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Abstract: Numerical simulations based on the Monte Carlo Potts model are used to study the temporal change of the grain size 

distribution of two-phase polycrystalline materials, where both phases grow simultaneously. After a sufficiently long time, grain 

growth in such two-phase systems can be characterized by a self-similar scaled grain size distribution function and an associated 

growth law. In particular, the grain size distribution is analyzed for a broad range of second phase volume fractions and found to 

vary with the volume fraction such that the size distribution becomes narrower and higher peaked with decreasing volume 

fraction of the second phase, where particularly the normal distribution function describes the simulation results very well. On 

the other hand, for one-phase systems the grain size distribution is in excellent agreement with an analytical grain size 

distribution function based on a statistical mean-field theory of grain growth that is completely compatible with the principal 

physical condition of total volume conservation. 
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1. Introduction 

It is well recognized that the microstructure of 

polycrystalline materials consist of several grains which are 

typically polyhedral and attached together by interatomic 

forces. Each grain has a consistent structure and is arranged 

randomly within solids similar to soap bubbles. The structure 

formed by the grains is intrinsically unstable. Therefore, the 

grain structure experiences numerous variations with time 

which have a strong effect on physical and mechanical 

properties of the materials. Consequently, understanding how 

grain structures change and establishing measureable 

structure property relations are substantial in many 

theoretical and practical interests. 

In the past decades, microstructural evolution of 

polycrystalline materials has been investigated thoroughly by 

experiments, theories and computer simulations. The ability 

to control the properties of polycrystalline materials and 

enhance their performance depends on the development of 

analytical material models. Various numerical models have 

been developed to investigate the microstructural evolution 

of polycrystalline materials, which have provided a new 

methodology to bridge the gap between experiments and 

theories. Examples of these models are classified as followed. 

Voroni and his modified method [1-3] has been applied to 

study grain growth and nucleation. Curvature-driven grain 

growth [4-8] has shown to be successful to simulate growth 

even though it failed to simulate Ostwald ripening. 

Continuum thermodynamic techniques [9-11] have been 

employed fruitfully to study microstructural evolution 

problems. Cellular automata methods [12] depends on the 

pixels state near the considered pixel. Monte Carlo Potts 

model has been developed to study grain growth in 

one-phase systems [13-21], two-phase solid-liquid systems 

[22,23], two-phase solid-solid systems [24-26] and 

three-phase systems [27]. 

Since the microstructure of polycrystals comprises grains 

of different sizes, they can be described by an average grain 

size and a grain size distribution. The average grain size <R> 

follows the power-growth law given by 

<R>n=<R0>
n+kt                  (1) 

where, R0 is the initial grain size at t = 0, k is the grain growth 

constant, and n is the grain growth exponent, which has a 
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theoretical value of n = 2 for grain growth in one-phase 

materials [28-30].  In two-phase polycrystalline materials, 

the value of grain growth exponent is n = 3 in case of volume 

diffusion grain growth [31-32] and n = 4 when grain growth 

is controlled by grain boundary diffusion [33]. 

As grain growth continues, the sum of grain sizes keeps 

the same and the number of grains N decreases according to 

the following equation, 

N(t)=(At+B)-2/n.               (2) 

After an initial transient time period, the grain size 

distribution, when plotted against the relative grain size x 

defined as x = R/<R>, becomes stationary. Hillert [34] has 

derived his recognized grain size distribution function which 

satisfies a continuity equation. However, Hillert’s classical 

grain size distribution function does neither agree with 

experimental measurements nor with computer simulations. 

Therefore, much efforts to further develop Hillert’s theory 

were done based on computer simulations taking correlations 

between nearest neighboring grains into account (e.g., 

[35-36]). The resulting size distribution functions still satisfy 

the continuity equation in size space, but are more flexible 

due to additional parameters. 

Zӧllner and Streitenberger [37] have derived a grain size 

distribution function which varies with the relative grain size 

x as given by the following expression, 
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using the incomplete Gamma-function ( ),aa 1−Γ . This 

analytical grain size distribution, (3), is scaled, normalized, 

and fulfills the continuity equation. The cut-off parameter x0 

is the only free adjustable parameter resulting in a very good 

agreement with 3D Monte Carlo Potts model simulation 

results [37-38]. 

