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Abstract: In this article, an attempt has been made to study the behavior of non-Newtonian viscoelastic model of a 

Williamson fluid flow problem containing nanoparticles and is assumed to be flowing over a stretching sheet stretched along 

its surface in both directions with the same constant surface stretching velocity. The boundary layer governing equations of the 

conservation of mass, conservation of linear momentum and the energy are first modeled into a set of nonlinear coupled partial 

differential equations along with the appropriate boundary conditions. A numerical study of impact of nanofluid flow over a 

stretching sheet is tabulated. The basic equations of Williamson fluid are modeled with the help of Navier-Stokes equations for 

momentum and heat transfer. With the assistance of appropriate similarity transformations these pair of PEDs is transformed 

into up-to-date system of coupled nonlinear ODEs. These transformed systems of equations are evaluated numerically with the 

assistance of shooting method using forth order. The dominant physical properties for system of equations of the model that is 

wall shear stress, and the coefficient of skin friction are acquired. The behavior of nondimensional velocity and thermal flow 

profiles are discussed for the important involved dimensionless parameters like the Williamson fluid parameter and the 

nanoparticles volume fraction through tables and graphs. 
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1. Introduction 

In engineering and industrial processes, the impact of non-

Newtonian fluids cannot be hided, and the field is fascinating 

for researchers. Various fluid models have been projected to 

define the behavior of pseudoplastic fluids and one of the 

prevalent fluids under this category is Williamson fluid. The 

most prominent application of this fluid is in biological 

engineering; where it is used in estimating heat and mass 

transfer in blood vessels and analyzed diffusion of nutrients 

in human blood. The concept of nanofluids opens new 

gateway and has vast applications in the area of physics, 

chemical engineering, metallurgical engineering and heat 

transfer. Williamson [1] has studied and projected some 

models to discuss the flow of pseudoplastic. Dapra and 

Scarpi [2] analyzed the perturbation solutions for boundary 

layer flow of Williamson fluid. The concept of nanofluids 

was derived by Chio [3]. Crane [4] considered the boundary 

layer flow over a stretching sheet. Nadeem et al. [5] studied 

Williamson fluid model for Peristaltic flows. Vasudev et al. 

[6] considered Williamson fluid model for the boundary layer 

flow and heat transfer of peristaltic pumping through some 

porous medium. Cramer et al. [7] compared the experimental 

data of particle suspensions polymer solutions with the 

Williamson fluid model. Khan and Pop [8] investigated the 

boundary layer flow of nanofluid flow over a stretching sheet. 

Their work was extended by Makinde and Aziz [9] for the 

flow with convective boundary conditions. Sakiadis [10] 

formulated boundary layer flow problem for continuously 

moving surface. Tsou et al. [11] studied the heat transmission 

of boundary layer flow over a continuous surface. The 

problem of suction/injection flow and transfer of heat over a 

stretching surface was discussed by Erickson et al. [12]. Few 

other related studies are cited in [13-16]. 

The main intention of the study is to deliver a numerical 

solution for the underlying model based on boundary layer 

flow in case of Williamson fluid flowing over a starching 

sheet. The numerical results are presented both graphically 



14 Farah Deba et al.:  Flow of a Williamson Fluid over a Stretching Sheet Containing Nanoparticles  

 

and in tabular form. 

2. Mathematical Formulation 

Consider the Cartesian coordinates in two-dimensional 

plane [17-20] that is x and y – axis and suppose steady 

incompressible flow for Williamson fluid past a stretching 

sheet. Additionally, the impact of nanoparticles is saturated 

under these conditions, and sheet for this problem is 

specifically stretched with the plane 0y = . Assume that the 

flow of liquid is flowing towards the positive side of y – axis 

0y > . In our problem we suppose that the sheet is stretched 

along with linear velocity represented as ( )wu x ax= , in the 

equation for velocity the constant coefficient of x that is a is 

always positive 0a >  and evaluate the stretching surface 

along with x – axis. Two forces are applied for our problem 

along with x – axis but these forces are equal in magnitude 

and opposite in direction to invoke the stretching in sheet but 

keeping the origin stick at zero. Here wT  represents the fixed 

temperature observe at the surface of sheet and the other type 

of temperature which is known as ambient temperature is 

usually represents as T∞ . The flow is produced due to the 

linear stretching in the sheet. In the lack of a body force of 

the system, the components of governing equations of the 

model are mathematically observed as [21-24]: 
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The components of the velocity are taken as ( ),u x y  and 

