal produced by parenchyma cells 

 Angiogenesis signal produced by cancer cells 
 How angiogenesis signal production is affected by the changes in oxygen supply 

 Both the VEC maturation and death rates 
 

Rate at which new microvessels arise from activated VECs 
 Basic microvessel remodeling rate 
 Rate at which tumor cells activate macrophages, NK and helper T cells 

 Per capita inactivation rate of macrophages NK and helper T cells 

 Rates at which macrophages, NK and helper T cells activate CTLs 

 Rate of CTL activation 
 

The suppression rate of adaptive immune cells as a function of cancer mass 

b sensitivity of the suppression mechanism to the presence of cancer cells 
 

base level of CTL suppression 

 

2.2. Breast Cancer Cells Model 

Let  be the mass, in grams, at time  of the 

cancer cells and the immature VSs within the cancer 

respectively. Let  represents the length of mature 

(existing) cancer microvessels. Then, the normal growth rate 

of a single cancer cell type in a vascularized cancer 
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is represented by: 

               (1) 

The variable represents cancer perfusion length 

density given by ;  express per capita 

growth rate function of cancer cells;  is the stimulatory 

immune cells capable of attacking cancer cells as well as 

activating CTLs;  represents CTLs;  express the rate at 

which macrophages, NK, and THCs kill cancer cells;  is 

the rate at which CTLs kill cancer cells. The equation 

includes the cancer cell death rate as a result of their 

interactions with two groups of immune cells. The first group 

consists of macrophages, NK and helper T cells and the 

second group consists solely of CTLs (see Figure 1). The 

rates depend on the total length of existing cancer 

microvessels, . Also, we have scaled  in such a 

way that one unit of microvessels is equivalent to the mean 

length of microvessels in one gram of unaffected tissue.  

The function  which expresses per capita growth rate 

of a single cell type as a function of blood supply is modeled 

as  

             (2) 

Here,  denotes partial pressure of cancer oxygen 

measured in mmHg; the parameters  and represent 

the maximum cell reproduction and mortality rates, 

respectively.  measures the effect of oxygen sensitivity on 

parenchyma reproduction rate while  reflects the oxygen 

sensitivity of the parenchyma mortality. Thus, the first term 

on the right-hand-side of equation (2) expresses the 

parenchyma growth rate while the second term represents the 

parenchyma death. 

In this model, we assume that the dependence of oxygen 

concentration on vascularization is  

                             (3) 

where the maximum possible oxygen partial pressure cancer 

in the patient’s tissues is denoted by  

under normal conditions [7, 70]. The parameter  measures 

how quickly the cancer oxygen partial pressure response to 

changes in perfusion and is given by [7, 70] as 1.375 

perfusion units. Therefore, the function  is fully 

characterized in term of . 

 

2.3. Vascular Endothelial Cells Model 

The equation for the immature vascular endothelial cells 

(VEC) dynamics is given by: 

                        (4) 

The term  represents the proliferation rate of VEC 

precursors while the parameter  measures the VEC 

precursor response to breast cancer angiogenesis factors 

(CAF). The function  which describes the angiogenesis 

signal produced by parenchyma cells is modeled by: 

                             (5) 

where the parameter  measures the angiogenesis signal 

produced by cancer cells and  expresses how angiogenesis 

signal production is affected by the changes in oxygen 

supply. The vanishing rate of VECs, either by dying or 

becoming mature microvessels, is denoted by . The 

parameter  represents both the VEC maturation and death 

rates, and therefore can be referred to as per capita VEC 

disappearance rate. 

2.4. Microvessels Model 

The remodeling rate of mature microvessels is expressed 

by 

                     (6) 

The term  expresses the rate at which new 

microvessels arise from activated VECs. The second term on 

the right in equation (6) signifies mature microvessel 

remodeling rate. Parameter  represents the basic 

microvessel remodeling rate.  

2.5. Macrophages, Natural Killer, and Helper T Cells 

Model 

The activation and inactivation of macrophages, NK, and 

helper T cells in response to the presence of a cancer is 

modeled by: 

                        (7) 

The first term characterizes the activation of macrophages, 

NK and helper T cells. The activation rate is proportional to 

the number of interactions between cancer and immune cells. 

