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Abstract: Partial-differential-equation- based segmentation has been employed to accurately extract the shapes of membranes 

and nuclei from time lapse confocal microscopy images, taken throughout early Zebrafish embryogenesis. This strategy is a 

prerequisite for an accurate quantitative analysis of cell shape and morphodynamics during organogenesis and is the basis for an 

integrated understanding of biological processes. This data will also serve for the measurement of the variability between 

individuals in a population. The segmentation of cellular structures is achieved by first using an edge-preserving image filtering 

method for noise reduction and then applying an algorithm for cell shape reconstruction based on the Subjective Surfaces 

technique. 
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1. Introduction 

The extraction and segmentation of true 3-D shapes is a 

crucial task in the analysis of morphodynamical patterns in 

biology. The shape reconstruction of nuclei and membranes 

during embryogenesis is the basis for a strategy of automated 

measurements of the cell proliferation rate in the embryonic 

tissues that will be used for designing low-cost methods for 

the pre-clinical evaluation of anti-cancer drug effects in vivo. 

Prior and during cell division, the cell shape undergoes 

characteristic changes. Thus, shape analysis of nuclei and 

membranes is essential for the detection of cell division which 

is necessary to get a measurement of the cell proliferation rate 

in living tissues. Furthermore, the reconstruction of the 

cellular shape will provide relevant parameters to mea- sure 

the variability between different individuals of the same 

species, opening the way for understanding the individual 

susceptibility to genetic diseases or response to treatments. 

Our aim is to design an algorithm providing in an automated 

way the correct segmentation of nucl ei and membranes in live 

embryos. We expect to avoid the need for any manual 

intervention which is in any case completely unrealistic when 

dealing with thousands of objects. A similar study can be 

found in a previous work by Sarti et al. [1], where confocal 

microscopy images were processed to extract the shape of 

nuclei. However, in that case, the analyzed volumes were not 

acquired from a living organism but from pieces of fixed 

tissues. 

2. Imaging Acquisition 

  

Fig1. Image of the Embryo.(Left) Start point (about 3 hours post 
fertilization).(Right) End point (about 7 hours post fertilization). 

           (1) 

First To obtain accurate measurements of 3-D features at the 

cellular level in living embryos, it is necessary to use an 

acquisition technique with micrometrical resolution and to 

reconstruct volumetric information. To fulfil these 

requirements, the analyzed images have been acquired by 
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confocal microscopy with the best compromise in terms of 

spatial and temporal resolution [2]. 

In order to produce high contrast images, the specimen has 

been labeled through the expression of fluorescent proteins, 

the eGFP (Green Fluorescent Protein, targeted to the nuclei) 

and the mcherry (Red Fluorescent Protein, addressed to 

membranes). The two channels were acquired separately but 

simultaneously, as the emission spectrum of the two proteins 

are sufficiently distinct. 

The x,y size of the acquired images is 512 x 512 pixels; the 

temporal resolution is about 5 minutes. The voxel size is not 

uniform in space: 0.584793 µm in x and y directions and 

1.04892 µm in z. The overall volume submitted to optical 

sectioning is 30 microns thick. The embryo has been imaged 

from 3, 5 hours post fertilization (development at 28o C) for 4 

hours (25o C under the microscope) [3]. 

3. Image Denoising 

The noise present in the image can disrupt the shape 

information, therefore the de-noising process is an essential 

preliminary task in images segmentation. Different sources of 

noise can be identified: the non-homogeneous concentration 

of the fluorescent proteins in the labelled structures and the 

electronic noise from the instrument. In order to accurately 

reconstruct the object shape, the de-noising process has to 

improve the signal-to-noise ratio, faithfully preserving the 

edges position and definition. The geodesic curvature filtering 

[1, 4] is able to achieve this task. In the uniform regions, it 

moves the iso-intensity surfaces in the normal direction with a 

curvature-dependent speed, smoothing the superimposed 

noise, whereas near the edges it attracts the image levels 

towards the local contours, sharpening the edges and working 

to preserve the objects dimensions. 

4. Segmentation 

4.1. Theoretical Background 

Beside the Subjective Surfaces technique [5,6] is 

particularly useful for the segmentation of incomplete 

contours, because it allows the reconstruction and the 

integration of lacking information. The analyzed images, 

especially the membranes images, are characterized by a 

signal which is almost undetectable or even absent in some 

regions. In such situations, the Subjective Surfaces technique 

should allow the completion of lacking-portions of objects. 

