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Abstract: The present study reveals the effects of various parameters and non-homogeneity on the surface waves propa-

gating in viscoelastic medium. The theory of generalized surface waves has firstly been developed and then it has been 

employed to study the surface waves. Dispersion relation for Stoneley waves, Rayleigh waves and Love waves has been 

deduced. It has been observed that in the absence of viscosity, temperature, gravity, magnetism, couple stress and non-

homogeneity of the material medium, the results obtained are in well agreement with the corresponding classical results. 
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1. Introduction 

When seismic waves propagate underground, they are in-

fluenced not only by the anisotropy of the media, but also 

by intrinsic viscosity of media given by Carcione [1]. 

Therefore, in order to accurately describe the underground 

propagation of the seismic waves and then more precisely 

guide seismic data acquisition, processing and interpreta-

tion, media models should be chosen that can simultaneous-

ly imitate anisotropic characteristics of formation and vis-

coelastic characteristics for numerical simulation and anal-

ysis of wave fields As a result, the theory of surface waves 

has been developed by Stoneley [2], Bullen [3], Ewing et. 

al. [4], Hunters and Jeffreys [5]. 

The effect of gravity on wave propagation in an elastic 

solid medium was first considered by Bromwich [6], treat-

ing the force of gravity as a type of body force. Love [7] 

extended the work of Bromwich investigated the influence 

of gravity on superfacial waves and showed that the Ray-

leigh wave velocity is affected by the gravity field. Sezawa 

[8] studied the dispersion of elastic waves propagated on 

curved surfaces. 

The transmission of elastic waves through a stratified 

solid medium was studied by Thomson [9]. Haskell [10] 

studied the dispersion of surface waves in multilayered 

media. A source on elastic waves is the monograph of Ew-

ing, Jardtezky and Press [11]. Biot [12] studied the influ-

ence of gravity on Rayleigh waves, assuming the force of 

gravity to create a type of initial stress of hydrostatic nature 

and the medium to be incompressible. Taking into account, 

the effect of initial stresses and using Biot’s theory of in-

cremental deformations, Dey modified the work of Jones 

[13]. De and Sengupta [14] studied many problems of elas-

tic waves and vibrations under the influence of gravity field. 

Sengupta and Acharya [15] studied the influence of gravity 

on the propagation of waves in a thermoelastic layer. Bru-

nelle [16] studied the surface wave propagation under ini-

tial tension of compression. Wave propagation in a thin 

two-layered laminated medium with stress couples under 

initial stresses was studied by Roy [17]. Datta [18] studied 

the effect of gravity on Rayleigh wave propagation in a 

homogeneous, isotropic elastic solid medium. Goda [19] 

studied the effect of inhomongeneity and anisotropy on 

Stoneley waves. Recently Abd-Alla and Ahmed [20] stu-

died the Rayleigh waves in an orthotropic thermoelastic 

medium under gravity field and initial stress. 

Recently, Kakar et al. [21-25] investigated various sur-

face waves in non homogeneous viscoelastic media of 

higher order under gravity. However, the effect of couple 

stress on surface waves has not been discussed so far, there-

fore authors have solved the problem of n
th 

order viscoelas-
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tic surface waves under gravity and couple stress involving 

time rate of strain. In this study, it is assumed that the sur-

face waves are propagating in isotropic, non-homogeneous 

and viscoelastic medium under the effect of various para-

meters such as temperature, magnetic field, gravity and 

couple stress. The dispersion relations are obtained for 

Stoneley, Rayleigh and Love waves by using Biot’s theory 

of incremental deformations. has been used to obtain the 

wave velocity equation. Further these equations are in 

complete agreement with the corresponding classical results 

in the absence of various inhomogeneities of the material 

medium. 

2. Formulation of the Problem 

Let M1 and M2 be two non-homogeneous, viscoelastic, 

isotropic, semi-finite media (Fig.1). They are perfectly 

welded in-contact to prevent any relative motion or sliding 

before and after the disturbances and that the continuity of 

displacement, stress etc. hold good across the common 

boundary surface. Further the mechanical properties of M1 

are different from those of M2. These media extend to an 

infinite great distance from the origin and are separated by 

a plane horizontal boundary and M2 is to be taken above M1. 

 

Fig.1. Geometry of the problem. 

Let Oxyz be a set of orthogonal Cartesian co-ordinates 

and let O be the any point on the plane boundary and Oz 

points vertically downward to the medium M1. We consider 

the possibility of a type of wave traveling in the direction 

Ox, in such a manner that the disturbance is largely con-

fined to the neighborhood of the boundary which implies 

that wave is a surface wave. 

It is assume that at any instant, all particles in any line 

parallel to Oy having equal displacement and all partial 

derivatives with respect to y are zero. Further let us assume 

that u, v, w is the components of displacements at any point 

(x, y, z) at any time t. 

It is also assume that gravitational field produces a hy-

drostatic initial stress is produced by a slow process of 

creep where the shearing stresses tend to become small or 

vanish after a long period of time. The equilibrium condi-

tions of initial stress are  

0, 0g
x z

τ τ ρ∂ ∂= + =
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Also, [12] 
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The dynamical equations of motion for three-

dimensional non-homogeneous, isotropic, viscoelastic solid 

medium in Cartesian co-ordinates with Eq. (1) are 
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Where ρ be the density of the material medium and 

ij jiτ τ= V i, j are the stress components. Let us consider 

that the medium is a perfect electric conductor, we take the 

linearized Maxwell equations governing the electromagnet-

ic field, taking into account absence of the displacement 

current (in system-international unit) in the form 

0
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Where, Ε
��

, Β
��

, eµ and eε are electric field, magnetic field 

induction, permeability and permittivity of the medium. 

