
 
International Journal of Statistical Distributions and Applications 
2022; 8(2): 24-29 

http://www.sciencepublishinggroup.com/j/ijsda 

doi: 10.11648/j.ijsd.20220802.11 

ISSN: 2472-3487 (Print); ISSN: 2472-3509 (Online)  

 

On Normal Process of Diffusion Equation in Monitoring 
Carbon Monoxide Concentrations in Nigeria 

Kazeem Olalekan Obisesan
1
, Oladapo Muyiwa Oladoja

2, *
 

1Department of Statistics, University of Ibadan, Ibadan, Nigeria 
2Department of Mathematics and Statistics, First Technical University, Ibadan, Nigeria 

Email address: 

 
*Corresponding author 

To cite this article: 
Kazeem Olalekan Obisesan, Oladapo Muyiwa Oladoja. On Normal Process of Diffusion Equation in Monitoring Carbon Monoxide 

Concentrations in Nigeria. International Journal of Statistical Distributions and Applications. Vol. 8, No. 2, 2022, pp. 24-29.  

doi: 10.11648/j.ijsd.20220802.11 

Received: April 6, 2022; Accepted: April 19, 2022; Published: May 10, 2022 

 

Abstract: Normal processes produce random variables with a normal distribution, which is the most important model in 

statistics. Due to the constant speed and direction of the carrier medium, a continuous source releases particles like 

environmental pollutants in drift be it in the air, water or soil. By differentiating the normal density function, this study used the 

knowledge of the plume model to build two separate paths of utilizing Gaussian probability density function with mean of zero to 

show that it meets the diffusion equation from physical principles through the knowledge of a Brownian motion in monitoring 

emissions of carbon monoxide from different sources in the most populous black country. Carbon monoxide emissions from 

manufacturing industries and construction (MIC), fugitive emissions from solid fuels (FESO), and agricultural waste burning 

(AWB) are all higher than other sources in Nigeria, according to this research. Rail transportation (RAIL) is the lowest source of 

carbon monoxide emissions, and pollution diffusion in the country follows a predictable pattern in form of a normal process. The 

magnitude of the standard deviations affects the precision of confidence intervals used to estimate mean pollutant concentrations. 

Decision-makers in the country will know which sectors to focus on in order to reduce carbon monoxide emissions. 

Keywords: Gaussian Density Function, Fugitive Emissions, Agricultural Waste, Rail Transportation,  

Pollutant Concentrations 

 

1. Introduction 

As a result of the complexities of the processes at work on 

a pollutant when released into the environment, a single 

model of its movement, transformation, and fate cannot be 

created. Models of a number of very simple environmental 

processes are preferable to gain insights into these 

phenomena. The purpose of such models is to illustrate how 

environmental concentrations develop their statistical 

properties. It is an attempt to illustrate how basic processes 

operate under far more complex circumstances in real-life 

environmental situations using idealized models. Diffusion 

occurs when a molecule swaps positions with a neighboring 

molecule as a result of releasing a pollutant into the 

atmosphere [4, 6, 12, 19, 20, 23]. Pollutant molecules tend to 

swap places with adjacent carrier medium molecules when 

released into a carrier medium. The molecules will generally 

spread out or become dispersed in the carrier medium, which 

will also result in dilution of the pollutant (number of 

molecules per unit volume) since the molecules will become 

diluted. As pollutants becomes dispersed in the environment, 

it affects the ecosystem. In the marine environment, oil 

pollution is caused by releases of fluid oil from oil platforms 

or drilling rigs as well as pipelines caused by human 

activities. Historically, tankers and drilling platforms have 

released unrefined petroleum may seriously harm the 

environment [1, 2, 5, 16, 22, 24, 25]. Bayesian Model 

Averaging was usually applied to an ensemble of climate 

model simulations from the Paleo-climate Modelling Inter 

comparison Project phase 3 (PMIP3) and phase 5 of the 

Coupled Model Inter-comparison Project (CMIP5). 

Uncertainties, weights and variances of individual model 

simulations were estimated from a training period using the 
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National Centers for Environmental Prediction-National 

Center for Atmospheric Research (NCEP-NCAR) reanalysis 

dataset. Their results shows that the selected proxy-based 

reconstructions and simulations are consistent with BMA 

estimates regarding climate variability in the past 10 

centuries, though differences can be found for some periods. 