Consider a 3-D image I : (x, y, z) → I (x, y, z) as a real 

positive function defined in some domain M ⊂ R3 . 

One initial task in image segmentation is to build an edge 

indicator g, which is a representation of the local structures of 

the image. An expression of g can be [7]. 

Where Gσ (x, y, z) is a Gaussian kernel with standard 

deviation σ, (∗) denotes the convolution and n is 1 or 2. The 

value of g is close to 1 in flat areas (|∇I | → 0) and close to 0 

where the image gradient is high (edges). Thus, the minima of 

g denote the position of edges and its gradient is a force field 

that can be used to drive the evolution, because it always 

points in the local edge direction. The second step is the 

selection of a reference point, approximately in the center of 

the object to be segmented. The initial hypersuface Si (Si : (x, 

y, z) → (x, y, z, Φ0 )) is defined in the same domain M of the 

image I starting from an initial function Φ0 . There are some 

alternative forms for Φ0 , for example Φ0 = −αD or Φ0 = α/D, 

where D is the 3-D distance function from the reference point. 

The motion equation, which drives the hypersurface evolution, 

is the flow which ensures the steepest descent of the 

hypersurface volume: 

where H is the Euclidean mean curvature. This equation is 

exactly the same of that defined in the well-known Geodesic 

Active Contours technique (GAC) [8], except for a parameter 

introduced in H expression to weigh the matching of level 

curves. The entire hypersurface is driven under a speed law 

dependent on the image gradient, whereas in classical 

formulation of Level Set methods, as in GAC, the evolution 

affects only a particular front or level. The first term on the 

right side of equation (1) is a parabolic motion that evolves 

the hypersurface in normal direction with a velocity weighted 

by the mean curvature and by the edge indicator g, slowing 

down near the edges (where g → 0). The second term on the 

right is a pure passive advection along the velocity field −∇g 

whose direction and strength depend on its position. This 

term attracts the hypersurface in the direction of the image 

edges. In regions with subjective contours, continuation of 

existing edge fragments is negligible and equation (1) can be 

approximated by a geodesic flow, allowing the boundary 

completion with curves of minimal length (i.e. straight lines). 

4.2. Numerical Approximation 

After The partial derivatives in equation (1) are 

approximated with finite differences [5, 6, and 9]. Let us 

consider a uniform grid in space-time (t, x, y, z), then the grid 

consists of the points (tn , xi , yj , zk ) = (n∆t, i∆x, j∆y, k∆z). 

We denote with the value of the function Φ at the grid 

point (tn , xi , yj , zk ). Time derivatives are discretized with 

first order forward differences, the parabolic term with central 

differences and the advective term with upwind schemes, 

where the direction of the one-sided difference used in a point 

depends on the direction of the velocity field −∇g in the same 

point. 

4.3. Modification to the Algorithm for Cells Segmentation 

In this section, we briefly introduce the segmentation 

algorithm based on the Subjective Surfaces technique. It 

allows the extraction of all the membranes and nuclei in the 

acquired volumes, processing the two channels separately. 

The focus point for the segmentation of hundreds of cells is to 

achieve a fully automated procedure; therefore the algorithm 

has been implemented to completely avoid the user 

intervention. 

Every object is segmented separately from the others, 

limiting the computation to subvolumes containing only one 

cell. A different function Φ0 is defined for every cell, starting 
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from a reference point automatically detected and located 

roughly in the center of the object. The hypersurface evolves 

under the flow equation (1) and, at the end of every partial 

computation, all the segmented surfaces are collected in a 

single total result. 

Membranes segmentation requires an additional pre- 

processing: membranes images are corrupted by a weak nuclei 

signal, more intense during mitosis, which has to be removed 

because it can cause a wrong interpretation of the edges. This 

is due to overlapping between nuclei and membranes emission 

range during acquisition. A preliminary thresholding of nuclei 

images separates the nuclei signal from the background, then 

the interfering signal is removed from membranes images. 

The algorithm has been implemented using the program- 

ming language C++ and libraries ITK [10] and VTK [11]. The 

final version has been integrated in a framework de- signed for 

managing series of 3-D biological images [12]. 

4.4. Edge Detection 

The analyzed images (membranes versus nuclei) behave in 

a completely different way in terms of edge detection: The 

thickness of membranes signal is of about 3 or 4 voxels, 

whereas nuclei are solid objects. These specific features 

require using different functions for the detection of edges 

position in nuclei and membranes images. 

