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Abstract: Electronic and magnetic properties of graphene Möbius strips with different widths are studied using density 
functional theory. It is shown that the multiplicity of the Möbius strip, the cohesive energy, and the band gap energy 
increase with increasing the width of Möbius strip. We show that the magnetic moment of Möbius strip decreases with 
increasing the curvature and strain. Then the effects of an external electric field applied in the direction of the Möbius strip 
axis are studied and it is found that the Möbius strip keeps its metallic surface (edge) states even in the presence of the 
electric field. For sufficiently high applied electric field, the spin-flipping can take place in the Möbius strip. In addition, in 
contrast with the graphene nanoribbons, the graphene Möbius strips show half-semiconducting properties when an external 
electric field is applied.  
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I. Introduction 

The Möbius strip has only one side and can be 
considered as a meta-material [1]. It has a non-oriented 
surface and has interesting physical and optical properties 
[2-4]. A Möbius strip of a single NbSe3 crystal has been 
fabricated by modifying the conventional growth 
conditions [5] and the Möbius aromatic hydrocarbon has 
been observed [6]. Since graphene has good elastic and 
mechanical properties [7], it can be considered as a 
promising material to build Möbius strips [8]. The zigzag-
edged graphene nanoribbon has interesting electronic and 
spintronic properties such as localized edge states and anti-
ferromagnetic ground state [9-12]. Since the spin-orbit 
coupling is small in graphene, observation of spin Hall 
effect is difficult [13]. But, it has been shown that the 
Möbius graphene has nontrivial properties although the 
spin-orbit coupling is small [14-16]. By using tight binding 
method, Guo et al. have shown that the zigzag-edged 
graphene Möbius strip is a topological insulator [17]. 
Topological insulators have remarkable physical properties 
and have potential applications in quantum computing and 
spintronics [18]. The effect of Möbius topology on the 

electronics properties of graphene nanoribbon rings has 
been studied [19]. Also, the effect of twisted angle on the 
electronic and magnetic properties of Möbius strips has 
been reported [20]. Wang et al. have investigated the 
deformation energy density and edge magnetism of 
different graphene Möbius strips [21]. 

In this paper, the electronic and magnetic properties of 
Möbius strips made of zigzag graphene nanoribbons are 
studied using density functional theory (DFT). Here, we 
want to study the effect of multiplicity, 2S+1 (S means 
spin), strain and curvature on the magnetic moment of 
carbon atoms of Möbius strips. Also, the effect of electric 
field on the electronic and magnetic properties of Möbius 
strips is studied. It is shown that the Möbius strip has stable 
configuration and its multiplicity (2S+1) and cohesive 
energy increase with increasing the width of Möbius strip. 
Also, we show that by increasing the width of the Möbius 
strip the band gap energy increases. The Möbius strip has 
ferromagnetic properties and the curvature and strain of 
Möbius strip affect its magnetic moment. Then, we show 
that the spin-dependent density of states at zero-energy is 
not zero for both spin up and spin down. The non-zero 
density of states is due to the non-zero surface (or edge) 
density of states. The effect of an external electric field on 
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Möbius strip is studied and it is shown that, for low electric 
field, the graphene Möbius strip sustains its metallic edge 
states.  Also, the Möbius strip shows half-semiconducting 
properties in the presence of electric field. When the 
electric field exceeds a critical value, the spin flipping can 
take place in the Möbius strip. The paper is organized as 
follows. Section II contains the calculation method. The 
results are presented and discussed in Sec. III. Finally, a 
summary is given in Sec. IV. 

2. Calculation Method  

 

Fig 1. (Color online) Zigzag-edged graphene Möbius strip with length 
L=18 and width N=3. The Möbius axis and edge carbon atom index are 
shown in the figure 

Consider a Möbius strip made of a zigzag graphene 
nanoribbon as shown in Fig. 1. We use DFT to relax the 
Möbius graphene strip (here we use Gaussian code [22]). 
The cohesive energy of graphene Möbius strips and 
graphene ribbons can be calculated by 

( )
( ) .
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         (1) 

In Eq. (1), the superscript r(M) corresponds to the 
graphene ribbon (Möbius strip), NC is the number of carbon 

atoms, NH is the number of hydrogen atom, 
( )r M

coE  is the 

self-consistent field energy of the graphene ribbon (Möbius 

strip), 
C
SCFE  and 

H
SCFE  are the self-consistent field energy 

of alone carbon and hydrogen atoms, respectively. Note 
that the cohesive energy of graphene ribbons is calculated 
for comparison. 