One of the main greenhouse gases in the atmosphere is CO2. It 

is emitted to the atmosphere through many ways, but the 

larger emissions of the gas in the atmosphere leads to higher 

concentration in the atmosphere thereby altering the global 

carbon cycle and causing global warming of the earth planet. 

Emissions from a number of growing economies have been 

increasing rapidly over the last few decades. Fast-forwarding 

to annual emissions in 2014, we can see that a number of low 

to middle income nations are now within the top global 

emitters. In Nigeria, CO2 gas is emitted from a lot of sources. 

As important as CO2 is, in sustaining a habitable temperature, 

continuous increase in the emissions can disrupt the global 

cycle and thereby lead to a planetary warming impact. Since 

CO2 emissions is rapidly increasing in Nigeria, and through 

this study we have been able to discover that the Industry, 

Agriculture, Resident and Commercial sector plays the most 

important role in the emission to the environment, there is 

need for the concerned authorities to restructure these sectors 

and provide necessary adjustment to reduce carbon emission 

being released to the environment or to provide ways by which 

the carbon emitted will be properly sequestered [3, 7, 10, 14, 

20]. It is possible to predict the spillage area by solving the 

mass transport equation that governs the flow field 

phenomena. There is only one rational solution for the 

diffusion equation (parabolic) [12, 13, 15, 17, 21]. Ahmad et 

al. [1], modified the diffusion and Allen-Cahn equations to 

analyze approximate solutions arising from oil pollution. A 

wide variety of techniques are used to solve the Allen–Cahn 

(AC) equation; A few Newell-whitehead (NW) and AC 

equations were approximated using the Legendre 

wavelet-based approximation method by Hariharan [10]. A 

fractional Laplacian was used by Gui & Zhao [9] to obtain 

traveling wave solutions of the AC equation. Using the 

integrative method, Javeed et al. [11] developed a coupled 

space-time fractional Drinfeld-Sokolov-Wilson system and 

space-time fractional AC equation. Series of mechanical 

model, like the wedge machine, can be used to explain 

diffusion of pollutants by generating probability distributions 

that are both symmetrical and right skewed. This work try to 

extend the work of Ott [12], by using the knowledge of 

Brownian motion in a plume to assume normality as 

pollutants flows from a source to satisfy the diffusion 

equation. 

2. Methodology 

Assume that pollution particles (or molecules) are released 

from a point source, such as a chimney discharge, into a wind 

moving in a laminar flow in a constant direction. The plume 

will be symmetrical, with its center line extending from the 

source parallel to the flow direction, if the carrier medium is 

homogeneous and free of interfering barriers. Consider how 

this method would work in two dimensions. Each particle 

experiences longitudinal drift after leaving the source, similar 

to the particle frame analog, but it is subject to countless 

collisions as it moves along. The particle will experience 

horizontal displacement di on the ith impact. If y(m) is the 

particle's horizontal position after m collisions, then y(0) = 0 

is the particle's initial location at the source, and the particle's 

final position is the sum of all horizontal displacements it has 

undergone since leaving the source: 

y (m) = d1 + d2 + - - - + dm         (1) 

Let Y be a random variable that represents the particle's 

horizontal location as measured by its positive or negative 

distance from the center line. Let D be a random variable that 

represents the horizontal displacement of the object after each 

impact. The sum of the realizations d1, d2... dm obtained from 

the random variable D will thus equal Y for each unique 

particle. Assume that the particles are equally likely to be 

moved to the left or right, and that the expected value of the 

displacement is zero: E[D] = 0. Because the displacements are 

independent, the expected value of Y by the criteria for 

combining expected values will be the sum of the 

displacements' expected values. 

E[Y] = E[d1] + E[d2] +...+E[dm] = m E[D] = 0  (2) 

By the criteria for combining variances, the variance of Y 

will be the sum of the variances of the separate displacements. 

V[Y] = V[d1] + V[d2] +... +V[dm] = m V[D]  (3) 

According to the Central Limit Theorem, Y asymptotically 

approaches a normal distribution since it is made up of 

independent random variables with finite variance. 