The value of magnetic field intensity is 

( ) 00,0, iΗ Η = Η + Η
�� �� ��

          (4) 

We consider an orthotropic elastic solid under constant 

primary magnetic field Η
��

 acting on y-axis and iΗ
��

 is the 

perturbation in the magnetic field intensity. 

It is assumed that prior to the existence of any distur-

bance both the media are everywhere at the constant abso-

lute temperature T0. 

The stress-strain relations for general isotropic, thermo, 

viscoelastic medium, according to Voigt are [26] 

τij= 2Dµ eij + (Dλ ∆ – Dβ T +
2

m0 e
H D∆ ) δij     (5) 

where, 
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△=
u v w

x y z

∂ ∂ ∂
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+ +  and Dλ, Dµ, Dβ are elastic constants. 

Introducing Eq. (5) in Eq. (2a), Eq. (2b), Eq. (2c), we get 
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We assume that the non-homogeneities for the media M1 
and M2 are given by 
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where λ0, M0, λ'0, µ'0 are elastic constants, whereas β0, 

β'0 are thermal parameters are ρ0, ρ'0, m, n are constants. 

λ
K
, µ

K
 (K = 0,1,2, .... n) are the parameters associated with 

Kth order viscoelasticity and β
K
 and (µ

e
)

K
 (K = 1, 2, ....., n) 

are the thermal and magnetic parameters associated with 

Kth order. T is the absolute temperature over the initial tem-

perature T
0
. 

Due to temperature rise of the material medium, it has 

been observed that all the parameters representing elastic 

property, the effect of viscosity and thermal field depends 

on the temperature and ultimately depends on time t. In a 

thermo viscoelastic solid, the thermal parameters βK (K = 0, 

1, ...... n) are given by β
K
 = (3λ

K
 + 2µ

K
) αt, where αt be the 

coefficient of linear expansion of solid. 
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where, 
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To investigate the surface wave propagation along the di-

rection of Ox, we introduce displacement potential φ (x, z, t) 

and ψ (x, z, t) which are related to the displacement com-

ponents as follows: 
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The displacement potential φ (x, z, t) and ψ (x, z, t) in Eq. 

(10) satisfy the following Laplace equation (known as dila-

tion and rotation and are associated with P and SV waves) 
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Substituting Eq. (10) in Eqs (8a), (8b) and (8c), we get 
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To determine T, Fourier’s law of heat conduction 
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where K be the thermal conductivity and obeys the law 

as given by K = K0 emz, p = 
0

0

K

ρ  and C be the specific 

heat of the body at constant volume. 

Further, similar relations in medium M2 can be found out 

by replacing λ
K
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K
, β

K
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0
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K
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 K
, ρ'

0
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3. Solution of the Problem 

Now our main objective to solve Eq. (11a), Eq. (11b), Eq. 

(11c) and Eq. (13), for this, we seek the solutions in the 

following forms. 
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(φ, ψ, T,v) = [f (z), V (z), T
1
 (z), h (z)] eiα(x – ct)   (14) 

Using Eq. (12) in Eq. (9a), Eq. (9b), Eq. (9c) and Eq. 

(11), we get a set of differential equations for the medium 

M1 as follows: 

2
2 2

1 12

2 2

1 1 1

2

( ) 0

+ +

+ + − =

d f df
m f h f

dz dz

i m f i g h g Tα α
 

2
2

12
0+ + =d V d V

m D V
d z d z

 

4 2
2 2

1 14 2

2 2

1 1

2

( ) 0

+ +

+ + − =

d h d h dh
C E

dz dz dz

F h i ml i g fα α
 

 

2 2
21

12 2
0

 
+ + − = 

 

d T d f
AT B f

dz dz
α          (15) 

where, 

f1
2 = 

( )

( )

2

0

2

0

n
K

KS

K

n
K

KR

K

U i c

U i c

α

α

=

=

−

−

∑

∑
, 

h1
2= ( )

2 2
2

2

0

n
K

K R

K

c

U i c

α α
α

=

−
−∑

,

( )

( )

2 2 2

1 1

2

2 0
1

2

0

(2 ),

=

=

= − +

−
= +

−

∑

∑

n
K

KS

s K

n
K

q
Kq

K

C d

U i c
G

d
G

U i c

α

α

α

 

(couple-stress parameter). 

D1
2= ( )

2 2
2

2

0

n
K

KS

K

c

U i c

α α
α

=

−
−∑

, 

l1
2=

( )

( )

2

0

2

0

n
K

KP

K

n
K

KS

K

U i c

U i c

α

α

=

=

−

−

∑

∑
, 

g1
2=

( )

( )

2

0

2

0

n
K

KL

K

n
K

KR

K

U i c

U i c

α

α

=

=

−

−

∑

∑
, 

2 2

1 1

2 2
2 2 2 4

1

2 ,

,

= −

= + −

E ld

c
F l

Gq

αα α

 

A=
2C i c

p

ν α α− , B=
0

L

i cT
G

p

α
    (16) 

and those for the medium M2 are given by 
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Eq. (15) and Eq. (17) must have exponential solutions in 

order that f, j, T1, h will describe surface waves, and they 

must become varnishing small as z → ∞. 