Using local spin density approximation (LSDA), the 
local magnetic moment of carbon edge atoms is calculated. 
We use B3LYP functional [23-26] and 3-21G basis set [27, 
28] because it has been shown that these basis set are 
suitable for carbon-based nano-structures [27, 28]. The 

difference between the lowest unoccupied molecular orbital 
(LUMO) energy and highest occupied molecular orbital 
(HOMO) energy is defined as band gap energy [22]. Using 
Gaussian code, the Fock and Overlap matrices of spin up 
and spin down electrons are calculated. The density of 
states (DOS) can be written as 

1
[ ( )]DOS Imaginary Trace G

π
−

=                         (2) 

where 

1
[ ( ) ]G Fock E i Overlapη −= − + ×                    (3) 

 is the Green function, E is the electron energy and η is an 
infinitesimal positive number. To calculate the effects of an 
external electric field on Möbius strip properties, we use 
the field command of Gaussian code [22] which is a 
perturbation method. 

3. Results and Discussion 

A graphene Möbius strip with length L=18, and width 
N=3, is shown in Figure 1. The Möbius axis and the edge 
carbon atom index are shown in the figure. The width of 
Möbius strip is defined as its number of zigzag strip. The x, 
y, z coordinates of Möbius strip are given by 

( , ) [ cos( 2)]cos ,x u r u uυ ωυ= +                      (4) 

( , ) [ cos( 2)]sin ,y u r u uυ ωυ= +                    (5) 

( , ) sin( 2) ,z u uυ ωυ=                          (6) 

where r and 2ω are the radius and width of the Möbius strip, 
respectively. In Eqs. (4) – (6), 0 2u π≤ ≤  and 1 1υ− ≤ ≤ . 
It should be noted that the two ends of the Möbius strip are 
connected to each other after turning by angle π and 
therefore, the condition (0, ) (2 , )α υ α π υ= −  is valid 

where , ,x y zα = . As Eqs. (4) – (6) show, the structural 

characteristic of the Möbius strip depends on both the 
length (radius) and width of strip. It is expected that the 
structural characteristic and, therefore, the physical 
properties of the Möbius strip depend on the ratio of length 
/ width [21, 29]. The variation of this ratio causes the 
variation in the curvature of the Möbius strip and, in 
consequence, it changes the strain induced in the Möbius 
strip. It also changes the bound length between the carbon 
atoms. In the present study, we consider the length of the 
Möbius strip to be constant and equal to 18 and the Möbius 
strip width varies from 2 to 6. 
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Table 1. Effect of multiplicity on cohesive energy of graphene Möbius strip for different widths N=2, 3, 4, 5, 6. The minimum values of cohesive energy are 
shown by bold font. 

N=6 N=5 N=4 N=3 N=2 
                         Cohesive Energy (eV/atom) 

Multiplicity 
-9.37 -9.52 -9.84 -10.01 -10.02 2s+1=1 (Singlet) 
-9.52 -9.61 -10.09 -10.13 -10.28 2s+1=3 (Triplet) 
-9.65 -9.78 -10.18 -10.30 -10.17 2s+1=5 (Quintet) 
-9.78 -9.92 -10.14 -10.23 -10.13 2s+1=7 (Septet) 

 
Now, we change the multiplicity (i.e., 2S+1 where S is 

the spin) of Möbius strip when its electric charge is 
maintained equal to zero and then we calculate the cohesive 
energy. The results are shown in table 1 for different widths 
of Möbius strip i.e., N = 2, 3, 4, 5, and 6. As the table 
shows, the cohesive energy is minimum when the 
multiplicity of Möbius is equal to 3 for N=2, is equal to 5 
for N=3 and 4, and is equal to 7 for N=5 and 6. Therefore, 
the multiplicity depends on the width of the Möbius strip 
and it increases by increasing the width. As shown in table 

1, for all values of width N, the minimum value of cohesive 
energy occurs when the multiplicity (2S+1) is greater than 
3, which shows that the spin of Möbius strip i.e., S must be 
greater than zero. Thus, the Möbius strip has non-zero spin 
and its total magnetic moment is non-zero. As a result, the 
graphene Möbius strip is a ferromagnetic. This is due to 
this fact that the Möbius strip has only one edge 
topologically [12]. This effect is in contrast with zigzag 
graphene nanoribbon which is anti-ferromagnetic [7]. 

Table 2. Comparison of cohesive energy of Möbius strip and graphene ribbon for different widths. 

N=6 N=5 N=4 N=3 N=2 
                                 Cohesive Energy (eV/atom) 

Structure 

-9.37 -9.52 -9.84 -10.01 -10.02 Möbius strip 
-9.52 -9.61 -10.09 -10.13 -10.28 Graphene ribbon 

Table 3. Comparison of band gap energy of Möbius strip and graphene ribbon for different widths. 

