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Abstract: Mitigation of credit risk is a key aspect of portfolio management in any financial institution. This is primarily 

due to difficulties in uncovering uncertainties in information provided by credit applicants and also due to lack of reliable 

automated techniques that would improve the efficiency of manual underwriting procedures. In this paper, we report on the 

results of a MSc. Thesis
1
 in the application of an ensemble learning algorithm in development of a computer program that can 

greatly enhance the underwriting process.  The implementation was based on the java netbeans development platform to 

create an interface that was used to train a model and its subsequent use in predicting credit decisions. The results obtained 

proved that such a mechanism can be applied to augment manual credit appraising processes, especially where large volumes 

of applications are to be processed within limited timeframes. 
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1. Introduction 

Loans constitute the cornerstone of the banking industry’s 

financial portfolios. The performance of loan contracts in 

good standing guarantees profitability and stability of a bank. 

Therefore the screening of the customer’s financial history 

as well as the ability to remain faithful to new financial 

obligations is a very significant factor before any credit 

decision is taken and it is a major step in reducing credit risk.  

We begin by highlighting the relevant base literature upon 

which the experiment was setup and the subsequent expe-

rimental setup and finally the results obtained with corres-

ponding analysis and conclusion. 

1.1. Problem Statement 

Despite the increase in consumer loans defaults and 

competition in the banking market, most of the Kenyan 

commercial banks are reluctant to use artificial intelligence 

technologies in their decision-making routines. Generally, 

bank loan officers rely on traditional methods to guide them 

in evaluating the worthiness of loan applications. A checklist 

of bank rules, conventional statistical methods and personal 

judgment are used to evaluate loan applications. Further-

more, a loan officer’s credit decision or recommendation for 

loan worthiness is subjective. 

After some experience, these officers develop their own 

experiential knowledge or intuition to judge the worthiness 

of a loan decision. Given the absence of objectivity, such 

judgment is biased, ambiguous and nonlinear and humans 

have limited capabilities to discover useful relationships or 

patterns from a large volume of historical data. Generally, 

loan application evaluations are based on a loan officers’ 

subjective assessment. Therefore, a knowledge discovery 

tool is needed to assist in decision making regarding the 

application. 

Further, the complexity of loan decision tools and varia-

tion between applications is an opportunity for the use of a 

machine learning tool to provide learning capability that 

does not exist in other technologies. Ensemble meta mod-

eling techniques, are empirically some of the best machines 

learning tools applicable to financial risk analysis. 

1.2. Purpose of the Study 

The purpose of this study was to develop a loan decision 

system using the logistic regression Meta modeling algo-

rithm - Logitboost around Java based open source software 

for the Kenya commercial banks. This is the first empirical 

research of its kind in our country that addresses in a sys-

tematic way the issue of using Meta classifiers in loan ap-
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plications. Further, the study champions the use of open 

source software tools in business intelligence applications. 

The general objectives of this study were to: 

1) Implement the meta learning algorithm - LogitBoost to 

develop as system for evaluating credit applications to 

support loan decisions  in Kenyan financial 

institutions 

2) Outline some of the challenges of using the learning 

algorithm in the decision-making process for the 

banking industry in Kenya 

3) Champion the applicability of Java as an open source 

software in business intelligence applications 

1.3. Significance of the Study 

From time immemorial in the banking sector, banks have 

relied on the personal assessment of loan risks or on the 

traditional statistical methods to predict the default of loans 

instead of using a standardized evaluation tool. These tradi-

tional methods often require a great deal of subjective input 

from underwriters, making them un-reliable and often lack 

empirical and scientific backing. The development of ma-

chine learning models and tools has been welcomed as one 

of the most exciting in business settings. The implementa-

tion of such models would considerably improve the quality 

of decision making and the efficiency of credit analysis 

processes. 

1.4. Scope 

The study was limited to the implementation of the Lo-

gitBoost meta learning algorithm for classification loan 

analysis. Further, the study considered a binary output from 

the classifier, hence dependent variable can only take on 

accept or reject values with an emphasis on the banking 

industry in Kenya; though the results can easily be genera-

lized to institutions elsewhere. 

1.5. Limitations 

Loan appraisal decisions can easily extend beyond the 

“accept” or “reject” kind of classifications to include such 

other spectral values as “fairly good”, ”good” and so on. 