Parameter  is the rate at which tumor cells activate 

macrophages, NK and helper T cells. The second term 

expresses the inactivation rate of macrophages, NK and 
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helper T cells. Parameter  represents the per capita 

inactivation rate of macrophages NK and helper T cells. 

2.6. Cytotoxic T-Lymphocytes Model 

The activation and suppression of CTLs is described by 

equation (8), 

                   (8) 

The first term symbolizes the rate of activation of CTLs by 

macrophages, NK and helper T cells. 

Parameter  represents rates at which macrophages, NK 

and helper T cells activate CTLs. This term uses mass action 

because the immune-dependent activation rate of CTLs is 

assumed to be proportional to the interaction rate between 

CTLs and macrophages, NK and helper T cells, with 

proportionality . The second term expresses the activation 

rate of CTLs as a result of interactions with cancer cells. The 

rate of CTL activation, , is proportional to the number of 

parenchyma cells in the cancer. The final term  

corresponds to the suppression rate of adaptive immune cells 

as a function of cancer mass where  

                              (9) 

expresses the suppression rate of CTLs. The suppression is 

modeled as a decreasing function of  since as a cancer 

increases in mass, we expect CTL suppression to decrease in 

order to maintain a strong immune response. However, once 

the cancer is destroyed, a large percentage of activated CTLs 

will remain in circulation. Therefore, suppression should 

increase in order to down-regulate the activity of CTLs. 

Parameter  designates the maximum suppression rate 

of CTLs in the absence of a cancer cells. Parameter b 

represents the sensitivity of the suppression mechanism to the 

presence of cancer cells, and the base level of CTL 

suppression is symbolized by parameter . 

3. Parameter Estimation 

Prior to analyzing the behavior of the model, we estimate 

parameter values. Many of the biological aspects of this 

model are currently unavailable in literature or still not 

verified. However, rough approximations can be made for 

most of the parameters. For cancer and vascularization 

parameters defined in Table 1, we selected values that 

produced a viable cancer according to research done by [7, 

41, 70, 71]. We then made estimates of the appropriate order 

of magnitude for all immune parameters. Reasonable values 

for parameters , , and , the activation rates of 

immune cells, was made the same order of magnitude as the 

values used by [7, 70] for the reproduction rate of cancer 

cells. Thus, these parameters ranged from 0.01 to 0.1. The 

inactivation rate of macrophages, NK and helper T cells also 

had values similar to the death rate of cancer cells. 

Specifically, values for parameter  ranged from 0.01 to 

0.05. Parameter b the sensitivity of the suppression 

mechanism in the presence of a cancer was estimated to be 

fairly large, ranging from 1.0 to 2.0, in order to allow an 

immediate immune response in the presence of a cancer. The 

base CTL suppression rate ( ), on the other hand, should be 

small, ranging roughly between 0.001 and 0.01. This range 

guaranteed a slow disappearance of CTLs in the presence of 

a cancer. Parameter a corresponds to maximum CTL 

suppression in the absence of a cancer and thus should range 

from 0.05 to 0.5 in order to ensure that CTLs are sufficiently 

down regulated when no cancer is present. Finally, it was 

estimated that the parameters , the rates that our 

two groups of immune cells kill cancer, should range 

between 0.1 and 1. This range accounts for the increased rate 

of cancer cell death as a result of interactions with immune 

cells. Table 2 summarizes the parameter estimates used in 

this paper.  

Table 2. Initial parameter values for breast cancer progression in the model. 

Symbol Value Units Refs. Symbols Value Units Refs. 
 0.01 mg [8, 64]  0.04 Per day [8] 

 0.001 mg [8, 64]  0.28 - [65] 
 

0.0 MU [8, 64]  0.06 - [8, 64] 
 - MU/gm   3.0 - [64] 

 0.001 mg [8, 64]  0.004 Per day [66] 

 0.0005 mg [8, 64]  0.05 Per day [66] 
 

0.1-1.0 Per day [65]  0.02 Per day [66] 

 0.1-1.0 Per day [65] 
 

0.07 Per day [8, 64] 

 - - - 
 

0.07 Per day [66] 

 95 mmHg [8, 64]  0.1 - [64] 

