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Abstract: This paper presents a new approach for synthesizing breast tissue images based on a random fractal process, the 
fractional Brownian motion (fBm). This work deals with modeling Regions of Interest (ROIs) of mammographic images. 
Diverse synthetic ROIs were generated: healthy ones and others with microcalcifications according to fatty and dense tissue. 
Microcalcifications were injected in several dispositions in order to model benign and malignant cases. The aim of this study 
resides in two points: (1) the generation of synthetic images of mammograms for researchers and radiologists in order to test their 
tools and orient the choice of their parameters to enhance the diagnostic accuracy; and (2) to compare two microcalcification 
segmentation approaches: ‘Sq-Sq’ approach based on multifractal analysis and the ‘MM’ approach based on Mathematical 
Morphology. In fact, the results proved that the ‘Sq-Sq’ method can detect microcalcifications with different arrangements for 
any type of tissue and were evaluated using a qualitative test by an expert and a quantitative one based on the Area Overlap 
Measure (AOM) and the Dice coefficient. The ‘Sq-Sq’ approach yield a mean of 0.8±0.06 for AOM and 0.8446 for Dice 
coefficient for all segmented images. 
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1. Introduction 

Breast cancer is among the leading cause of death for 
women [1]. The first signs of breast cancer are 
microcalcifications, which are small calcium deposits in the 
breast tissue. Mammography is the most widely used for 
their detection [2, 3]. Clinical studies have confirmed that 
the survival rate is considerably increased if anomalies are 
detected at early stages [4]. Their detection is a hard task in 
medical imaging due to several factors such as their 
irregular form and their small size which varies from 0.1 to 
1 mm [4, 5]. They are approximately nodular, but with 
irregular shape arrangements. Furthermore, 
microcalcifications frequently appear with a local contrast. 
This contrast is often low and varies according to the breast 
tissue type. Therefore, these clusters should be detected to 
establish a correct diagnosis. 

There are several types of breast tissue [6], but from the 
perspective of x-ray attenuation it can be modeled as 
consisting solely of two types of tissues: fatty and dense 
tissues, which vary according to their breast density [6]. They 
are also characterized by several physical properties and 
various distributions of the grayscale level. Such diversity 
produces different complexity degrees when detecting 
microcalcification in the mammogram, especially in the case 
of dense tissue. For these reasons, microcalcification detection 
is not easy even for trained radiologists, and they may go 
undetected. Therefore, the clinical interpretation of 
mammograms remains rather subjective and diagnosis is often 
debatable [7]. This has encouraged us to build synthetic ROIs 
of mammograms. 

The variety of background tissue structure, the irregular 
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shapes and the various arrangements of microcalcifications 
led to the use of a random fractal process: the fractional 
Brownian motion (fBm). This process has three main 
properties that closely resemble the natural texture of 
mammographic images: fractal dimension, scale invariance 
and self-similarity [8, 9], which seems to be appropriate to 
model this type of images [8]. 

The fBm model proposed by Mandelbrot, B.B et al [10] is 
used to describe natural fractal phenomenon. Moreover, it was 
applied [11-14] to generate synthetic images and compare the 
accuracy of several fractal methods. 

In this work, the fBm was investigated to synthesize ROIs 
of mammographic images. Four groups of synthetic images 
were generated: healthy group and with microcalcifications 
group for the both type of tissue (fatty and dense). These 
images can be helpful for radiologists to test their tools and 
guide the choice of their parameters in order to enhance the 
diagnostic accuracy of breast cancer at an early stage. Also, 
they help researchers rate the accuracy of their approaches in 
detecting anomalies. Besides, these mammogram models can 
be used to compare microcalcification segmentation 
approaches. 

In the literature, several approaches were proposed to 
segment microcalcifications [15-18] such as active contours 
[16, 19], curvelet moments [20], wavelet analysis [21-23], 
fractal analysis [24-26], multifractal analysis [27, 28] and 
morphological filters [29-32] in order to reduce human 
subjectivity in diagnosis. 