Although the classifier takes this into account through vot-

ing – in which those values that meet certain thresholds are 

promoted to either of the classification values, most of such 

incidences are minimal and can be handled through judg-

mental procedures by re-examining those peculiar cases and 

applying policies as laid out. Further, the classifier labels 

every classification instance with a level of confidence value. 

The study has left such analysis to oversight procedures 

especially where the confidence level of the classifier does 

not meet a certain threshold. 

2. Related Work 

Loan approval is normally to accept applicants with low 

credit risk, whereas high risk applications are rejected. This 

makes credit control one of the key concerns in a bank’s 

financial management [1]. 

The ongoing changes in the banking industry, in the form 

of new credit regulations, the need for innovative marketing 

strategies, the ever increasing competition and the constant 

changes in customer borrowing patterns; call for frequent 

adjustments to credit management in order to remain com-

petitive. Invariably, the amount of customer data required to 

effectively screen a loan application is usually huge; often 

not less than fifteen attributes. The traditional credit ap-

praising techniques based on a hybrid mixture of manual and 

statistical techniques such as indices and reporting, credit 

bureau references, post screening, fact act, multiple credit 

accounts and initial credit line, the manual input are defi-

nitely inadequate in modern times. This calls for the use of 

more efficient and effective loan screening tools and pro-

cedures. 

Automated techniques have progressively become popu-

lar in contemporary loan appraisal processes. However, 

judgmental inputs such as intuition, policy and information 

oversights cannot be completely eradicated.  One of the 

earliest automated procedures uses statistical tools which 

have fallen short of the inherent challenge for today’s 

commercial banks is their desire to understand large 

amounts of information and reveal useful knowledge to 

improve decision-making. This is largely because the sus-

tainability of banks depends largely on their abilities to sift 

through large volumes of data, to extract useful knowledge 

and enforce this knowledge in their decisions. 

Today, lenders are making increased use of new and in-

novative techniques – the key being data mining and ma-

chine learning to evaluate loan applications for business and 

financial prospects [2, 3]. These techniques have been found 

to outperform earlier approaches leading to increased com-

petitiveness. Further, ensemble learning algorithms – those 

that combine a number of base algorithms, through empiri-

cal reports typically lead to better results. Credit appraisal 

often amounts to making a decision whether to grant or to 

reject an application. This is a classification problem and can 

easily be implemented using a classification algorithm; the 

output of which is Boolean  or multi-valued. Boosting is 

one of the most important recent developments in classifi-

cation methodology. Boosting works by sequentially ap-

plying a classification algorithm to reweighted versions of 

the training data and then taking a weighted majority vote of 

the sequence of classifiers thus produced [4-6]. For many 

classification algorithms, this innovative strategy results in 

dramatic improvements in performance [8]. This is a spe-

cialized case of regression analysis over discrete or ordinal 

values; but basic regression-based learning algorithms have 

inherent disadvantages. Better algorithms that overcome 

these pitfalls have been developed and are collectively 

known as Discriminant Analysis (DA) techniques or simply 

Meta learning algorithms [3]. One such algorithm that ef-

fectively addresses these issues is the LogitBoost Meta 

classifier - based on the log of the odds ratio for the depen-

dent variable [7, 8]. 

In the quest to find solutions to loan approval problem [9], 
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the authors proposed a neural network banking model for the 

Jordanian banks. Although the model was reported to per-

form relatively better than models developed using other 

approaches; as part of the limitations and recommendation, 

they suggested that such a model is usually a black box and 

more insight the model parameters was required to make it 

more effective. Further, they suggested an improvement to 

the model by introducing a graphical interface for the loans 

officer. 

There have been various other attempts to deal with the 

loan appraisal problem using various techniques [10] to 

varied degrees of success. 

3. Experiment Design 

The solution to the problem was an adaptation of ensem-

ble machine learning strategies where a ‘weak’ classifier, 

commonly referred to as a base classifier was boosted 

through a series of adjustments through weighting and 

re-sampling to develop a better learner which was an addi-

tive aggregate of individual learners. The boosting method 

was developed around the Probably Approximately Correct 

(PAC) model that entails transforming ‘weak learners’ into 

‘strong learners’. The reported technique derives from the 

intuitive understanding that instead of putting all the effort 

on finding highly accurate base classifiers, it becomes suf-

ficient or even desirable to use a set of weaker hypotheses. 