This study shows that after m collisions, the particle's final 

location Y (or that of many similar particles) will 

asymptotically approach a normal distribution with a mean at 

the center line and variance proportional to m. The normal 

distribution's probability density function with mean 0 and 

variance σ
2
 = m is as follows: 

f�y� = �
�√	
 e�


�
���               (4) 

More collisions will occur as time goes on. As a result, it's 

plausible to infer that the number of collisions is proportionate 

to the amount of time that has passed. Considering the 

one-dimensional distance Y of a particle from the center line 

in a normal PDF with mean 0 and variance t. We demonstrated 

that this density satisfies the diffusion equation from physical 

principles by differentiating the normal density function with 

respect to y. 

f�y� = �
√	
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�
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Differentiating the above equation with respect to y once 

again. 
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Now differentiating the original PDF with respect to t and 

compare it with the result obtained in equation 7. 
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These two independent paths of analysis that yield the same 

results shows that the Gaussian PDF satisfies the diffusion 

equation. 

The position of a drifting particle can be visualized as a 

bell-shaped probability distribution symmetrical about the 

center line, which extends out as the particle drifts along, 

based on the aforementioned analysis. The distribution 

asymptotically becomes normal as the number of collisions 

grows, with the variance proportional to time. If a large 

number of particles are released from the source at the same 

time, their "anticipated arrival density" (expected number of 

particles per unit length) will follow similar normal 

distributions, with the exception that the quantities will be 

multiplied by the number of particles released. The area 

under the normal curve for a given segment of the Y-axis will 

give the estimated number of particles arriving in that 

segment. Any process in which particles behave in a normal 

distribution with respect to space whose variance is 

proportional to time satisfies the diffusion equation and is a 

diffusion process. 

Each particle in a three-dimensional model has a 

horizontal (Y-direction) and vertical (Z-direction) 

coordinate, both of which are normally distributed. Because 

the mixing qualities of the carrier media may differ in the 

horizontal and vertical directions, the standard deviations of 

these two normal distributions will not necessarily be the 

same in a real plume. More collisions will occur as time 

passes, and the standard deviations $��%�  and $&�%�  will 

become functions of time. The particle's position will have a 

bivariate normal probability distribution with 

time-dependent standard deviations. 

'()�y, z� = �
	
$,�%�$-�%� e

�.
�/ 
�

��
��0�� 1�
��1��0�2      (10) 

We can get a broad technique with various practical 

applications by expanding these notions further. The above 

concepts are limited in their utility because they require 

knowledge of the mean and variance of the original population 

from which the samples were taken; with this information, we 

can then compute the probability that the observed sample 

mean will fall within a given range of the population mean. 

3 456 − - 78
√9 ≤ ;< ≤ 56 + - 78

√9>	        (11) 

Although this result is intriguing, its direct utility is 

restricted because we rarely know 56  or $6 . Rather, we 

usually only have a set of n observations; we can compute an 

observed sample mean ?̅ from these, and then we want to 

know how near the true population mean 56 is to the sample 

mean. Let's say we start by subtracting 56 from all terms in 

the above inequality, then alter all the signs in the equation and 

reverse the inequality's direction, then add ;< to all terms in 

the equation and rearrange it. 

3 4;< − - 78
√9 ≤ 56 ≤ ;< + - 78

√9>         (12) 

Using the methods just explained, calculating confidence 

intervals from a collection of observations is simple. 

Environmental quality data, on the other hand, may have some 

quirks that prompt the analyst to doubt the assumptions that 

these methodologies are built on. Hourly water quality or 

ambient air quality readings, for example, frequently have 

substantial serial relationships. As a result, the concentration 

seen in one hour is not reliant on the concentration observed 

the following hour. 

The data used for this study was assessed from the 

Electronic Data Gathering, Analysis, and Retrieval system 

(EDGAR). In addition to greenhouse gas emissions, EDGAR 

also provides air pollution emissions for each sector and 

country for several years. Carbon monoxide been a toxic 

pollutant was used for the study. There are various sources of 

CO emission in Nigeria. They include monthly emissions of 

CO from public electricity and heat production (PEHP), other 

energy industries (OEI), manufacturing industries and 

construction (MIC), rail transportation (RAIL), inland 

navigation (IN), residential and Other Sectors (ROS), fugitive 

emissions from solid fuels (FESO) and agricultural waste 

burning (AWB) between 2000 and 2012. 