In this paper, the synthetic images were applied on two 
algorithms of microcalcification segmentation the new 
approach ‘Sq-Sq’ [28] and the reference approach ‘MM’ 
[29] to compare them. The ‘Sq-Sq’ method used a novel 
multifractal spectrum measure based on the q-structure 
function [33], which is a well-known tool for analyzing an 
object’s irregularity. The ‘MM’ approach [29] is based on 
the Mathematical Morphology and the Otsu algorithm [34]. 
The evaluation of these approaches was checked using the 
Area Overlap Measure (AOM) [35] and the Dice coefficient 
[36]. 

This paper is organized as follows: in section 2, the fBm 
characteristics are explained and the generation of synthetic 
images of mammograms is detailed. An overview of the 
segmentation methods applied on the synthetic images of 
mammograms is presented in section 3. The results are 
shown and discussed in sections 4 and 5. Finally, a 
conclusion that highlights our contribution and exposes our 
perspectives was presented. 

2. Breast Tissue Modeling 

Some works were interested also in generating synthetic 
images of mammograms as [37] and more recently [38] which 
are based on the fractional Brownian motion and presented 
good results. Developing synthetic images for breast tissue 
with microcalcifications remains complex as well as 

interesting because of the variety of background tissues and 
irregular shapes of microcalcifications. As previously 
mentioned, the fBm can be adequate to simulate ROIs of 
mammograms [8]. In this section, some basic notions about 
the fBm that justify the selected choice were presented. In this 
work, the fBm process was used to create different classes of 
tissue: class of healthy and class of patients (i.e. with 
microcalcifications) for the both type of tissue (fatty and 
dense). 

2.1. Fractional Brownian Motion (fBm) 

fBm is a generalization of classical Brownian motion. It is a 
stochastic fractal process with long-range dependence and 
self-similar behaviors [10]. The Hurst coefficient H (0<H<1) 
is the unique parameter of interest of fBm process. In fact, it 
describes the roughness of the resultant motion: the higher is 
H, the smoother is the motion. 

The FBm spectral representation B�(t) is given by [39]: 

B�(t) =
�
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�
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�
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��
(e��� − 1)dB(w)       (1) 

It is a Gaussian, continuous, centered and non-stationary 
second-order process which starts at zero (B�(0) = 0) and has 
the following covariance function: 

E�B�(t)B�(s)� =
�

�
(|t|�� + |s|�� + |t − s|��)    (2) 

To model background tissue of mammograms which are 
self-similar object [8], the Stein’s method [40] was used. It is a 
fast and exact approach for simulating fractional Brownian 
surfaces [40]. 

2.2. Healthy Synthetic ROIs 

Kestener, P., et al. [41] proved that normal regions in 
digitized mammograms are characterized by the Hurst 
coefficient H=0.3±0.1 in fatty tissue whereas dense region 
have H=0.65±0.1. 

Based on the study [41], generation of synthetic 
mammographic ROIs is proposed using the values of H cited 
above. The background tissues (dense and fatty) were 
generated based on the Stein method [40]. These ones are 
simulated with the corresponding Hurst coefficient H and the 
grayscale variation of ROIs selected from Mini-MIAS [42]. 
The Hurst coefficient H of each selected ROI was estimated 
with the quadratic variation method [43]. 

The synthetic ROIs are sized of (128×128) pixels with 
resolution of 0.2 mm. The gray level ‘NG’ of the pixel is 
normalized between 0 and 1. Table 1 shows some examples of 
healthy real ROIs of Mini-MIAS and the corresponding 
models. 

As shown in Table 1, these synthetic images (third colon) 
accurately modeled real mammographic backgrounds (second 
colon). H is the Hurst coefficient and NG is the interval of the 
normalized gray level. 
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Table 1. Examples of background ROIs and the corresponding models. 