 0.8 Per day [66]  2.0 - [8, 64] 

 0.4 Per day [66] 
 

0.05 - [8] 

 
0.06 Per day [8, 64] 

 
0.05 - [8, 64] 

Note that one microvessel unit (MU) is equal to the mean length of microvessel in one gram of unaffected cell or tissue. 
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4. Results and Discussions 

The system of the differential equations was numerically 

solved using MATLAB using the parameter values 

summarized in Table 2. Results from the model are in silico, 

meaning that they can be applied to a clinical setting. Here, 

the term “injected vaccine” refers to computerized simulation 

of a host’s immune response after inoculated with a vaccine, 

and then subsequently introduced into the tumor. The 

timescale of the figures was utilized to provide the basis for 

how the model can be applied to a clinical setting.  

In Figure 2 we showed that if there’s no cancer vaccine 

injected, a host produced an immune response that is not 

sufficient to eliminate the cancer tumor. In this regard, it was 

observed that a cancer cells with a sufficiently large VEC 

density was able to produce a viable cancer. As a result, the 

cancer cells, the VEC, and the microvessel with standard 

parameter values and initial conditions grew exponentially, 

as shown in Figures 2 and 3. The mass of the cancer cells in 

particular reached a mass of 28 g in 190 days. 

 

Figure 2. A viable breast cancer tumor when no cancer vaccine is injected.  

 

Figure 3. A sufficiently large VEC density increasing exponential to promote 

a viable cancer. 

Once the injected immune vaccine was introduced, the 

maximum mass of breast cancer cells reached only 6.2 grams 

in approximately 120 days (see Figure 4). In addition, both 

VEC mass and the microvessel length reduced to 0.075 mg 

and 5 MU respectively, as shown in Figure 5. These 

observations indicated that both VEC mass and microvessel 

density within the regions of the cancer were prognostic 

indicators for the human breast carcinoma.  

 

Figure 4. When cancer vaccine is injected and immune system parameters 

activated resulted in positive correlation between the microvessel density 

length and the breast cancer growth. 

 

Figure 5. The mass of VEC with immune system is plotted against number of 

days.  

At the inflection point of the cancer’s growth curve, 

macrophages, NK cells and helper T cells began to respond 

well to the cancer while the CTLs were also activated at the 

same time, see Figure 6. Further analysis on CTLs and helper 

T cells showed that a sufficiently high rate of infiltration of 

either cells reduced tumor growth. If the rate of immune 

infiltration of helper T cells was low, a large rate of CTLs 

cells infiltration was needed to eliminate the tumor. On the 

other hand, if the CTLs cells infiltration was low, only a 
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moderate increase in the helper T cell population was 

required to eradicate the tumor. Similarly, tumor-infiltrating 

macrophages and NK cells also depicted similar results. 

Thus, the combined effect of the immune response reduced 

the cancer cells drastically. In addition, after the cancer cells, 

VEC, and the microvessel density reached their peaks, the 

cancer cell mass continued to oscillate in what appeared to be 

a stable limit cycle. Optimizing the values of the four 

immune elements caused the cancer cells to decrease in mass 

and relapse time, as shown in Figure 7.  

 

Figure 6. Graph of macrophages, natural killer, helper T cells and CTLs 

masses plotted against time in days shows immune activations.  

 

Figure 7. The effects of different sizes of immunity on cancer cells.  

To analyze the model mechanism by which macrophages, 

NK, and helper T cells were able to activate CTLs, we varied 

their activation rates in presence of cancer cells (  ) from 

0.05 to 0.5. The plot showed a chaotic behavior as shown in 

Figure 8. The chaotic nature of the cancer growth might be 

attributed to possible time-delays introduced by immune-

mediated activation of CTLs and helper T cells or/and the 

controversy related to large numbers of tumor-infiltrating 

macrophages (the M1 and M2). The importance of large 

M1:M2 ratio verses large/small numbers of tumor-infiltrating 

macrophages on long-term cancer patient could have some 

impact on this behavior. In addition, a huge CTL activation 

spike ( 2800 mg) was observed between 1500-1580 days, 

see Figure 9. What exactly caused the abnormally high CTLs 

spike under very low levels of macrophages, NK and helper 

T cells remained unclear. However, there were large time 

spans between the cancer decay and regrowth during the 

peak activation of the CTLs. Since  represented the 

activation rates of immune cells that participated in direct 

killing of cancer cells and also drove the activation of CTLs, 

we could deduce that increasing  would help eliminate the 

cancer cell.  