In nuclei images, the contours to be segmented are located 

in the regions where image gradient is higher and the minima 

of (1) denote the position of the edges (Fig. 2(a)). On the 

contrary, the function (1) can’t be applied on membranes 

images because it reveals a double contour, on the internal and 

the external side of the cell. An alternative edge indicator has 

been defined using the image itself (not its gradient) as 

contours detector. We can use the intensity information to 

locate the position of the edges, because the membranes 

images contain high intensity regions, where the labeled 

membrane structure has been acquired, versus low intensity 

background regions. The edge indicator we used is:  

     (2) 

 

Fig 2. Images of the edge indicators: membranes (a) and nuclei (b). 

As we expected, its minima locate the contours in the 

middle of the membranes thickness (Fig. 2(b)). 

4.5. Cells Recognition and Location 

A typical image contains a large number of cells, therefore 

the segmentation approach has to require minimal user 

intervention. It means that the interactive step of the 

Subjective Surfaces technique, that is the choice of the 

reference point inside the object to segment, should be 

automated. This goal is achieved with the generalized 3-D 

Hough Transform [13] that allows detecting specific shapes in 

the image. Approximating the nucleus as a spherical object, 

the Hough Transform is able to recognize every nucleus, 

returning its center [14]. This point, which is roughly the cell 

center in early embryonic cells, is the initial condition for the 

segmentation of nucleus and membrane belonging to the same 

cell. 

5. Results and Discussion 

We obtained good results assigning different weighting 

factors to the curvature and the advective motions, 

respectively first and second term on the right side of equation 

(1). The same expression of Si can be employed both for 

nuclei and membranes segmentation. We used the initial 

function Φ0 = α/D, instead of Φ0 = −αD, to have an higher 

contrast in the processed image. After segmentation, the 

intensity distribution of the function Φ is typically associated 

to a bimodal histogram with a values range between 0 and 255, 

because of a linear rescaling. The higher intensity peak (near 

to 255) corresponds to the segmented object, the lower one to 

the background. Therefore, the segmented surfaces can be 

extracted as the iso surfaces corresponding to the intermediate 

value 128. 

Fig. 3 shows the effect of boundary completion on 

membranes images: the missing contour, underlined by the red 

circle, is completed by a straight line. The algorithm shows the 

same behaviour for dividing membranes during telophase (Fig. 

4), where there are two different nuclei inside the same cell 

and the membrane presents a constriction along the division 

plane. In this case, the algorithm segments two cells, because 

the Hough Transform detects two centers, and their contours 

are completed by straight lines. 

The eye inspection of the resulting surfaces reveals some 

problems in the segmentation of the epithelial cells 

membranes. These cells surrounding the embryo are very flat. 

This feature impairs membrane completion by the 

Subjective Surfaces 3-D technique, because the small 

extension in depth stops the evaluative process. 

Before undergoing division, cells become spherical, 

whereas nuclei staining elongates as the chromosomes 

arrange in the future cell division plane (Fig. 5). It should 

be noted that the nucleus size is underestimated in the last 

two parts. 

 

Fig 3. Segmentation of a membrane with an uncomplete contour. 
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Fig 4. Segmentation of a dividing cell. 

 

Fig 5. Segmentation of a dividing cell. 

 

Fig 6. Segmentation of an entire subvolume. 

This is due to the parabolic regularization term in the 

motion equation (1), which prevents the segmented surface 

to reach the contour if it is concave and with high curvature. 

However, the nuclei of not dividing cells are correctly 

segmented, as confirmed by visual inspection. Finally, in 

Fig. 6 we show the segmentation of two subvolumes of 

nuclei and membranes. 

Visual inspection of the results has shown the ability of 

the algorithm to complete the missing contours, especially 

in membranes images, and to correctly reproduce the 

objects shape. The precision seems to decrease for 

elongated and flat shapes (epithelial cells and dividing 

nuclei). 

The algorithm can be improved by integrating the 

segmentation of membranes and nuclei in the same process. 

An ad hoc method can be designed for the segmentation of 

the epithelial cells that have to be localized, prior 

segmentation, using a discriminating factor. Our 

segmentation procedure will now be tested on larger image 

data sets encompassing ten times of cells for a period of 

time at least twice as long. This should bring us close to an 

automated segmentation procedure for the whole zebrafish 

early embryogenesis. 
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