Type of tissue Real ROIs Synthetic ROIs 

Fatty 

 
H=0.34, NG=[0.55, 0.74] 

 
H=0.3, NG=[0.55, 0.74] 

 
H=0.37, NG=[0.462, 0.784] 

 
H=0.35, NG=[0.462, 0.784] 

Dense 

 
H=0.69, NG=[0.4, 0.847] 

 
H=0.69, NG=[0.45, 0.847] 

 
H=0.67, NG=[0.45, 0.77] 

 
H=0.69, NG=[0.45, 0.8] 

For the rest of this work, the variability of the gray level of 
the background tissue was controlled according to ROIs 
selected randomly from healthy mammograms of Mini-MIAS 
dataset [42] which allow discrimination between fatty and 
dense tissue. After analyzing 100 healthy ROIs for each type 
of tissue, it was concluded that the mean of grayscale level of 
fatty tissue was in the interval [115, 200] and that dense tissue 
was characterized by grayscale level usually in the interval 
[160, 222]. 

Although scanned and digital mammograms were generally 
obtained in 12-bit and usually stored as 16-bit images, there 
were no unfavorable effects when reduced to 8-bit. For faster 
computational analysis [19, 27, 44, 45] or reduction of storage 
demands [46], the synthetic ROIs were generated as an 8-bit 
grayscale image. 

2.3. Synthetic ROIs with Microcalcifications 

Microcalcifications have different sizes and irregular 
dispositions [47], which can differentiate between benignity 
and malignancy. If they are round, oval, or slightly lobular, the 
anomaly is probably benign. If the microcalcifications are 
arranged on an irregular or tubular shape, then they are 
suggestive of malignancy. Microcalcifications are small light 
details and are highly invisible within the background tissue. 

According to radiologists [47], microcalcifications have 
usually circular forms. For this reason, microcalcifications are 
modeled as small circles with a radius equal to 1 pixel 

obtained from the same background tissue but slightly clearer 
especially in the case of dense tissue. So, the visibility of 
anomalies is more difficult with dense cases. Each healthy 
synthetic ROI is injected with these ones to obtain synthetic 
ROIs with microcalcifications. It should be noted that 
synthetic microcalcifications are arranged in several 
dispositions to obtain malign and benign cases. Malignant 
cases are generally characterized by almost linear arrangement 
of microcalcifications [41]. However, benign cases have 
approximately a circular disposition [47]. 

Figure 1. presents a model of the whole part of 
mammogram sized (512×512) which can contain anomalies. 
As it is clear, it is difficult to detect microcalcifications by 
naked eyes. To simplify the study, ROIs sized (128×128) were 
modeled. 

 

Figure 1. (a) Example of synthetic model for a whole part of fatty 

mammogram (512×512) that contains microcalcifications, (b) a selected ROI 

from (a) (black square). 

Table 2 shows two real ROIs and their corresponding 
synthetic images which are generated with the same 
parameters of real ROIs (H coefficient and grayscale 
variability). 

Table 2. Examples of real ROIs with microcalcifications and the 

corresponding synthetic images. 

Type of tissue Real ROIs synthetic ROIs 

Fatty 

 
H=0.33, NG =[0.5, 0.8] 

 
H=0.3, NG=[0.47, 0.73] 

Dense 

 
H=0.7, NG=[0.6,0.88] 

 
H=0.7, NG=[0.6, 0.88] 

As shown, synthetic images seem ‘like’ real ones. In 
addition, they have the same mathematical characteristics. 
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According to radiologists, the dense tissue with the brightest 
grayscale is the hard case. As already mentioned, it is possible 
to generate an infinite number of images since a random 
process, the fBm, was used. Table 3 shows other synthetic 
images of benign and malignant cases for fatty and dense 
tissue. Synthetic microcalcifications are small circles (radius 
equal to 1 pixel) selected from the same tissue of the 
background but with pixel intensity slightly clearer. 

Table 3. Synthetic ROIs with microcalcifications for fatty and dense tissue: (a), 

(b) present benign cases; (c), (d) show malignant cases. 