Hence for the medium M1  
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For finite disturbances as z → ∞.for medium M1 must 

hold Re(λi)>0 for i=1,2,3,4,5. 

Similarly for the medium M2 are given by 
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i x ctzz z zA e B e C e D e e
αλλ λ λ −−− − −+ + +  

v (x, z, t) = ( )4''
z i x ct

E e
λ α− + −

            (19b) 

For finite disturbances as z → − ∞.for medium M2 must 

hold Re(λ'i)<0 for i=1,2,3,4,5. 

Where λj and λ'j (j = 1, 2, 3, 4) are the real roots of the 

eqns. 

λ8 + ξ1 λ7 + ξ2 λ6 + ξ3 λ5+ ξ4 λ4 + ξ5 λ3 + ξ6λ2+ ξ7λ + ξ8 = 0,  (20) 

where, 

ξ1 = 2m f1
2, ξ2 = A + Bg1

2+ h1
2 + C1

2, 

ξ3 = 2mAf1
2 + 2m C1

2f1
2 + E1

2 

ξ4 = Ah1
2 + Bα2g1

2 +A C1
2 + C1

2h1
2 + 2 m2 E1

2 f1
2 +BC1

2g1
2,         (21) 

ξ5 = 2mAC1
2 f1

2 + AE1
2+ BE1

2g1
2 + E1

2h1
2 + 2mf1

2F1
2, 

ξ 6 = AC1
2 h1

2–α2BC1
2 g1

2+ 2Am El
2 f1

2+ F1
2(A+B g1

2 +h1
2) – iα(K1

2f1
2 + gK1

2) 

ξ7 = AE1
2 h1

2 –  Bα2E1
2 g1

2 + 2Am F1
2 f1

2, 

ξ8 = (Ah1
2 – Bα2g1

2) F1
2 – iα K1

2f1
2(Am f 1

2 + g). 

λ'8 + ξ'1 λ'7 + ξ'2 λ'6 + ξ'3 λ'5 + ξ'4 λ'4 + ξ'5 λ'3 + ξ'6λ'2+ ξ'7λ' + ξ’8 = 0             (22) 

where, 

ξ'1 = 2m f'1
2, ξ2 = A' + B'g'1

2+ h'1
2 + C'1

2, 

ξ'3 = 2mA'f'1
2 + 2m C'1

2f'1
2 + E'1

2 

ξ'4 =A'h'1
2 + B'α2g'1

2 +A' C'1
2 + C'1

2h'1
2 + 2 m2 E'1

2 f'1
2 +B'C'1

2g'1
2,                     (21) 

ξ'5 = 2mA'C'1
2 f'1

2 + A'E'1
2+ B'E'1

2g'1
2 + E'1

2h'1
2 + 2mf'1

2F'1
2, 
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ξ'6 = A'C'1
2 h'1

2–α2B'C'1
2 g'1

2+ 2A'm E'l
2 f'1

2+ F'1
2(A'+B' g'1

2 +h'1
2) – iα(K'1

2f'1
2 + gK'1

2) 

ξ'7 = A'E'1
2 h'1

2 – B’α2E'1
2 g'1

2 + 2A'm F'1
2 f'1

2, 

ξ'8 = (A'h'1
2 – B'α2g'1

2) F'1
2 – iα K'1

2f'1
2(A'm f' 1

2 + g). 

Where the symbol used in eqns. (21) and (23) are given 

by eqns. (16) and (18). The constants Aj, Bj, Cj, Dj (j = 1, 2, 

3,4) are related with A'j, B'j, C'j, D'j (j = 1, 2, 3,4) in Eq. 

(19a) and Eq. (19b) by means of first equations in Eq. (15) 

and Eq. (17). 

Equating the coefficients of 

3 31 2 1 2 4'' ' ', , , , , ,z zz z z z ze e e e e e eλ λλ λ λ λ λ− −− − − − −
 to zero, 

after substituting Eq. (19a) and Eq. (19b) in the first and 

3rd equations of Eq. (15) and Eq. (17) respectively, we get 

A2= γ1 A1, B2 = γ2 B1, C2 = γ3 C1, D2 = γ4 D1 

and 

A3= δ1 A1, B3 = δ2 B1, C3 = δ3 C1, D4 = δ4 D4  (24) 

where, 

γj=  

2

1

4 2 2 2 2

1 1 1j j j

K

C E Fλ λ λ
−

+ − +
 (j = 1, 2, 3, 4), 

δj= 2

1

1

g
 [λj

2 – 2m f1
2 λj + h1

2 + iα m f1
2 γj], 

j = 1, 2, 3, 4. 

Similar result holds for medium M2 and usual symbols 

replacing by dashes respectively. 

4. Boundary Conditions 

(i) The displacement components, temperature and tem-

perature flux at the boundary surface between the media 

M1 and M2 must be continuous at all times and positions. 

i.e. 

