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Abstract: It is well known that low-frequency pulsed electromagnetic fields are able to stimulate the restoration of damaged 

neural contacts. Despite the fact that this effect is widely used by physicians, the physical basis of such an action of low-

frequency pulsed electromagnetic fields remains unknown. In this aspect, it is of interest that the drying of chloride solutions 

prepared in negatively charged water is accompanied by the formation of tree-shaped crystals, i.e. their arborization. Based on 

this, it was suggested that low-frequency pulsed electromagnetic fields cause negative electrification of aqueous solutions of 

chlorides, which are the main inorganic anions of nerve tissues, and, as a result, axonal arborization of neurons. During the 

experimental verification of such an assumption, the formation of tree-like crystals in drying solutions of chlorides was 

detected, through which weak constant and low-frequency pulsed electric currents were previously passed. This made it 

possible to suggest an explanation of the nature of axonal arborization of neurons, including those damaged, which is observed 

under the influence of low-frequency pulsed electromagnetic fields in vivo. Since chlorides are the main inorganic anions of 

blood, it was also proposed to explain the formation of new capillaries under the action of low-frequency pulsed 

electromagnetic fields. After a more detailed analysis, it was suggested that this kind of negative electrization of aqueous 

solutions of chlorides was due to free hydrogen atoms, which are the products of water electrolysis. However, it was suggested 

that oxygen atoms, which also appear during the electrolysis of water, are bound by chloride anions to form hypochlorite 

anions. Thus, such oxygen atoms are not able to cause a positive electrification of aqueous media in which there are electrical 

currents, including currents, caused by low-frequency pulsed electromagnetic fields. Thus, the importance of chlorine anions 

for regenerative processes, in general, was justified. However, it has been suggested that these hypochlorite anions can 

stimulate cell proliferation, as well as other active forms of oxygen. Thus, an understandable physicochemical basis of the 

therapeutic effects of low-frequency pulsed electromagnetic fields was proposed and partially experimentally established. 
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1. Introduction 

It is well known that low-frequency pulsed 

electromagnetic fields (PEMFs) are capable of regenerating 

neural tissues. It is also well known that low-frequency 

PEMFs can stimulate axonal arborization of damaged 

neurons and restore impaired neural contacts. However, the 

nature of such an action of PEMFs is still considered 

unknown [1-16]. 

To find out the physicochemical basis of the regenerative 

effects of low-frequency PEMFs on the nervous system, we 

studied their effect on the crystallization of chlorides, which 

are the main inorganic anions, both in the cytoplasm of 

neurons and in their environment. At the same time, we took 

into account the characteristic ability of chlorides to form 

tree-like crystals in environments with a negative electric 

potential [17-21]. 

The results obtained during this study are presented here. 
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2. Materials and Methods 

During the experiments, low-frequency (0 ÷ 100 Hz) 

PEMFs generators of various designs, including home-made, 

were used. 

All salts were purchased from «Ukreachim» (Ukraine). 

3. Results 

3.1. Arborization of Chlorides Under the Action of  

Low-Frequency PEMFs on Their Aqueous Solutions 

In the course of numerous experiments, it was found that 

drying of various aqueous solutions of chlorides, previously 

exposed to low-frequency PEMFs (0 – 100 Hz), is 

accompanied by the formation of tree-like crystals (Figure 1). 

 

Figure 1. The crystals formed after drying an aqueous solution of CuCl2, 

which was previously subjected to the action of EMF, pulsing with a 

frequency of 10 Hz for 10 minutes. For contrast, the crystals formed were 

treated with ammonia vapors. 

3.2. Arborization of Chlorides, in Water Solutions of Which 

Weak Constant Currents Previously Flowed 

In the course of numerous experiments, it was found that 

tree-like crystals are also formed during the drying of various 

aqueous solutions of chlorides, through which short-term 

constant electric currents flowed (Figure 2). 

 

Figure 2. The crystals formed after drying an aqueous solution of CuCl2, 

through which a direct current of 10 mA was passed for 10 minutes. 

4. Discussion 

It was previously shown that the shape of crystals formed 

after evaporation of chloride solutions depends on the sign of 

the electric potential of water used to prepare such solutions. In 

particular, it was shown that the evaporation of chloride 

solutions prepared in water with a negative electric potential is 

accompanied by the formation of tree-like crystals (Figure 3) 

[17-21]. 