Type of tissue Benign cases Malignant cases 

Fatty 

 
H=0.35, NG = [0.5, 0.7] 

 
H=0.4, NG= [0.5,0.78] 

Dense 

 
H=0.7, NG=[0.65, 0.9] 

 
H=0.7, NG= [0.6, 0.88] 

3. Microcalcification Segmentation 

Methods Applied on the Synthetic 

Images 

In the present work, the generated synthetic images were 
used to evaluate and compare the ‘Sq-Sq’ approach [28] based 
on the multifractal analysis and another reference work based 
on the morphological operators; the ‘MM’ [29] approach. This 
assists to orient the choice of their initial parameters in order 
to ameliorate their results in future works. 

3.1. Approach based on Multifractal Analysis 

In a previous work [28], a segmentation approach based on the 
combination of multifractal analysis with the k-means algorithm 
followed by morphological operators, noted ‘Sq-Sq’, was 
proposed. This method was applied on real mammograms from 
the reference database MiniMias [42]. This segmentation 
approach consists mainly of four steps. After the construction of 
‘α_image’ and the ‘ƒ(α)_image’ based respectively on 
multifractal and fractal analysis, the k-means algorithm followed 
by morphological operators (closing and opening) was applied to 
the ‘ƒ(α)_image’ to segment the anomalies. The two first steps 
enhance the visualization of microcalcifications and facilitate 
their extraction. Figure 2. shows the flowchart of the ‘Sq-Sq’ 
approach. 

 

Figure 2. The flowchart of the ‘Sq-Sq’ segmentation approach. 

3.2. Approach based on Mathematical Morphology ‘MM’ 

The microcalcification segmentation approach ‘MM’ [29] 
was based on morphological operators and the Otsu’s method. 
The authors of [29] applied a pre-processing with top-hat 
operators which enhance the contrast and reduce the 
background noise. In [29], the microcalcifications were 
selected automatically based on the Otsu’s method that finds 
the more adequate grayscale level threshold to segment the 
image. 

4. Results 

The used database of generated synthetic images contains 

300 synthetic images with 100 images showing healthy tissue 
(dense and fatty) and 200 synthetic images with 
microcalcifications (benign and malignant). To the best of the 
knowledge of authors; an infinite number of models can be 
generated since a stochastic process was used. 

The segmentation methods [28, 29] were applied to the 
simulated images in order to compare them. Table 4 shows the 
segmentation result of some synthetic images for the two 
types of tissue (fatty and dense). The original image and the 
original image with superimposed contour lines around 
segmented microcalcifications by each approach are 
illustrated in Table 4. 

 

 

 Mammographic 
image 

‘f(α)_image’

Construction 

 

K-means 
algorithm 

 

‘α_image’ 

Construction  

Morphological 

operators 

 

Microcalcifications 
segmented 



 International Journal of Medical Imaging 2018; 6(1): 1-8 5 
 

Table 4. Segmentation of synthetic images sized (128×128) pixels. 

  Original ROI ‘Sq-Sq’ approach [28] ‘MM’ approach [29] 

Fatty 

Benign 

   

Malignant 

   

Dense 

Benign 

   

Malignant 

   
 

According to radiologists’ experience, the ‘Sq-Sq’ [28] 
approach provides good segmentation results and the ‘MM’ 
method [29] succeeded in segmenting microcalcifications 
in only two dense cases. Consequently, this method is able 
to detect microcalcifications with very small size only in 
smooth backgrounds: high Hurst coefficient and high gray 
level. Also, these incomplete results of segmentation may 
be due to the size of images (see Table 5). Since, in all 
Marcelo Duarte et al works [19, 29], the authors used ROIs 
with small size 41×41 pixels, hence other synthetic images 
were generated (see Table5) to further check the features of 
the segmentation approaches ‘Sq-Sq’ [28] and ‘MM’ [29]. 
As the exact size 41×41pixels can’t be obtained with the 
Stein method [40] (the image size can only be 2^ (n-1); n 
integer), these synthetic images are sized 32×32 pixels 
(n=6). 

Note that M. Duarte et al [19] approach was not applied on 
the simulated images because it is based on Geodesic Active 
Contours (GAC) segmentation method which needs a seed 
point. 