1

, , , , ,
M

T T
u w T p hT

z z

∂ ∂ν
∂ ∂

 +  
= 

2

, , , , ' ,
M

T T
u w T p hT

z z

∂ ∂ν
∂ ∂

 +  
 

(ii) The stress components τ31, τ32, τ33 must be conti-

nuous at the boundary z = 0. 

i.e. [ ]
1

31 32 33 32, , ,
M

τ τ τ µ = [ ]
2

31 32 33 32, , ,
M

τ τ τ µ  

at z = 0 respectively 

Where, 

 

2 2 2
4

31 2 2
2
 

= + − + ∇ 
 

qD D
x z x z

µ
∂ φ ∂ ψ ∂ ψτ ψ

∂ ∂ ∂ ∂
, 

τ32 = D
z

µ
∂ν
∂

, 

2

32 2 qD
z

ψµ ∂ = − ∇  ∂ 
, 

2 2
2

33 2

2 2

m 0

2
 

= ∇ + + 
 

− + ∇
eB

D D
z x z

D T D H

λ µ
∂ φ ∂ φτ φ
∂ ∂ ∂

φ
.   (25) 

Applying the boundary conditions, we get 

A1 (1 – i γ1 ζ1) + B1 (1 – i γ2 ζ2) + C1 (1 – i γ3 ζ3) + D1 (1 – i γ4 ζ4)  – A'1 (1 – i γ'1 ζ'1) 

B'1 (1 – i γ'2 ζ'2) – C'1 (1 – i γ '3 ζ'3) – D'1 (1 – i γ '4 ζ'4)  = 0                  (26a) 

C = C'                                       (26b) 

A1 (γ1 + iζ1) + B1 (γ2 + iζ2) + C1 (γ3 + iζ3) + D1 (γ4 + iζ4) – A'1 (γ'1 + iζ'1) 

 – B'1 (γ '2 + iζ'2) – C'1 (γ'3 + iζ'3) – D'1 (γ'4 + iζ'4) = 0               (26c) 

δ1A1 + δ2 B1 + δ3C1+ δ4D1 = δ'1A'1 + δ'2 B'1 + δ'3C'1 + δ'4D'1              (26d) 

pλ1δ1A1 + pλ2δ2 B1 + pλ3δ3C1+ pλ4δ4 D1 – p' λ'1δ'1A'1 + p' λ'2δ'2 B'1 – p'λ'3δ'3C'1 – p'λ'4δ'4C'1 = 0    (26e) 

(λ1–h) δ1A1 + (λ2–h) δ2B1+(λ3–h) δ3C1+(λ4–h) δ4D1 = (λ'1–h') δ'1A'1 

+ (λ'2–h') δ'2B'1+(λ'3–h') δ'3C'1+(λ'4–h') δ'4D'1                           (26f) 
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 [
*

Kµ  (2i ζ1 + γ1 + ζ1
2 γ1) – 

*

Kη α2 (ζ1
2–α2) γ1 2 ]A1 + [

*

Kµ  (2i ζ2 + γ2 + ζ2
2 γ2) – 

*

Kη α2 (ζ2
2–1) γ2] B1+ [

*

Kµ  (2i 

ζ3 + γ3 + ζ3
2 γ3) – 

*

Kη α2 (ζ3
2–1) γ3] C1+ [

*

Kµ  (2i ζ4 + γ4 + ζ4
2 γ4) – 

*

Kη α2 (ζ4
2–1) γ4] D1= [

*'Kµ  (2i ζ'1 + γ'1 + 

ζ'1
2 γ'1) – 

*'Kη α2 (ζ'1
2–α2) γ'1 2 ]A'1 + [

*'Kµ  (2i ζ'2 + γ'2 + ζ'2
2 γ'2) – 

*'Kη α2 (ζ'2
2–1) γ'2] B'1+ [

*'Kµ  (2i ζ'3 + γ'3 + 

ζ'3
2 γ'3) – 

*'Kη α2 (ζ'3
2–1) γ'3] C'1+ [

*'Kµ  (2i ζ'4 + γ'4 + ζ'4
2 γ'4) – 

*'Kη α2 (ζ'4
2–1) γ'4] D'1                      (26g) 

*

Kµ [– λ4C] = 
*'Kµ [– λ'4 C']                                   (26h) 

A1 [(
*lK

+
*( )e Kµ 2

0
H ) (ζ1

2 – 1) + 2
*

Kµ (ζ1
2 –iζ1) – 

*

Kβ δ1] + B1 [(
*lK

+
*( )e Kµ 2

0
H ) (ζ2

2 – 1) + 2
*

Kµ (ζ2
2 –iζ2) – 

*

Kβ δ2] + C1 [(
*lK

+
*( )e Kµ 2

0
H ) (ζ3

2 – 1) + 2
*

Kµ (ζ3
2 – iζ3) – 

*

Kβ δ3] + D1 [(
*lK

+
*( )e Kµ 2

0
H ) (ζ4

2 – 1) + 2
*

Kµ (ζ4
2 – 

iζ4) – 
*

Kβ δ4]  = A'1 [(
*l'K

+
*( ' )e Kµ 2

0
H )(ζ1'2–1)+2

*'Kµ (ζ1'2–iζ'1)–
*'Kβ δ'1]+ B'1 [(

*l'K
+

*( ' )e Kµ 2

0
H ) (ζ2'2 – 1) + 2

*'Kµ  (ζ2'2 – iζ'2) – 
*'Kβ δ'2] +C'1[(

*l'K
+

*( ' )e Kµ 2

0
H )(ζ3'2–1)+ 2

*'Kµ  (ζ3'2 – iζ'3) – 
*'Kβ δ'3] + D'1 [(

*lK
+

*( ' )e Kµ
2

0
H ) (ζ4'2 – 1) + 2

*'Kµ (ζ4'2 – iζ'4) – 
*'Kβ δ'4]                    (26i) 

