

International Journal of Intelligent Information Systems
2014; 3(6-1): 23-27
Published online October 20, 2014 (http://www.sciencepublishinggroup.com/j/ijiis)
doi: 10.11648/j.ijiis.s.2014030601.14
ISSN: 2328-7675 (Print); ISSN: 2328-7683 (Online)

Improving honeyd for automatic generation of attack
signatures

Motahareh Dehghan, Babak Sadeghiyan

Department of Computer Engineering and Information Technology, Amirkabir University of Technology (AUT), Tehran, Iran

Email address:
Motahareh479@aut.ac.ir (M. Dehghan), basadegh@aut.ac.ir (B. Sadeghiyan)

To cite this article:
Motahareh Dehghan, Babak Sadeghiyan. Improving Honeyd for Automatic Generation of Attack Signatures. International Journal of

Intelligent Information Systems. Special Issue: Research and Practices in Information Systems and Technologies in Developing Countries.

Vol. 3, No. 6-1, 2014, pp. 23-27. doi: 10.11648/j.ijiis.s.2014030601.14

Abstract: In this paper, we design and implement a new Plugin to Honeyd which generates attack signature, automatically.

Current network intrusion detection systems work on misuse detectors, where the packets in the monitored network are

compared against a repository of signatures. But, we focus on automatic signature generation from malicious network traffic. Our

proposed system inspects honeypot traffic and generates intrusion signatures for unknown traffic.The signature is based on traffic

patterns, using Longest Common Substring (LCS) algorithm. It is noteworthy that our system is a plugin to honeyd - a low

interaction honeypot. The system's output is a file containing honeypot intrusion signatures in pseudo-snort format. Signature

generation system has been implemented for Linux Operating System (OS) but due to the common use of Windows OS, we

implement for Windows OS, using C programming language.

Keywords: Honeypot, Honeyd, Signature, Intrusion Detection System (IDS), Longest Common Substring (LCS) Algorithm

1. Introduction

Nowadays, in order to reduce the effects of network

attacks and prevent network intrusion, several security

equipments are designed and implemented. One of them is

honeypot.

Honeypot offers a variety of services and attracts attackers.

In this paper, we acquire patterns from honeypot's traffic

on basis of packets sent to multiple hosts from attackers,

which have approximately similar content. Then, from these

patterns we generate signatures. The system's output is a file

containing intrusion signatures in pseudo- snort format. As

illustrated in Figure 1, our proposed system is a plugin to

honeyd-low interaction honeypot that designs appropriate

responses based on these signatures [1]. Also, these

signatures can be used to filter the traffic directed towards the

honeypot, in order to reduce the amount of traffic needed to

be processed by the honeypot sensors.

2. Data and Materials

2.1. Honeypot

As mentioned by Grønland [2], honeypot is a system which

is built and set up in order to be hacked. Besides this,

honeypot is also a trap system for the attackers which is

deployed to counteract the resources of the attacker and slow

him down, thus he wastes his time on the honeypot instead of

attacking the production systems.

Figure 1. Honeyd and Proposed System.

� Types of honeypots include [3,4] Honeypots in terms of

reality Physical honeypots

� A physical honeypot is a real machine in network which

24 Motahareh Dehghan and Babak Sadeghiyan: Improving Honeyd for Automatic Generation of Attack Signatures

has a particular IP address.

� Virtual honeypots A virtual honeypot is simulated by

another machine.

� Honeypots in terms of interaction by attacker Low

interaction honeypots A low-interaction honeypot will

typically run or emulate a small number of services on a

real or emulated operating system.

� High interaction honeypots A high-interaction honeypot

is often a real computer running a real operating system

(Figure 2).

Figure 2. Types of Honeypots.

2.2. Honeyd

Honeyd is an Open Source low-interaction honeypot

implemented for UNIX and Windows Operating Systems (OS)

[5]. Every attacker which intends to communicate network

with useless Internet Protocol (IP) Address, is disconnected

and interacted by honeyd disconnects this connection and

interacts with him. Honeyd is a framework for virtual

honeypots which allows thousands of IP addresses to

communicate with virtual machines. Thus, it should be able to

simulate network topology. Honeyd is a central machine

which captures the traffic directed towards the virtual

honeypots and simulates appropriate responses [6].