Furthermore, this method is sensitive to the choice of the 
last one. In other words, if a seed point is selected in different 
places on the image, results will be different. 

So, it is important to try hard to put them near the centroid 
point of the lesion to segment. 

As ‘MM’ method [29] was much more robust than GAC for 
segmenting microcalcifications [19]. Table 5 shows examples 
of models sized (32×32) pixels. 

 
 

Table 5. Segmentation of synthetic images sized (32×32) pixels. 

 Original ROI 
‘Sq-Sq’ 

Approach [28] 

‘MM’ 

Approach [29] 

Fatty 
tissue 

   

   

Dense 
tissue 

   

   

Table 6 presents some examples of dense synthetic images 
with smooth background which will be applied to the ‘Sq-Sq’ 
[28] and the ‘MM’ [29] approaches. 

According to Table 5 and Table 6, the ‘MM’ approach [29] 
can segment microcalcifications only in smooth background no 
matter what the size is, whereas the ‘Sq-Sq’ approach [28] can 
extract anomalies whatever the type of tissue is. Good results 
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are obtained for sized (128×128) pixels models but there are 
incomplete results for smaller dense models sized (32×32). This 
can be explained by the Sq equation (i.e, equation (1) in [28]) 
which needs to use the grayscale of the neighbor pixels. The 
larger the image is the better the results are. 

Table 6. Segmentation of dense models (benign and malignant cases). 

 Benign cases Malignant cases 

Original Models 

  

‘Sq-Sq’ segmentation 

  

‘MM’ segmentation 

  

5. Statistical evaluation 

Besides the qualitative evaluation, a quantitative evaluation 
of the two approaches [28, 29] based on the area overlap 
measure (AOM) [35] and Dice Similarity coefficient [36] was 
conducted. The 200 synthetic ROIs, with injected 
microcalcifications, were manually delineated (i.e., 
segmented) with GIMP 2.8 software. The sizes as well as the 
locations of microcalcification were known in advance. These 
images were considered as the ground truth for calculating the 
AOM and Dice coefficient. 

5.1. Area Overlap Measure (AOM) 

The AOM is expressed as: 

!"# =
$%&$('	_	*+∩-.	_	/&0)

$%&$('	_	*+∪-.	_	/&0)
              (3) 

In this equation, G_Th  denotes the microcalcification 
manually delineated and IM_Seg represents the segmentation 
obtained using the proposed method. The symbol ∩ denotes 
the intersection, i.e., the number of common pixels between 
G_Th and IM_Seg, and the symbol ∩ represents the union of 
the G_Th  and IM_Seg areas. So, if there is no overlap 
between the delineated microcalcification and the one from 
the proposed method, AOM = 0. 

For a complete overlap, AOM = 1. 

5.2. Dice Similarity Coefficient 

Dice similarity coefficient measures the similitude between 
two sets G_Th and IM_Seg, the Dice coefficient is calculated 

as in the following equation:  

5678_798:: = 2 ×
=>&%?$@	$%&$	=A	-._/&0	$BC	'_*+	

D=D$?	$%&$	=A	-._/&0	$BC	'_*+
   (4) 

Table 7 shows the statistical evaluation based on AOM 
measure and Dice coefficient of the ‘Sq-Sq’ approach [28] and 
the ‘MM’ approach [29]. 

Table 7. Statistical evaluation. 

 ‘Sq-Sq’ approach [28] ‘MM’ approach [29] 

AOM 0.8±0.06 0.7±0.05 
Dice 0.8446 0.5423 

6. Discussion 

The present work deals with ROIs of mammogram 
modeling based on the fBm process. Synthetic ROIs with 
microcalcifications and healthy ones were generated. Two 
types of tissues (fatty and dense) and the two types of severity 
(benign and malignant) were considered. The synthetic ROIs 
were modeled based on the Stein method [40]. The Hurst 
coefficients were chosen according to [41]; H=0.3±0.1 for 
fatty tissue and H=0.65±0.1 for dense tissue. The 
discrimination between tissues’ types was controlled 
according to the grayscale deduced from the study of real 
cases, mammographic images of Mini-MIAS database [42]. In 
order to obtain synthetic ROIs similar to the real cases, a large 
number of models were generated randomly with different 
values of the Hurst coefficient H, diverse grayscale variations 
and several arrangements of microcalcifications. 