A1 [(
*

Kλ (ζ1
2 – 1) + 2

*

Kµ (ζ1
2 –iζ1) – 

*

Kβ δ1] + B1 [
*

Kλ (ζ2
2 – 1) + 2

*

Kµ (ζ2
2 –iζ2) – 

*

Kβ δ2] + C1 [
*

Kλ (ζ3
2 – 1) + 2

*

Kµ (ζ3
2 – iζ3) – 

*

Kβ δ3] + D1 [
*

Kλ  (ζ4
2 – 1) + 2

*

Kµ (ζ4
2 – iζ4) – 

*

Kβ δ4]  = A'1 [
*'Kλ (ζ1'2–1)+2

*'Kµ (ζ1'2–iζ'1)–

*'Kβ δ'1]+ B'1 [
*'Kλ (ζ2'2 – 1) + 2

*'Kµ  (ζ2'2 – iζ'2) – 
*'Kβ δ'2] +C'1[

*'Kλ  (ζ3'2–1)+ 2
*'Kµ  (ζ3'2 – iζ'3) – 

*'Kβ δ'3] + 

D'1 [
*'Kλ  (ζ4'2 – 1) + 2

*'Kµ (ζ4'2 – iζ'4) – 
*'Kβ δ'4]                         (26j) 

 
*

Kη [ 1λ α2 (1–ζ1
2) γ1A1 + 2λ α2 (1–ζ2

2) γ2B1+ 3λ α2 (1–ζ3
2) γ3C1+ 4λ α2 (1–ζ4

2) γ4D1]= 
*'Kη [ 1'λ α2 (1–ζ1'2) 

γ'1A'1 + 2'λ α2 (1–ζ2'2) γ'2B'1+ 3'λ α2 (1–ζ'3
2) γ3C'1+ 4'λ α2 (1–ζ4'2) γ'4D'1]                      (26k) 

where, ζj= 
jλ

α

, ζ'j = 
' jλ

α

, j = 1, 2, 3,4 

and 

λ*
K = ( )

0

n
K

K

K

i cλ α
=

−∑ , 
*

Kµ = ( )
0

n
K

K

K

i cµ α
=

−∑ , 
*

Kβ = ( )
0

n
K

K

K

i cβ α
=

−∑ , 

( )*

0

n
K

K K

K

i cη η α
=

= −∑ ,
*( )e Kµ = ( )

0

( )
n

K

e K

K

i cµ α
=

−∑ ,
*lK

 = ( )
0

l
n

K

K

K

i cα
=

−∑  

'λ K = ( )
0

'
n

K

K

K

i cλ α
=

−∑ , 
*'Kµ = ( )

0

'
n

K

K

K

i cµ α
=

−∑ , 
*'Kβ = ( )

0

'
n

K

K

K

i cβ α
=

−∑ , 

( )*

0

' '
n

K

K K

K

i cη η α
=

= −∑ ,
*l'K

 = ( )
0

l '
n

K

K

K

i cα
=

−∑ , 
*( ' )e Kµ = ( )

0

( ' )
n

K

e K

K

i cµ α
=

−∑  

From Eq. (26b) and Eq. (26h), we have C = C' = 0. Thus 

there is no propagation of displacement v. Hence SH-waves 

do not occur in this case. 

Finally, eliminating the constants A1, B1, C1, D1, A'1, 

B'1, C'1, D'1from the remaining equations, we get 

det (aij)= 0, i, j = 1, 2, 3, 4, 5, 6,7,8,9.        (27) 

Where, 

a11 = 1 – iγ1 ζ1, a12 = 1–iγ2ζ2, 

a13 = 1–iγ3ζ3, a14 =1–iγ4ζ4, 

a15= (i γ'1 ζ'1–1), a16 = (i γ '2 ζ'2–1), 

a17 = (i γ'3 ζ'3 – 1), a18 = (i γ'4 ζ'4 – 1), 

a21 = γ1 + iζ1, a22 = γ2 + iζ2, 

a23 = γ3 + iζ3, a24 = γ4 + iζ4, 

a25 = (γ'1 + i ζ'1), a26 = (γ'2 + iζ'2), 

a27 = (γ'3 + iζ'3), a28 = (γ'4 + iζ'4), 

a31 = δ1, a32 = δ2, 
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a33 = δ3, a34 = δ4, 

a35 = – δ'1, a36 = –δ'2, 

a37 = –δ'3,  a38 = –δ'4, 

a41 = pλ1 δ1, 

a42 = pλ2 δ2, a43 = pλ3 δ3, 

a44 = pλ4 δ4, a45 = –p' λ'1 δ'1, 

a46 = –p' λ'2 δ'2, a47 =  –p' λ'3 δ'3, 

a48 = –p' λ'4 δ'4, a51=(λ1–h) δ1, 

a52=(λ2–h) δ2, a53=(λ3–h) δ3, 

a54=(λ4–h) δ4, a55=(λ'1–h') δ'1 

a56=(λ'2–h') δ'2, a57=(λ'3–h') δ'3, 

a58=(λ'4–h') δ'4, 

a61 = [(
*lK

+
*( )e Kµ 2

0
H ) (ζ1

2 – 1) 

+ 2
*

Kµ (ζ1
2 –iζ1) – 

*

Kβ δ1], 

a62 = [(
*lK

+
*( )e Kµ 2

0
H ) (ζ2

2 – 1) 