In the present work, the Monte Carlo method for 

two-phase grain growth is employed to study the grain size 

distribution of two-phase polycrystalline materials. The 

emphasis of the present work is on the grain size distribution 

in the self-similar growth regime. The simulated grain size 

distribution for single-phase systems will be compared with 

the grain size distribution function derived by Zӧllner and 

Streitenberger [37]; however, the simulated grain size 

distribution for tow-phase systems will be compared with the 

normal Gaussian distribution function. 

2. Numerical Implementations 

The Monte Carlo Potts model for two-phase systems [26] 

has been implemented to simulate the evolution of the grain 

size distribution for two-phase polycrystalline materials. The 

structure of two-phase materials is mapped onto a 

two-dimensional square lattice with a size of 400×400. Then, 

the lattices were randomly occupied with the desired volume 

fractions of both phases. 

Every site of phase A is assigned a random positive number 

between 1 and Q, and every site of phase B is assigned a 

random negative number between -1 and -Q.  In all our 

simulations we used the value of Q = 100. The time unit in 

these simulations is one Monte Carlo step (MCS) which is 

proportional to N reorientation attempts where N is the 

number of lattice sites. The grain boundary energies are 

identified by significant interaction between nearest neighbor 

sites. These interactions can be expressed by the following 

Hamiltonian, 
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where E(i, j) is the boundary energy between site i and j, iq is 

the spin of the i-th site. 

Then the microstructural evolution is simulated by a Monte 

Carlo approach in which a site is randomly chosen and 

reoriented to a new different randomly selected configuration 

between 1 and Q or -1 and -Q. If the energy change ∆E is less 

than or equal to zero, then new configuration will be accepted. 

If ∆E is positive, a random number r between 0 and 1 is 

selected and the new configuration will be accepted only if r ≤ 

exp(-∆E/kBT), where kB is the Boltzman constant and T is the 

temperature. The temperature has the value of T = 0.7, which 

is high enough to avoid lattice pinning, but also not too high so 

that the transition to volume diffusion transition regime may 

not occur. While the value of T=0 is used to simulate curvature 

grain growth (compare [39-40]). 

3. Simulated Grain Size Distributions 

It was found in a previous work [26] that grain growth in 

two-phase polycrystalline materials is controlled by grain 

boundary diffusion and obeys the growth law given in (1) with 

n = 4, which is independent of the volume fraction of the second 

phase. In the present work, we find that the average grain size 

increases with time and the number of grains drops, where the 

latter is illustrated by solid lines in Figs. 1 and 2 for a series of 

different volume fractions. This is a result of grain coarsening, 

which occurs as a result of vanishing small grains and moving 

their atoms to the larger neighboring grains. The volume 

fractions investigated of both phases varies between 0% B-20% 

B and 80% A-100% A in Fig. 1 and between 30% B-50% B and 

50% A-70% A in Fig. 2. These simulated curves (solid lines) 

follow the fit of (2) (dashed lines), where the numeric exponent 

has a value of -1 in case of the single-phase system (0% B and 

100% A) and has the value of -1/2 for two-phase systems. It can 

be noticed that most grains have disappeared before the 

structure reaches its self-similar regime; then, eventually 

approached zero after long aging times. In particular, the 

self-similar regime is arrived at earlier aging time close to t ~ 

1,000 MCS for the one-phase system; however, the self-similar 
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regime is arrived at longer aging time between 10,000-100,000 

MCS for two-phase systems depending on the volume fraction. 

Simultaneously grain growth continues until the 

self-similar regime is reached, where the grain size 

distribution is time invariant. The simulated grain size 

distribution functions F(R, t) are plotted at simulation time t ≈ 

28,000 MCS as a function of the grain size R in Figs. 3 and 4 

for various volume fractions analogously to Figs. 1 and 2. It 

can be noticed that the size distributions becomes broader as 

the volume fraction increases from 10% to 100%. At small 

volume fractions of the B-phase, grains are spread at grain 

boundaries and corners of the A-phase leading to a narrow and 

peaked distribution. As the volume fraction of the A-phase 

increases, the grains become interconnected resulting in a 

wider distribution.  This can be observed in Fig. 7 for the 

simulated microstructures in two-phase systems with different 

volume fractions. Therefore, these results suggest that there is 

not a single self-similar size distribution for two-phase 

systems; but, the size distribution varies with the change of the 

volume fraction of both phases. 