 

Figure 8. The effect in which macrophages, Natural Killer cells and helper T 

cells activates the CTLs in presence of breast cancer. 

 

Figure 9. Graph of CTLs activation behavior when cancer size was 

increased. 

The rate at which macrophages, NK, and helper T cells 

( ) and CTLs ( ) killed breast cancer were represented in 

Figure 10. By setting the CTLs cells ( ) to zero, we 

observed that as  increases a stable oscillatory behavior 

and a much less cancer mass were reported indicating that  
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effectively kills the cancer cells. Varying  by setting the 

stimulatory immune cells capable of attaching cancer cells 

(i.e. ) to zero resulted in the activation of CTLs and 

stimulatory immune cells with a stable limit cycle able to 

remove cancer efficiently. Similar observation was 

discovered when  and setting the cancer-mediated 

CTL activation rate to zero.  

 

Figure 10. Effect of optimal CTLs activation on cancer cells, VEC and 

microvessel. 

 

Figure 11. Effects of CTLs, macrophages, natural killers, and helper T cells 

on cancer cell mass. 

The immune cells and CTLs response graph is depicted in 

Figure 11. As observed, the CTL activation overshadowed 

and coincided with the peaks of macrophage, NK and T cell 

activation when cancer cells were present. As the cancer size 

increased, there was a strong interaction between the cancer 

cells and CTLs which increased the cancer cell and CTLs 

ratio. Steadily, this interaction killed enough cancer cells to 

cause the decrease in cancer size. However, this increased the 

CTL suppression which decreased the regulating of the CTL 

activities. Consequently, the cancer cells start growing again 

only to reactivate CTLs with much larger value than the one 

obtained during the previous peak. This observation further 

supports the fact that the immune-mediated activation of 

CTLs is a major factor in developing anti breast cancer 

immunity.  

5. Conclusion 

We applied mathematical modeling as a tool to depict the 

relative strength of the host’s immune system after it has 

been subjected to a breast cancer vaccine consisting of 

CTLs, helper T, Macrophages, and NK cells. The results 

supported the hypothesis that the stimulatory roles of 

macrophages, natural killer cells and helper T-cells play an 

important role in establishing an effective anti-cancer 

response of breast cancer growth. Specifically, we observed 

that breast cancer size was reduced drastically when the 

immune vaccines were activated. Given a sufficiently high 

rate of CTLs or helper T cells infiltration responded with 

tumor elimination. If the rate of immune infiltration of 

helper T cells was low, a large rate of CTLs cells 

infiltration was needed to eliminate the tumor. On the other 

hand, if the CTLs cells infiltration was low, only a 

moderate increase in the helper T cell population was 

required to eradicate the tumor. In addition, we also 

observed the importance of large M1:M2 ratios verses 

large/small numbers of tumor-infiltrating macrophages on 

long term patient survival. Even though the combined effect 

allow us to make predictions on long-term survival, it is 

necessary to optimize both numbers and percentages of M1 

and M1 cells used with tumor-infiltrating macrophages in 

the context of improving breast cancer therapies. Thus, the 

assessment of immune activation could improve prognostic 

stratifications of T cell subsets (CTLs and helper T cells) 

and macrophages (M1 and M2) and therefore could be an 

effective therapies in cancer treatment. Furthermore, breast 

cancer size with different growth rates provoked different 

immune responses. Thus, for a given set of immune system 

parameters, the effectiveness of the immune system against 

breast cancer depended on the cancer growth rate and the 

immunity response. Hence, given the evidence discussed in 

this paper, the hypothesis that immune system status is 

implicated in breast cancer relapse or cancer prevention 

deserves consideration and further investigation. The 

integration of immunotherapy into the management of 

breast cancer is challenging in experimental and clinical 

settings. Vaccines can elicit an antigen specific immune 

response, but the immunity discussed are complex and 

tends to fade with time. Mathematical modeling approach 

can provide or improve our knowledge of the interactions 

between vaccine therapies, breast carcinoma, and immunity. 
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