+ 2
*

Kµ (ζ2
2 –iζ2) – 

*

Kβ δ2], 

a63 = [(
*lK

+
*( )e Kµ 2

0
H ) (ζ3

2 – 1) 

+ 2
*

Kµ (ζ3
2 – iζ3) – 

*

Kβ δ3], 

a64 = [
*

Kµ  (2i ζ4 + γ4 + ζ4
2 γ4) – 

*

Kη α2 (ζ4
2–1) γ4], 

a65 = [
*'Kµ  (2i ζ'1 + γ'1 + ζ'1

2 γ'1) 

– 
*'Kη α2 (ζ'1

2–α2) γ'1 2], 

a66 = [(
*l'K

+
*( ' )e Kµ 2

0
H ) (ζ2'2 – 1) 

+ 2
*'Kµ  (ζ2'2 – iζ'2) – 

*'Kβ δ'2], 

a67 = [(
*l'K

+
*( ' )e Kµ 2

0
H )(ζ3'2–1) 

+ 2
*'Kµ  (ζ3'2 – iζ'3) – 

*'Kβ δ'3], 

a68 = [(
*lK

+
*( ' )e Kµ 2

0
H ) (ζ4'2 – 1) 

+ 2
*'Kµ (ζ4'2 – iζ'4) – 

*'Kβ δ'4], 

a71 = [(
*

Kλ (ζ1
2 – 1) + 2

*

Kµ (ζ1
2 –iζ1) –

*

Kβ δ1], 

a72 = [
*

Kλ (ζ2
2 – 1) + 2

*

Kµ (ζ2
2 –iζ2) – 

*

Kβ δ2], 

a73= [
*

Kλ (ζ3
2 – 1) + 2

*

Kµ (ζ3
2 – iζ3) – 

*

Kβ δ3], 

a74 = [
*

Kλ  (ζ4
2 – 1) + 2

*

Kµ (ζ4
2 – iζ4) – 

*

Kβ δ4], 

a75 = [
*'Kλ (ζ1'2–1)+2

*'Kµ (ζ1'2–iζ'1)–
*'Kβ δ'1], 

a76 = [
*'Kλ (ζ2'2 – 1) + 2

*'Kµ  (ζ2'2 – iζ'2) – 
*'Kβ δ'2], 

a77 = [
*'Kλ  (ζ3'2–1)+ 2

*'Kµ  (ζ3'2 – iζ'3) – 
*'Kβ δ'3], 

a78 = [
*'Kλ  (ζ4'2 – 1) + 2

*'Kµ (ζ4'2 – iζ'4) – 
*'Kβ δ'4], 

a81 = [(
*lK

+
*( )e Kµ 2

0
H ) (ζ1

2 – 1) 

+ 2
*

Kµ (ζ1
2 –iζ1) – 

*

Kβ δ1], 

a82 = [(
*lK

+
*( )e Kµ 2

0
H ) (ζ2

2 – 1) 

+ 2
*

Kµ (ζ2
2 –iζ2) – 

*

Kβ δ2], 

a83 = [
*

Kλ (ζ3
2 – 1) + 2

*

Kµ (ζ3
2 – iζ3) – 

*

Kβ δ3], 

a84 = [(
*lK

+
*( )e Kµ 2

0
H ) (ζ4

2 – 1) 

+ 2
*

Kµ (ζ4
2 – iζ4) – 

*

Kβ δ4], 

a85 = [(
*l'K

+
*( ' )e Kµ 2

0
H )(ζ1'2–1) 

+2
*'Kµ (ζ1'2–iζ'1)–

*'Kβ δ'1], 

a86 = [(
*l'K

+
*( ' )e Kµ 2

0
H ) (ζ2'2 – 1) 

+ 2
*'Kµ  (ζ2'2 – iζ'2) – 

*'Kβ δ'2], 

a87 = [(
*l'K

+
*( ' )e Kµ 2

0
H )(ζ3'2–1) 

+ 2
*'Kµ  (ζ3'2 – iζ'3) – 

*'Kβ δ'3], 

a88 = [
*'Kλ  (ζ4'2 – 1) + 2

*'Kµ (ζ4'2 – iζ'4) – 
*'Kβ δ'4], 

a91 = 
*

Kη 1λ α2 (1–ζ1
2) γ1 

a92 = 
*

Kη 2λ α2 (1–ζ2
2) γ2 

a93 = 
*

Kη 3λ α2 (1–ζ3
2) γ3 
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a94 = 
*

Kη 4λ α2 (1–ζ4
2) γ4 

a95 = 
*'Kη [ 1'λ α2 (1–ζ1'2) γ'1 

A96 = 
*'Kη 2'λ α2 (1–ζ2'2) γ'2 

A97 = 
*'Kη 3'λ α2 (1–ζ'3

2) γ3 

a98 = 
*'Kη 4'λ α2 (1–ζ4'2) γ'4 

From Eq. (27), we obtain velocity of surface waves in 

common boundary between two viscoelastic, non-

homogeneous solid media under the influence of thermal 

and magnetic field, where the viscosity is of general nth 

order involving time rate of change of strain. 

5. Particular Cases 

5.1. Stoneley Waves 

It is the generalized form of Rayleigh waves in which we 

assume that waves are propagated along the common boun-

dary of the two semi-infinite media M1 and M2. Thus Eq. 