( ),v x y  along the direction of flow as well as orthogonal to 

the direction of flow respectively, temperature is denoted as 

T , here thermal diffusivity of nanofluid is represented as 

nfα . Moreover, the effective density of the nanofluid is 

represented as nfρ  and effective viscosity of the nanofluid is 

denoted as nfµ , these terms are introduced by Oztop and 

Abu-Nada 
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Here, fρ  is used to represents the density of base fluid of 

the model along with this sρ  is to represents nanoparticles’ 

density and φ  represents for parameter for volume fraction 

of nanofluid or solid volume of that fluid, nfk  shows the 

effective thermal conductivity present in the nanofluid [25-

26]. The resulting boundary conditions of the problem are 

listed in the form: 

; 0;w wu U Bx v T T= = = =  at 0y =              (6) 

0,u T→ → ∞  as y → ∞                    (7) 

Where kinematic viscosity is usually represented as ν , 

also the velocity of the system which is observed as at wall 

velocity is denoted as wU  and parameter for stretching is 

always positive represented as 0B > . Introducing the 

following similarity transformations: 
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Making use of transformations (7), equation (2) and (3) 

takes the form: 
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Boundary conditions of the problem are observed as: 

0, 1, 1f fθ ′= = =  at 0η =                        (12) 

0, 0f θ′ → →  as η → ∞                          (13) 

Where λ corresponds to the dimensionless parameter 

known as Williamson parameter and mathematically defined 

as follows: 

22B
xλ

ν
= Γ                                   (14) 

For 0λ = , equation (11) transferred into boundary layer 

equations which is in the classical form for viscous flow of 

liquid, wτ  represents the shear stress which is related to wall 

and observed as physical quantity of underlying problem and 

the quantity denoted as fc  known as the coefficient of skin 

fraction. After applied the approximations for boundary layer 

is denoted as, wτ  is given by [27-30]. 
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The coefficient of skin friction for the given problem is 

represented in mathematical form as: 

2
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In dimensionless form for the coefficient for skin fraction for 

the problem is represented in mathematical form as: 
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Where 
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=  is the Reynolds number. Also, we have 
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3. Numerical Solution 

With the help of shooting method, we can solve BVP 

problem numerically by taking equations (10-11) which are 

ordinary differential equations of non-linear type along with 

desired boundary condition according to the problem given in 

equations (12-13). In solution process take equations (10-11) 

along with boundary conditions in (12-13) and first step is to 

reduce these equations into first order equations and then 

implement initial guess to run the iterative process of 

shooting method to reach at the desired approximate solution 

[31-34]. 

4. Results and Discussion 

The acquire pair of non-linear partial differential equations 

is transformed from similarity transformation into ODEs 

along with suitable boundary conditions is numerically 

solved with help shooting technique by the assistance of 

Runge–Kutta method [35-37]. 

Now implementing shooting method iterative process in 

MATLAB coding to approach the approximate solution 

and based on that we work out for satisfactory IVP that 

gives the appropriate answer of solution for initially 

determine BVP for the fluid model and discuss the 

solution with help of graphical representation and tabular 

form [38-40]. 

 

Figure 1. Velocity gradient for different �. 

 

Figure 2. Velocity profile for different �. 

 

Figure 3. Temperature profile for different �. 
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Figure 4. Temperature profile for different ��. 

Table 1. Velocity profile for different φ
.
 

φ  f  

0.0 0.0100 

0.1 0.1071 

0.2 0.2057 
0.3 0.2952 

Table 2. Temperature profile for different �. 

λ  θ  

0.0 0.9980 

0.1 0.9753 

0.2 0.9601 
0.3 0.9417 

5. Conclusions 

In this present paper, we have considered model of 

Williamson fluid containing nanoparticles and analyzed 

flow in two-dimensional on that model over stretching 

sheet. The system of equations of the model for 

Williamson fluid are evolved with the aid of Navier-Stoke 

equations for momentum and heat and with help suitable 

similarly transformations these derived modeled equations 

in the shape of PDE are settled into ODEs. Now these 

transformed equations are solved numerically with the aid 

of Runge – Kutta (RK) technique with shooting method. 

The impact of various types of parameters like Reynolds 

number, coefficient of skin friction and Williamson 

parameter are attained and the convergence of the solution 

is observed. At the end graphical behavior of solutions are 

also discussed in detail. 
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