2.3. Longest Common Substring of Two Strings

The longest common substrings of a set of strings can be

found by building a generalised suffix tree for the strings,

and then finding the deepest internal nodes which have leaf

nodes from all the strings in the subtree below it [7]. The

figure on the right is the suffix tree for the strings "ABAB",

"BABA" and "ABBA", padded with unique string

terminators, to become "ABAB$0", "BABA$1" and

"ABBA$2". The nodes representing "A", "B", "AB" and

"BA" all have descendant leaves from all of the strings,

numbered 0, 1 and 2.

2.4. Cygwin

Cygwin is a UNIX-compatible environment that runs on

Windows systems. It consists of cygwin1.dll, a library that

takes POSIX calls and translates them into Win32 calls; a shell

(GNU BASH, the shell used on most Linux systems, is the

default); an implementation of the X Window System as well

as GCC [8].

Figure 3. Generalized Suffix Tree of a set of strings.

International Journal of Intelligent Information Systems 2014; 3(6-1): 23-27 25

3. Research Methodology

3.1. System Architecture

The proposed system architecture consists of following

parts:

� Local Control Unit

� Analysis Unit

� Communication Unit

� Database

� Known-Attack Filter

� Network Intrusion Prevention System

� Global Control Unit

Each unit is described as follow:

Figure 4. Proposed System Architecture

� Local Control Unit

This unit has a simplified version that is only able to receive

signature updates from the Global Control Unit (GCU) and

use these in NIPS to protect the production network. But in a

complicated version, LCU consists of behind units:

o Analysis Unit – (AU)

The AU's main task is to correlate the incoming honeypot

events and create signatures for possible worms. When

receiving new events from a honeypot, the following

procedure is executed:

� Step 1: The incoming events are stored in the log

database and correlated with older events. If a similar

chain of events has been received a certain number of

times before, it is assumed that the events are caused by a

worm and step 2 is carried out. If not, the events are

simply stored and the AU returns to idle state.

� Step 2: The network packets causing the same chain of

events are compared. If a common substring (larger than

a given threshold) is found between these traffic traces, a

signature is created.

� Step 3: Before storing the newly generated signature in

the database, it is compared with the already existing

ones. It can then either be stored directly in the database

as a new entry or help to improve one of the older ones.

o Communication Unit – (CU)

The CU’s main purpose is to exchange signatures with the

Global Control Unit (GCU) as well as issuing signature

updates to the Known-Attack (KA) filter and Network

Intrusion Prevention System (NIPS).

o Databases

The signature database is used to store locally generated as

well as received signatures. The log database is used to store

the logged events along with relevant data.

� Known-Attack Filter – (KA Filter)

The main purpose of the KA filter is to look for known

attacks (based on the signatures received from the LCU) in the

traffic directed towards the honeypots.

� Network Intrusion Prevention System – (NIPS)

The NIPS is placed in the system to protect the production

network. It can filter traffic that is unwanted based on certain

ports as specified by the network administrator, as well as

traffic that have been declared malicious as a result of

signature updates from the LCU. Similar to the KA filter, it is

also possible for the NIPS to report back to the LCU on the

activity level of the received signatures.

� Global Control Unit – (GCU)

The GCU serves as a central signature storage and

distribution unit. It receives signature updates from the

26 Motahareh Dehghan and Babak Sadeghiyan: Improving Honeyd for Automatic Generation of Attack Signatures

distributed LCUs and is able to correlate received data from

different locations to compose improved signatures. Based on

the received data, it issues periodic updates to the LCUs. As

the GCU is a potential single point-of-failure and the effects

can be catastrophic if it is compromised, the requirements

regarding security are strict. All communication between the

GCU and LCUs should be authenticated and encrypted in

order to avoid forged signature updates.

3.2. Implementation

The implementation is based on traffic patterns, using

Longest Common Substring (LCS) algorithm. Our system

output is a file containing honeyd intrusion signatures in

pseudo-snort format to filter unwanted production network

traffic. Also the proposed architecture introduces the use of a

Known-Attack (KA) filter. The main purpose of this filter is to

remove known attacks from the traffic directed towards the

honeypots. This filter reduces the amount of traffic needed to

be processed by the honeypot sensors.

Signature generation system is implemented in Linux OS,

but due to the common use of Windows OS, our

implementation is also in Windows OS, using C programming

language.

According to [5, 9, 10], for implementing the system we use

below items:

1 Winpcap to capture packets

2 Cygwin compiler

3 Libevent library: The libevent API provides a

mechanism to execute a callback function when a

specific event occurs on a file descriptor or after a

timeout has been reached [11].