(27) determine the wave velocity equation for Stoneley 

waves in the case of general magneto-thermo viscoelastic, 

non-homogeneous solid media of nth order involving time 

rate of strain. Clearly from Eq. (27), it is follows that the 

wave velocity equation for Stoneley waves depends upon 

the non-homogeneity of the material medium, temperature, 

gravity, couple-stress, magnetic and viscous field. This eq-

uation, of course, is in well agreement with the correspond-

ing classical result, when the effects of thermal, gravity, 

couple-stress, magnetic and viscous field and non-

homogeneity are absent. 

5.2. Rayleigh Waves 

Case-1 Dispersion equation of Rayleigh waves in terms 

of non-homogeneity, viscous, gravity, magnetic and thermal 

fields. 

To investigate the possibility of Rayleigh waves in a 

thermo- magneto viscoelastic, non-homogeneous elastic 

media, we replace media M2 by vacuum, in the proceeding 

problem; we also note the SH-waves do not occur in this 

case. 

Since the temperature difference across the boundary is 

always small so thermal condition given by 

T
hT

z

∂
∂

+ = 0 at z = 0 respectively       (28) 

Thus Eq. (26f), Eq. (26h) and Eq. (26j) reduces to, 

[
*

Kµ  (2i ζ1 + γ1 + ζ1
2 γ1) – 

*

Kη α2 (ζ1
2–α2) γ1 2]A1 + [

*

Kµ  (2i ζ2 + γ2 + ζ2
2 γ2) – 

*

Kη α2 (ζ2
2–1) γ2] B1 

+ [
*

Kµ  (2i ζ3 + γ3 + ζ3
2 γ3) – 

*

Kη α2 (ζ3
2–1) γ3] C1+ [

*

Kµ  (2i ζ4 + γ4 + ζ4
2 γ4) – 

*

Kη α2 (ζ4
2–1) γ4] D1=0 (29a) 

A1 [(
*lK

+
*( )e Kµ 2

0
H ) (ζ1

2 – 1) + 2
*

Kµ (ζ1
2 –iζ1) – 

*

Kβ δ1] + B1 [(
*lK

+
*( )e Kµ 2

0
H ) (ζ2

2 – 1) + 2
*

Kµ (ζ2
2 –iζ2) 

 – 
*

Kβ δ2] + C1 [(
*lK

+
*( )e Kµ 2

0
H ) (ζ3

2 – 1) + 2
*

Kµ (ζ3
2 – iζ3) – 

*

Kβ δ3] + D1 [(
*lK

+
*( )e Kµ 2

0
H ) (ζ4

2 – 1)  

+ 2
*

Kµ (ζ4
2 – iζ4) – 

*

Kβ δ4] =0                    (29b) 

A1 [(
*

Kλ (ζ1
2 – 1) + 2

*

Kµ (ζ1
2 –iζ1) – 

*

Kβ δ1] + B1 [
*

Kλ (ζ2
2 – 1) + 2

*

Kµ (ζ2
2 –iζ2) – 

*

Kβ δ2] + C1 [
*

Kλ (ζ3
2 – 1) + 2

*

Kµ (ζ3
2 – iζ3) – 

*

Kβ δ3] + D1 [
*

Kλ  (ζ4
2 – 1) + 2

*

Kµ (ζ4
2 – iζ4) – 

*

Kβ δ4] =0       (29c) 

From equation (27), we have 

(λ1 – h) δ1 A1 + (λ2 – h) δ2 B1+ (λ3 – h) δ3 C1+ (λ4 – h) δ4 D1 = 0    (29d) 

Eliminating A1, B1, C1 and D1 from eqns. (29a), (29b), 

(29c) and (29d) we get 

det (b
ij
) = 0, i, j = 1, 2, 3, 4.    (30) 

Thus Eq. (30), gives the wave velocity equation for Ray-

leigh waves in a non-homogeneous, magneto-thermo vis-

coelastic solid media of nth order involving time rate of 

strain. From Eq. (30), it is follows that Dispersion equation 

of Rayleigh waves depends upon the non-homogeneity, the 

viscous, gravity, magnetic and thermal fields. 

This equation, of course, is in complete agreement with 

the corresponding classical result by Bullen, when the ef-

fects of thermal, gravity, magnetic viscous field and non-

homogeneity are absent. 

Case-2 Dispersion equation of Rayleigh waves in terms 

of non-homogeneity, viscous, gravity, couple-stress and 

thermal fields 

Eq. (26f), Eq. (26h) and Eq. (26k) reduces to, 
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[
*

Kµ  (2i ζ1 + γ1 + ζ1
2 γ1) – 

*

Kη α2 (ζ1
2–α2) γ1 2]A1 + [

*

Kµ  (2i ζ2 + γ2 + ζ2
2 γ2) – 

*

Kη α2 (ζ2
2–1) γ2] B1 

+ [
*

Kµ  (2i ζ3 + γ3 + ζ3
2 γ3) – 

*

Kη α2 (ζ3
2–1) γ3] C1+ [

*

Kµ  (2i ζ4 + γ4 + ζ4
2 γ4) – 

*

Kη α2 (ζ4
2–1) γ4] D1=0      (31a) 

 [ 1λ α2 (1–ζ1
2) γ1A1 + 2λ α2 (1–ζ2

2) γ2B1+ 3λ α2 (1–ζ3
2) γ3C1+ 4λ α2 (1–ζ4

2) γ4D1]=0    (31b) 

 

