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Abstract: Characterizing a distribution is an important problem in applied sciences, where an investigator is vitally interested 

to know if their model follows the right distribution. To this end, the investigator relies on conditions under which their model 

would follow specifically chosen distribution. Certain characterizations of the Marshall-Olkin discrete reduced modified Weibull 

distribution are presented to complete, in some way, their work. 
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1. Introduction 

The problem of characterizing a distribution is an 

important problem in applied sciences, where an investigator 

is vitally interested to know if their model follows the right 

distribution. To this end, the investigator relies on conditions 

under which their model would follow specifically chosen 

distribution. [1] introduced a new discrete probability model 

called "Marshall Olkin Discrete Reduced Modified Weibull 

(MDRMW)" distribution to compete against some of the 

well-known discrete distributions. In this very short note, we 

present two characterizations of MDRMW distribution based 

on: (i) conditional expectation of certain function of the 

random variable and (ii) the hazard rate function. We would 

like to mention here some of the recently introduced discrete 

distributions for the interested readers: (a) Discrete Logistic 

(DLOG) distribution [2]; (b) a discrete version of normal 

(DN1) distribution [3]; (c) Discrete Rayleigh (DR) 

distribution [4]; (d) Discrete Normal (DN2) [5]; (e) Discrete 

Weibull Type III (DWTIII) distribution [6]; (f) Discrete 

Gamma (DG) distribution [7]; (g) Discrete Beta-Exponential 

(DBE) distribution [8]; (h) Generalization of Geometric (GG) 

distribution [9]; (i) Discrete Generalization of Half-Normal 

(DGHN) distribution [10]; (j) Exponentiated Discrete 

Weibull (EDW) distribution [11]. The next four distributions 

were listed on page 4188 [12]: (k) Discrete Pareto (DP); (l) 

Discrete Haight’s zeta (DHZ); (m) Discrete Half-Logistic 

(DHL); (n) Discrete Truncated-Logistic (DTL); (o) Discrete 

Laplace (Double Exponential) (DL (DDE)) distribution [13]; 

(p) Discrete Geometric Weibull (DGW) distribution [14]; (q) 

Discrete Modified Weibull Extension (DMWE) distribution 

[15]. The next two distributions appear in [16]: (r) Discrete 

Modified Weibull Type I (DMWTI); (s) Discrete Modified 

Weibull Type II (DMWTII); (t) Discrete Reduced Modified 

Weibull (DRMW) distribution [17]; (u) Discrete Burr (DB) 

distribution [18]; (v) Discrete Inverse Rayleigh (DIR) [19]; 

(w) Another Discrete Burr (ADB) [20]; (x) Discrete Gumbel 

(DG); (y) Generalizations of Geometric (GOG) distributions 

[21] and (z) A New Generalized Poisson-Lindley (ANGPL) 

Distribution of [22]. For a detailed treatment of each one of 

these distributions and their domain of applicability, we refer 

the interested reader to the corresponding paper cited in the 

references. We certainly hope that the contents of this work 

will be useful to a good number of researchers whose model 

follows the MDRMW distribution. The cumulative 

distribution function (cdf), ( ) ,F x and the corresponding 

probability mass function (pmf), ( ) ,f x  hazard rate function, 

( ) ,Fh x  of MDRMW are given, respectively, by 
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Where ,b cβ, all positive and 1( )0,q ∈  are parameters and 

* }0{= ∪ℕ ℕ  (ℕ is the set of all positive integers). 

2. Characterization Results 

We present our characterizations (i) and (ii) mentioned in 

the Introduction via two subsections 2.1 and 2.2, as follows. 

2.1. Characterizations of MDRMW in Terms of the 

Conditional Expectation of Certain Function of the 

Random Variable 

Proposition 2.1.1. Let 
*:X NΩ → be a random variable. 

The pmf of X is (2) if and only if 
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Proof. If has pmf (2), then the left-hand side of (4) will be 
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Conversely, if (4) holds, then 
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From (4), we also have 
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Now, subtracting (6) from (5), we arrive at 
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From the last equality, we have 
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Which, in view of (3), implies that has pmf (2). 

2.2. Characterization of MDRMW Based on the Hazard Function 

Proposition 2.2.1. Let
*:X NΩ → be a random variable. The pmf of is (2) if and only if its hazard rate function satisfies 

the difference equation 
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Proof. If has pmf (2), then clearly (7) holds. Now, if (7) holds, then for every ,x N∈ we have 
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Which, in view of (3), implies that has pmf (2). 

3. Concluding Remark 

The problem of characterizing a distribution is an important 

one which can help the researcher to find out if their selected 

distribution is in fact the right one. This short note is intended 

to provide the characterizations of MDRMW distribution to 

complete, in some way, the work of Oloko et al. [1]. 
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