 

Figure 1. The number of grains as a function of time (solid line) for various volume fractions, fitting to Equation 2 (dashed line). The volume fractions of both 

phases varies between 0% B-20% B and 80% A-100% A as indicated. 
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Figure 2. The number of grains as a function of time (solid line) for various volume fractions, fitting to Equation 2 (dashed line). The volume fractions of both 

phases varies between 30% B-50% B and 50% A-70% A as indicated. 
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Figure 3. Grain size distributions in Monte Carlo Potts model simulations of microstructure evolution in two-phase polycrystalline materials performed on a 

400×400 grid, plotted as a function of the average grain size, R, for several volume fractions of both phases at t ≈ 28,000 MCS. The volume fractions of both 

phases varies between 0% B-20% B and 80% A-100% A as indicated. 
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Figure 4. Grain size distributions in Monte Carlo Potts model simulations of microstructure evolution in two-phase polycrystalline materials performed on a 

400×400 grid, plotted as a function of the average grain size, R, for several volume fractions of both phases at t ≈ 28,000 MCS. The volume fractions of both 

phases varies between 30% B-50% B and 50% A-70% A as indicated. 

Figs 5 and 6 display the scaled size distribution f(x) versus 

the normalized grain size x for a series of volume fractions at 

five different time steps from the self-similar regime. It can be 

observed that the grain size distribution is indeed self-similar 

and stationary. The grain size distribution exhibits a peak at x 

= 1 and an apparent cut-off between x = 2.0 and x = 2.5 

depending on the case. In particular, we find that increasing 

the volume fraction of phase B from 10% to 50% changes the 

scaled distribution of phase B from narrow and peaked to a 

broader distribution resulting for 50% B-phase in a 

distribution that is more or less identical to the distribution for 

50% A-phase. Furthermore, the simulated grain size 

distribution in the self-similar regime can be well described by 

a fit of the theoretical grain size distribution given by (3) for 

the one-phase system. However, we find that the grain size 

distribution within the self-similar regime for two-phase 

systems can be described very well by the normal Gaussian 

distribution. 
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Figure 5. Time dependence of grain size distribution on the volume fraction for five different time steps, comparing with the theoretical expression Equation (3) 

for one-phase system and with the normal Gaussian distribution function for two-phase system. The volume fractions of both phases varies between 0% B-20% B 

and 80% A-100% A as indicated. 
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Figure 6. Time dependence of grain size distribution on the volume fraction for five different time steps, comparing with the theoretical expression Equation (3) 

for one-phase system and with the normal Gaussian distribution function for two-phase system. The volume fractions of both phases varies between 30% B-50% 

B and 50% A-70% A as indicated.  
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Figure 7. Microstructural evolution in two-phase system at t ≈ 28,000 MCS for different volume fractions as specified. Grains of phase A are white and grains of 

phase B are gray.  

4. Conclusion 

The grain size distribution in two-phase polycrystalline 

materials is simulated for a broad series of second phase 

volume fractions through computer simulations based on the 

Monte Carlo Potts model. It is found that the grain size 

distribution changes significantly with the volume fraction. The 

grain size distribution becomes wider and lower peaked with 

increasing volume fraction of the second phase, where the 

normal Gaussian distribution function is in a good agreement 

with the simulation results of the grain size distribution for all 

two-phase systems. However, for the one-phase system the 

grain size distribution is in excellent agreement with a 

non-Gaussian, analytical grain size distribution function 

derived in a previous work [37] and expressed by Equation (3).  

Since there is no theoretical model for the grain size distribution 

functions in two-phase system yet, an analytical distribution 

function needs to be developed to describe two-phase grain size 

systems in the future. 
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