A1 [(
*

Kλ (ζ1
2 – 1) + 2

*

Kµ (ζ1
2 –iζ1) – 

*

Kβ δ1] + B1 [
*

Kλ (ζ2
2 – 1) + 2

*

Kµ (ζ2
2 –iζ2) – 

*

Kβ δ2] + C1 [
*

Kλ (ζ3
2 – 1) + 2

*

Kµ (ζ3
2 – iζ3) – 

*

Kβ δ3] + D1 [
*

Kλ  (ζ4
2 – 1) + 2

*

Kµ (ζ4
2 – iζ4) – 

*

Kβ δ4] =0                (31c) 

From equation (27), we have 

(λ1 – h) δ1 A1 + (λ2 – h) δ2 B1 + (λ3 – h) δ3 C1+ (λ4 – h) δ4 D1 = 0                   (31d) 

Eliminating A1, B1, C1 and D1 from eqns. (31a), (31b), 

(31c) and (31d), we get 

det (
ij

ε ) = 0, i, j = 1, 2, 3, 4.    (32) 

Thus Eq. (32), gives the wave velocity equation for Ray-

leigh waves in a non-homogeneous, thermo viscoelastic 

solid media of nth order involving time rate of strain. From 

Eq. (32), it is follows that Dispersion equation of Rayleigh 

waves depends upon the non-homogeneity, the viscous, 

gravity, couple-stress and thermal fields. 

This equation, of course, is in complete agreement with 

the corresponding classical result by Bullen, when the ef-

fects of thermal, gravity, couple-stress, viscous field and 

non-homogeneity are absent. 

5.3. Love Waves 

To investigate the possibility of love waves in a non-

homogeneous, viscoelastic solid media, we replace medium 

M
2
 is obtained by two horizontal plane surfaces at a dis-

tance H-apart, while M
1
 remains infinite. For medium M

1
, 

the displacement component ν remains same as in general 

case given by Eq. (19). For the medium M
2
, we preserve 

the full solution, since the displacement component along 

y-axis i.e. no longer diminishes with increasing distance 

from the boundary surface of two media. 

Thus  

v' = 
( ) ( )5 5' '

1 2

z i x ct z i x ct
C e C e

λ α λ α+ − − + −+  

In this case, the boundary conditions are 

(i) v and τ
32

 are continuous at z = 0 

(ii) τ'
32

 = 0 at z = –H. 

Applying boundary conditions (i) and (ii) and using Eq. 

(19) and Eq. (26), we get 

C= C
1
 + C

2
                   (34a) 

–
*

Kµ λ5C= (µ'
K
)* [λ'5C1

 – λ'5C2
]     (34b) 

5 5' '

1 2

H H
C e C e

λ λ− − = 0            (34c) 

On eliminating the constants C, C
1
 and C

2
 from Eq. (34a), 

Eq. (34b) and Eq. (34c), we get 

tanh (λ'5H) =- ( )
*

5

5' ' *

K

K

λ µ
λ µ

.       (35) 

Thus equation (35) gives the wave velocity equation for 

Love waves under the influence of gravity and couple stress 

parameter in a non-homogeneous, thermo, magneto, viscoe-

lastic elastic solid medium of n
th

 order involving time rate 

of strain. Clearly it depends upon the non-homogeneity of 

the material medium and viscosity, couple stress parameter 

and independent of thermal and gravitational fields. 

Equation (35), of course is in complete agreement with 

the corresponding classical result by Chadwick, when the 

effects of viscous field, non-homogeneity, gravity and 

couple-stress parameter are absent. Further in the absence 

of temperature field, this equation is in complete agreement 

with the corresponding classical result by Bullen. 

6. Conclusions 

The surface waves in a non-homogeneous, isotropic, vis-

coelastic solid medium under gravity of nth order including 

time rate of strain are investigated. It is observed that vis-

coelastic surface waves are affected by the time rate of 

strain parameters. These parameters influence the wave 

velocity to an extent depending on the corresponding con-

stants characterizing the magneto thermo and viscoelastici-

ty of the material. So the results of this analysis become 

useful in circumstances where these effects cannot be neg-

lected. These velocities depend upon the wave number 

‘ α ’  confirming that these waves are affected by non-

homogeneity of the material medium. 

Love waves do not depend on temperature; these are on-

ly affected by viscous, gravity, couple-stress, magnetic 

fields and non-homogeneity of the material medium. In 
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absence of all fields and non-homogeneity, the dispersion 

equation is in complete agreement with the corresponding 

classical result. 

Rayleigh waves in a non-homogeneous, general magne-

to-thermo viscoelastic solid medium of higher order includ-

ing time rate of change of strain we find that the wave ve-

locity equation proves that there is dispersion of waves due 

to the presence of non-homogeneity, temperature, gravity, 

couple-stress, magnetic field and viscosity. The results are 

in complete agreement with the corresponding classical 

results in the absence of all fields and compression. 

The wave velocity equation of Stoneley waves is very 

similar to the corresponding problem in the classical theory 

of elasticity. The dispersion of waves is due to the presence 

of non-homogeneity, gravity, couple-stress, magnetic field, 

temperature and viscoelasticity of the solid. Also, wave 

velocity equation of this generalized type of surface waves 

is in complete agreement with the corresponding classical 

result in the absence of all fields and non-homogeneity. 

The solution of wave velocity equation for Stoneley 

waves cannot be determined by easy analytical methods 

however we can apply numerical techniques to solve this 

determinantal equation by choosing suitable values of phys-

ical constants for both media M
1
 and M

2
. 
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