3. Discussion of Results 

Although the plume model is most commonly used to 

solve air pollution problems [12], it might also be used to 

solve plumes caused by water contaminants discharged into 

streams or lakes [8]. The model might potentially be used to 

simulate the spread of pollutants as they sink downhill 

through porous soils. This model is applicable whenever 

one chemical is conveyed by a carrier medium and 

encounters random molecule collisions as it drifts. Many 

variables in nature are the consequence of the addition of a 

number of unconnected elements. As the number of 

components in the total grows larger, the final sum tends 

toward normality when the individual components are 

sufficiently unrelated and complex. The accumulation of 

multiple continuous random variables, as well as the 

independence of these random variables, are two 

fundamental requirements for a normal process. In this 

study, we used the concentration of monthly emissions of 

carbon monoxide in Nigeria from 2000 to 2012. The 

sources of emissions include public electricity and heat 

production (PEHP), other energy industries (OEI), 
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manufacturing industries and construction (MIC), rail 

transportation (RAIL), inland navigation (IN), residential 

and Other Sectors (ROS), fugitive emissions from solid 

fuels (FESO) and agricultural waste burning (AWB). From 

figure 1, it shows that majority of the emission sources are 

positively skewed. As the emission increases over time, it 

will asymptotically approach a normal distribution in 

accordance with the central limit theorem. 

 

Figure 1. Histogram of monthly CO emissions in Nigeria. 

Table 1 below shows the mean and standard deviations of 

monthly carbon monoxide concentrations (in Gg) in Nigeria 

from 2000 to 2012. On average the emissions are higher from 

manufacturing industries and construction (MIC), fugitive 

emissions from solid fuels (FESO) and agricultural waste 

burning (AWB) than other sources. Rail transportation (RAIL) 

is the lowest source of emission of carbon monoxide in 

Nigeria. 
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Table 1. Mean and Standard Deviation of monthly CO concentrations in 

Nigeria. 

 
Mean Standard Deviation 

PHEP 0.5966 0.1329 

OEI 0.4298 0.0649 

MIC 76.21 74.2133 

RAIL 0.020458 0.0104 

IN 0.0382 0.0195 

FESO 99.37 46.0751 

FEOG 10.081 2.3667 

AWB 84.9 48.6899 

Table 2. Confidence Intervals for mean CO concentrations in Nigeria. 

Emission Source 
95% C.I. for µ 

Low High 

PHEP 0.58 0.62 

OEI 0.42 0.44 

MIC 64.51 87.91 

RAIL 0.02 0.02 

IN 0.04 0.04 

FESO 92.11 106.63 

FEOG 9.71 10.45 

AWB 77.22 92.58 

Table 2 shows the 95% confidence level of estimates where 

the true mean of carbon monoxide emissions will fall from 

different sources. The results show that the samples required 

to provide precise estimate of the mean. The high precision 

from small sample sizes is caused by relatively small standard 

deviations. 

Figure 2 shows the likelihood of the concentrations of 

carbon monoxide emissions from all sources. The likelihood 

plot displays the distribution of the emissions on average 

using the mean as a single observation while the maximum 

value observed in the data set is displayed as the maximum 

likelihood. The likelihood function contains more information 

about the data and the parameters than some summary 

measures of the data. Plots of the likelihood, whenever 

possible, throw more light on random phenomenon and should 

be employed in as many cases as they permit. The likelihood 

function of the maximum of the sample is given by 

A�5� = BCD�?�9� − 5�E.�9��� ∅�?�9� − 5�     (13) 

where ?�9� denotes the maximum value of the n data points ?�, … , ?9and D�. � is the cumulative distribution function of 

the standard normal random variable. 

 

Figure 2. Likelihoods of CO Emissions in Nigeria. 

4. Conclusion 

This study had been able to explain the diffusion process of 

particles via the principle of differentiation. It was established 

that diffusion of pollutants in the environment assumes 

normality through the central limit theorem. Carbon monoxide 

emissions from different sources in Nigeria was used as case 

study, and it was discovered that: 

1) Carbon monoxide emitted from manufacturing 

industries and construction (MIC), fugitive emissions 

from solid fuels (FESO) and agricultural waste 

burning (AWB) are higher than other sources in the 

country. 

2) Rail transportation (RAIL) is the lowest source of 

emitting carbon monoxide. 
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3) Diffusion of pollutants in the country follows a normal 

process. 

4) The precision of confidence intervals estimate of means 

of pollutant concentrations depend on the magnitude of 

the standard deviations. 
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