Two referenced approaches of microcalcification 
segmentation: the ‘Sq-Sq’ [28] and the ‘MM’ [29] methods 
were applied on the developed synthetic images in order to 
compare them. The evaluation was carried out qualitatively 
according to the opinion of a skilled radiologist, as well as 
quantitatively based on two evaluation criteria: AOM and 
Dice coefficients. The results showed that the ‘Sq-Sq’ method 
was able to detect anomalies on synthetic ROIs sized 
(128×128) pixels independently of the tissue type. However, 
for models sized (32×32) pixels, the ‘Sq-Sq’ succeeded in 
extracting microcalcifications from only fatty models. This 
limit can be explained by the fact that the ‘Sq-Sq’ approach is 
based on calculating the difference between the pixel’s 
grayscale. 

The ‘MM’ method [29] yielded incomplete results for the 
segmentation of models sized (128×128) pixels especially for 
fatty tissue (small value of H: rough surface). The authors of 
[29] usually used ROIs sized (41×41) pixels, which urged us 
to construct another set of models sized (32×32) pixels, in 
order to check if the failed results were related to either the 
size or type of tissue. These results also showed incomplete 
segmentation of microcalcifications in rough surfaces (fatty 
tissue). The ‘MM’ approach [29] presented good results of 
segmentation in a smooth background (dense tissue) 
independently to the size. The ‘Sq-Sq’ approach yielded 
pertinent findings for large fatty and dense models. However, 
for models sized (32×32) pixels the ‘Sq-Sq’ succeeded only in 
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fatty models (low value of H). The ‘Sq-Sq’ is based on the 
calculation of the difference between grayscale neighbors’ 
pixels, which can explain why segmentation failed in dense 
small models sized (32×32) pixels. 

The ‘Sq-Sq’ approach yielded an average of 0.8±0.06 for 
AOM measure and Dice coefficient of 0.8446. The ‘Sq-Sq’ 
method had a good performance regardless of the type of 
tissue and the severity’s type. The latter depends on the size of 
the images. The ‘MM’ approach presented satisfactory results 
for images with a smooth background regardless of the size. It 
achieved an average of 0.7±0.05 for AOM measure and Dice 
coefficient of 0.5423. However, the ‘MM’ approach could 
give pertinent segmentation only for models having smooth 
background i.e. high grayscale variability even for very small 
microcalcifications. 

7. Conclusion and perspectives 

In this work, a novel approach of synthetic images 
generation based on fBm process was proposed. The main 
objective was twofold: (1) to offer reference images for 
researchers and radiologists to test respectively the accuracy 
of their algorithms and the precision of their diagnostic tools; 
(2) to compare two microcalcification segmentation 
approaches: ‘Sq-Sq’ [28] and ‘MM’ [29], which helps to orient 
the choice of their parameters so as to obtain better results. 
Segmented images were evaluated in two ways: a qualitative 
and quantitative evaluation. Satisfactory segmentation was 
achieved by applying the ‘Sq-Sq’ method to the synthetic 
images. In fact, the ‘Sq-Sq’ approach gave good results for 
fatty and dense tissue. According to experts, the generated 
synthetic ROIs of mammographic images can help 
radiologists to test the precision of their diagnosis. 

It can be concluded that the synthetic ROIs can be applied 
on several approaches of microcalcification segmentations to 
test their parameters and check if there are any gaps. 

As perspectives, we suggest to generate a larger number of 
synthetic images and further diversify our examples by mainly 
varying the arrangement of the injected microcalcifications. 
This would allow us to study other synthetic images of 
mammograms especially for benign and malignant cases. We 
also propose modeling a whole mammogram with the various 
types of tissue. 
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