4 Libdnet library: libdnet provides a simplified, portable

interface to several low-level networking routines [12].

5 Libstree library: libstree is a generic suffix tree

implementation, written in C [13].

6 Python

4. Results and Analysis

Signatures are periodically reported to an output module

which implements the actual logging of the signature records.

At the moment, there are modules that convert the signature

records into pseudo-Snort format and a module that dumps the

signature strings to a file. Our proposed system generated 53

signatures during a roughly 18-hour period and we captured

224 KB of traffic, comprising 560 TCP connections, 120 UDP

connections and 24 ICMP pings. 25 signatures were created

containing flow content strings. These are relatively long; on

average they contain 136 bytes. The signatures format is as

follow:

alert tcp 61.0.0.0/8 any � 129.241.196.0/24 80 (msg:

"Hello!!! "; flags: PA+; flow: established; content: "GET

http://lookfreebies.com/prx1.php HTTP/1.0|0D

0A|Accept: */*|0D 0A|Accept-Language: en-us|0D

0A|User-Agent: Mozilla/4.0 (compatible; MSIE 6.0;

Windows NT 5.0)|0D 0A|Host: lookfreebies.com|0D

0A|Connection: Keep-Alive|0D 0A 0D|";) As mentioned in

[14], rule options are:

� The direction operator � indicates the orientation, or

direction of the traffic that the rule applies to. The IP

address and port numbers on the left side of the direction

operator is considered to be the traffic coming from the

source.

� The generated signature has TCP protocol that the source

IP address is 61.0.0.0/8 and the destination IP address is

129.241.196.0/24 and its port is 80.

� The msg rule option tells the logging and alerting engine

the message to print along with a packet dump or to an

alert.

� The content keyword is one of the more important

features of Snort. It allows the user to set rules that search

for specific content in the packet payload and trigger

response based on that data.

� The flags keyword is used to check if specific TCP flag

bits are present.

5. Conclusion

In Summary, an automated signature generation system for

Windows OS designed and implemented. This system

considered as honeyd plugin. Our tests show the proposed

system is particularly good at generating attack signatures.

Acknowledgements

I would like to thank Mr. Erfan Khosravian for valuable

feedbacks and Comments.

References

[1] Vusal Aliyev, “Using honeypots to study skill level of attackers
based on the exploited vulnerabilities in the network”. Master
of Science Thesis in the Master Degree Programme, Secure and
Dependable Computer Systems, Department of Computer
Science and Engineering Division of Computer Security.
Goteborg, Sweden, 2010.

[2] Grønland, Vidar Ajaxon. "Building IDS rules by means of a
honeypot". Master’s Thesis, Master of Science in Information
Security, Department of Computer Science and Media
Technology Gjøvik University College, 2006.

[3] Noordin, Yusuff, Mohamed. "HONEYPOTS REVEALED". IT
Security Officer. Specialist Dip. Info Security, MA. Internet
Security Mgmt.

[4] Mark Meijerink, Jonel Spellen. "Intrusion Detection System
honeypots". Master Program System and Network
Administration, University of Amsterdam, 2006.

[5] Baumann, Reto. "Honeyd – A low involvement Honeypot in
Action". Originally published as part of the GCIA (GIAC
Certified Intrusion Analyst) practical, 2003.

[6] Provos, Niels. "Honeyd- A Virtual Honeypot Daemon". Center
for Information Technology Integration, University of
Michigan. 2003.

International Journal of Intelligent Information Systems 2014; 3(6-1): 23-27 27

[7] Sung, Wing-Kin; Melvin, Zhang Zhiyong. "Suffix Tree and
Suffix Array". Knowledge Discovery and Data Mining
Conference,2005.

[8] Moody, George. "An Introduction To Cygwin". Harvard-MIT
Division of Health Sciences and Technology.

[9] Provos, Niels; Mathewson, Nick. "Libevent – an event
notification library", 2011. URL: http://libevent.org/

[10] Van Rossum, Guido; "Introduction to Python". LinuxWorld,
New York City, Documented in https://www.python.org/doc.
2002.

[11] Libevent – an event notification library: http://libevent.org.

[12] Libdnet: http://libdnet.sourceforge.net.

[13] Christian Kreibich; libstree: http://www.icir.org/christian/
libstree .

[14] Roesch,Martin; Green, Chris. "SNORT Users Manual 2.8.5",
The Snort Project (https://manual.snort.org), 2009.