 

Figure 3. Crystals formed after drying of the NaCl solution prepared with 

water with the potential of –200 mV [17-21]. 

Based on this, it was concluded that low-frequency PEMFs 

cause negative electrification of aqueous solutions of 

chlorides. Considering that the tree crystals of chlorides are 

formed in solutions through which direct currents flowed 

(Figure 2), it was also concluded that the frequency of the 

PEMF used is not fundamentally important for negative 

electrification of water. 

Taking all this into account, this explanation of the 

observed negative electrization of aqueous solutions of 

chlorides was proposed (Figures 1, 2). When electric currents 

flow in aqueous solutions containing chloride anions, at least 

two chemical reactions occur [22]: 1. H2O → H2 + O* (the 

electrolysis of water); 2. O* + Cl
–
 → ClO

–
. Taking into 

account both of these reactions, it becomes clear why the 

concentration of hydrogen gas increases in aqueous solutions 

of chlorides through which various electrical currents flow. 

However, given that contact with hydrogen gas leads to 

negative electrification of water and aqueous solutions [22], 

it also becomes clear why aqueous solutions of chlorides 

through which electric currents flow acquire a negative 

charge. 

Consequently, under the influence of low-frequency 

PEMFs, conditions can be created that facilitate the 

arborization of both the chlorine-rich cytoplasm of neurons 

and the neural environment, which is also rich in chlorides. 

Thus, under the influence of low-frequency PEMFs, 

conditions that are favorable for the formation of new 

dendrite outgrowths of neurons may well form in the nervous 

tissues. 

But this is not all that can be explained with the help of the 

proposed reactions. So, one should take into account the 

formation of hypochlorite ClO
–
 anions, which can also be 
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formed under the influence of low-frequency PEMFs. This is 

important because the hypochlorite anion ClO
–
 is one of the 

active forms of oxygen (ROS) [23], which stimulates cell 

proliferation [24, 25]. It is also important to take into account 

that the hypochlorite ion ClO
–
 can quickly decompose with 

the formation of atomic oxygen (ClO
–
 → Cl

–
 + O* [22]), 

which is capable of forming other ROS [23]. Given this, the 

stimulating effect of low-frequency PEMFs on the 

proliferation of nerve tissue cells can be clearly explained. 

Thus, thanks to the results obtained and their 

understandable explanation, the described cases of 

restoration of the innervation of the affected tissues under the 

action of low-frequency PEMFs [1-16] received an 

acceptable, in my opinion, physico-chemical rationale. 

It seems appropriate to make one important addition. Given 

that sodium chloride is the most common salt component of 

blood plasma, it can be assumed that the capillaries can also be 

updated under the influence of low-frequency PEMFs. Agree, 

this is important for the successful regeneration of neural 

tissues. In addition, it is also important for the successful 

regeneration of other tissues and organs. However, it should 

also be noted that the importance of chlorides for humans is 

usually ignored. Such inattention to chlorides causes, at a 

minimum, surprise, especially considering the exceptional role 

of chlorides in the formation of nerve impulses. 

In conclusion, it can be added that the same reasons can 

cause bone regeneration, which, as is known [26–28], are 

also quickly restored under the action of the same low-

frequency PEMFs. In particular, it can be assumed that low-

frequency PEMFs can initiate the formation of 

polyphosphate fibers in newly formed bones. This 

assumption is supported by the ability of phosphates to form 

needle-like and threadlike crystals in negatively charged 

water [17–21]. 

5. Conclusion 

Low-frequency PEMFs cause negative electrification of 

aqueous solutions of chlorides, as well as the arborization of 

the latter. Taking into account that chlorides are the most 

common anions in nerve tissues, their arborization can 

initiate axonal arborization of neurons, in general, which is 

observed under the action of low-frequency PEMFs. Thus, 

the chlorides of nerve tissues are necessary not only for the 

transmission of nerve impulses, but also for the restoration of 

damaged neurons, in particular, under the action of low-

frequency PEMFs. 

The frequency of PEMFs used to regenerate the affected 

tissues may not be fundamentally important to achieve the 

desired healing effect. 
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