N=6 N=5 N=4 N=3 N=2 
                                            Band gap energy (eV) 

Structure 
1.66 1.57 1.41 1.08 0.72 Möbius strip 
1.13 1.21 1.09 0.89 0.67 Graphene ribbon 

 
In table 2, the cohesive energy of graphene Möbius strips 

is compared with that of graphene ribbons when the size 
(length and width) of graphene ribbons is chosen to be the 
same as the size of the Möbius strips. As table 2 shows, the 
cohesive energy of Möbius strips is greater than that of 
graphene ribbons. We know that the Möbius strips can be 
made by turning the graphene ribbons by angle π, and 
connecting two ends of ribbons to each other. In graphene 
ribbon the bound length between carbon atoms is equal to 
1.42Å. The turning process causes the bound length of 
carbon atoms deviates from 1.42Å and induces strain in 
Möbius strips. In consequence, it is expected that the 
cohesive energy of Möbius strips increases relative to that 
of graphene ribbons with the same length and same width 
due to the deviation of bond length of carbon atoms or 
strain induced by turning process in the Möbius strips. Also, 
as we see in table 2, the cohesive energy depends on the 
width of the Möbius strip and it increases with increasing 
the width. 

Now, we study the band gap energy of the Möbius strips. 
It is well known that the origin of band gap energy for 
graphene ribbons arises from the both quantum 
confinement and the crucial effect of the edges [30]. For 
graphene ribbons with zigzag edges, the gap appears 
because of a staggered sub-lattice potential on the 
hexagonal lattice due to the edge magnetization [30]. In 
zigzag graphene ribbon, when the width is less than 10Å, 

the band gap increases with increasing the width. The edge 
effect causes this increment [30]. When the width of ribbon 
is greater than 10Å the band gap energy decreases with 
increasing the width. This decrement is due to the 
confinement effect [30]. Table 3 shows the band gap energy 
of Möbius strip for different widths. For comparison, the 
band gap energy of graphene ribbon with the same width 
and length is also shown in this table. As the table shows, 
the band gap of Möbius strips is greater than that of 
graphene ribbons. Also, with increasing the width of 
Möbius strip, the band gap increases. This is due to the 
increment of the curvature of Möbius strip and, therefore, 
increment of strain. 

 

(a) 
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(b) 

Fig 2. (Color online) (a) Edge carbon bond length and (b) edge carbon 
magnetic moment as a function of the carbon atom number. Here, the 
length and width of graphene Möbius strip are L=18 and N=3. The 
dashed line in (a) shows the bond length of graphene sheet. 

Figure 2 shows the edge carbon bond length between the 
edge atoms and the magnetic moment as a function of the 
carbon atom number for Möbius strip with width N=3. The 
bond length can be defined as the average distance between a 
carbon atom and the first nearest neighbors. As Fig. 2(a) 
shows, the edge bond length between the atoms of Möbius 
strip depends on the position of edge atoms and it is greater 
than the graphene (sheet) bond length (i.e., 1.42 Å) for edge 
carbon numbers 1-9, 19-29. For other edge carbon numbers, 
the edge bond length of Möbius strip is less than the 
graphene bond length. The magnetic moment of each atom is 
defined as the multiplication of spin density of atom to the 
Bohr magnetization. As shown in Fig. 2(b), the magnetic 
moment of Möbius strip is non-zero which shows that the 
graphene Möbius strip made of zigzag graphene ribbon is 
ferromagnetic. This effect is in contrast with the zigzag 
graphene ribbons which are anti-ferromagnetic [7]. The 
variations of Möbius magnetic moment depends on its edge 
bond length and it reaches to its maximum values when the 
Möbius edge bond length reaches near the graphene sheet 
bond length (i.e., 1.42 Å) [see Figs. 2(a) and 2(b)]. In other 
words, the magnetic moment decreases with increasing the 
deviation of Möbius edge bond length from the graphene 
sheet bond length. Note that the deviation of edge bond 
length of graphene Möbius strip is due to its curvature and its 
strain. To calculate the magnetic moment we used Local Spin 
Density Approximation (LSDA) method i.e., we consider 
four vectors (ρ, m) where ρ is the density of electrons and, m 
is the magnetization vector [31]. 

 

(a) 

 

(b) 

Fig 3. (Color online) (a) Spin-dependent density of states of Möbius strip 
as a function of the electron energy and (b) molecular orbitals of Möbius 
strip at E=0 eV.  

We now calculate the spin-dependent electronic density 
of states (DOS). Figure 3(a) shows the spin-dependent 
DOS of the Möbius strip versus the electron energy. For 
comparison between DOS of the spin up and spin down, 
the DOS of the later is shown with negative values. The 
Möbius strip length and width are the same as those in Figs. 
1 and 2 (i.e., L=18 and N=3). As shown in Fig. 3(a), the 
value of DOS for spin up is not equal to that of spin down 
especially at E=0 eV which shows that the Möbius strip is a 
ferromagnetic. The non-zero DOS at E=0 in Möbius strip is 
due to the existence of surface (or edge) density of states. 
Figure 3(b) shows the molecular orbitals (MO) of electrons 
for Möbius strip at E=0 eV. It is seen that the orbitals are 
localized near the edge of Möbius strip which confirms the 
existence of edge states. 

 
Fig 4. (Color online) Spin-dependent density of states of a CNT with 
length L=18 and width N=3.  

As mentioned above, the graphene Möbius strip is made 
by turning a zigzag graphene nanoribbon (ZGNR) by angle 
π. To study the effect of this turning i.e., the topological 
effect on the DOS, a carbon nanotube (CNT) made of 
ZGNR with the length and width same as those of Möbius 
strip, is considered and its DOS is compared with the DOS 
of graphene Möbius strip.  Figure 4 shows the spin 
dependent DOS of the above mentioned CNT. As shown in 
Fig. 4, the DOS of spin up and spin down electrons is equal 
for all values of electron energy which shows that the CNT 
is an antiferromagnetic. Comparing Fig. 4 with Fig. 3(a), it 
can be concluded that the ferromagnetic effect of Möbius 
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strip at E=0eV is due to the topological property of it. 
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(b) 

Fig 5. (Color online) (a) Spin-dependent density of states as a function of 
the external electric field at E=0 and (b) molecular orbitals of Möbius 
strip in the presence of applied electric field with strength 0.5V/Å. 

We now investigate the effect of an external electric field 
applied in the axis direction of Möbius strip (z-direction, 
see Fig. 1). Figure 5(a) shows the spin-dependent density of 
states at E=0 eV as a function of external electric field. As 
the figure shows, the density of states for spin up electrons 
increases with increasing the electric field, while for spin 
down electrons, the density of states decreases. There is a 
critical value for electric field [i.e., E = Ecr = 0.84V/ Å, see 
Fig. 5(b)] at which the density of states for spin up 
electrons becomes equal to that for spin down. When the 
electric field strength is greater than this critical value, the 
density of states for spin up electrons becomes larger than 
that for spin down. As a result, spin-flipping from down to 
up can take place when an electric field higher than the 
critical electric field is applied. As shown in Fig. 5(a), the 
density of states of both spin up and spin down at E=0 is 
not zero when an external electric field is applied [see Fig. 
5(a)]. Therefore, a gap is not induced by electric field and 
thus the graphene Möbius strip keeps its metallic surface 
states. It means that an external electric field, as a 
perturbation, cannot destroy the non-zero density of states 
of graphene Möbius strip. In addition, the molecular 
orbitals of electrons (at E=0) is shown in Fig 5(b) for 
Möbius strip in the presence of an external electric field. As 
we see in this figure, same as Fig. 3(b), the orbitals are 

localized near the edge of Möbius strip which confirms the 
existence of edge states even in the presence of a 
perturbation field. 
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Fig 6. (Color online) Spin-dependent HOMO-LUMO gap as a function of 
the external electric field. 

Figure 6 shows the spin dependence band gap energy of 
Möbius strip as a function of the external electric field. As 
shown in this figure, the band gap of spin down electrons is 
approximately remain constant, while the band gap of spin 
up electrons decreases by increasing the strength of electric 
field but it never becomes zero. It means that in spite of 
graphene nanoribbon which is a half-metal [8, 32], the 
Möbius strip can act as a half-semiconductor. Note that the 
term half-semiconducting is referred to the states having 
different α (spin-up) and β (spin-down) energy gaps [33]. 

4. Summary and Conclusion 

The electronic and magnetic properties of graphene 
Möbius strips with different widths have been studied using 
DFT method. It has been shown that the multiplicity and 
cohesive energy of Möbius strip depend on the width of 
strip and they increase by increasing the width. Also, we 
have shown that the band gap of Möbius strip increases by 
increasing the strip width. Using local spin density 
approximation, the magnetic moment of Möbius strip is 
calculated and shown that the Möbius strip has 
ferromagnetic property and its magnetic moment decreases 
due to the strain induced by the curvature of Möbius strip. 
Under an external electric field applied in the axis direction 
of Möbius strip, the properties of Möbius strip have been 
studied and shown that the Möbius strip keeps its metallic 
surface states in the presence of an external electric field. 
Also, it has been shown that for electric field strength 
higher than a critical value, spin flipping from down to up 
can take place. In addition, the Möbius strip behaves as a 
half-semiconductor. The interesting properties of graphene 
Möbius strips that are different from graphene nanoribbons 
and nanotubes, such as ferromagnetism and spin flipping 
properties, may lead to interesting application of graphene 
Möbius strips in the electronic and spintronic devices. 
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