3.1. Decision Stump: Base Classifier 

A decision stump is a decision tree with only a single root 

node. It works as follows: 

1. Looks at all possible thresholds for each attribute 

2. Selects the one with the max information gain 

3. Resulting classifier is a simple threshold on a single 

feature 

a) Outputs a +1 if the attribute is above a certain threshold 

b) Outputs a -1 if the attribute is below the threshold 

3.2. Combining Classifiers 

In this study, ‘majority voting’ was adopted for combining 

hypothesis from different learners. In majority voting, to 

predict the class of a new item, each base classifier got to 

vote for either the ‘accept’ or the ‘reject’ class. A accept 

classification for a loan decision meant pointed to a suc-

cessful application while a reject classification pointed to the 

alternative. 

It can be proven (as discussed here-under), that under the 

assumption that all individual classifiers have the same 

prediction rate and that the distribution of the data correctly 

classified by each base classifier is independent and random, 

this is the best possible strategy. Figure 1 illustrates the 

combination criterion. 

3.3. Logistic Regression 

The implementation detailed lay in the use of a logistic 

regression that models the posterior class probabilities Pr (G 

= k|X = x) for the K classes. In our study, the variable k was 

bi-valued and took on either ‘accept’ or ‘reject’ values and K 

was set at 2. Logistic regression models these probabilities 

using linear functions in x while at the same time ensuring 

they sum to one and remain in [0,1]. The model was speci-

fied in terms of K −1 log-odds that separate each class from 

the base class K.  

3.4. Boosting Algorithm 

a) With K attributes , there are K different decision  

stumps to choose from 

b) At each stage of boosting  

i. given reweighted data from previous stage 

ii. Train all K decision stumps  

iii. Select the single best classifier at this stage 

iv. Combine it with the other previously selected  

v. classifiers 

vi. Reweight the data 

vii. Learn all K classifiers again, select the best, 

combine,  

viii. reweight 

ix. Repeat until you have T classifiers selected 

3.5. Tools and Equipment 

The development platform used for this project mainly 

included the following open source software products: 

3.5.1. Java JDK Software Kit 

The Java Development Kit (JDK) which is a Sun Micro-

systems product released under the GNU General Public 

License (GPL) was one of the packages used especially for 

the compilation of the source files. 

3.5.2. Java Netbeans IDE 

The NetBeans IDE which is a Java based open-source 

IDE was also used in the development of the system’s 

graphical user interface (GUI) and for coding and testing of 

the system. 

3.5.3. Weka Class API 

Weka which is open source software issued under 

the GNU General Public License providing a collection of 

machine learning algorithms for data mining tasks was in-

tegrated into the development platform. 

4. Implementation and Testing 

The system was implemented on a Java platform com-

prising of the JDK compiler, netbeans IDE developer, weka 

API and the exe4j executable file converter.  

4.1. Model Building and Testing Strategies 

The model was built using the training dataset and tested 

using three strategies. We report on cross validation as un-

der. 

4.1.1. Cross-Validation Strategy 
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i. Separate data into fixed number of partitions (or folds) 

ii. Select the first fold for testing, whilst the remaining folds  

are used for training. 

iii. Classify and obtain performance metrics. 

iv. Select the next partition as testing and use the rest as  

training data. 

v. Classify until each partition has been used as the test set. 

vi. Calculate an average performance. 

 

 

Figure 1 Boosting Algorithm 

Empirical studies suggest that using 10 partitions (tenfold 

cross-validation) often yields the same error rate as if the 

entire data set had been used for training. This and other 

strategies were used and results compared. 

4.1.2. Testing Dataset 

This strategy relies on two separate files, one for training 

and the other for testing. The two files can be generated by 

portioning a given data set into two and saving them sepa-

rately. 

Table 1. Test split error 

Correctly Classified Instances           60 68.1818 % 

Incorrectly Classified Instances 28 31.8182 % 

Root mean squared error                   0.45 - 

Coverage of cases (0.95 level) - 97.7273 % 

Total Number of Instances                - 88    

Table 2. Test split class accuracy 

Class Precision  Recall ROC Area   

Accept 0.709      0.918      0.709     

Reject 0.444      0.148      0.709     

Wtd. Avg.     0.628      0.682      0.709 

Table 3. Test Split Confusion Matrix 

  Classified As  

  A=Accept B=Reject 

Class A=Accept 56 5 

 B=Reject 23 4 

4.1.3. Split Dataset 

This strategy is similar to the use of two files as discussed 

earlier but relies on the learner to automatically partition a 

given data set into two given a split percentage  

4.1.4. Predictions Using a Test File  

Options: -F -R -I 15 

Number of performed iterations: 15 

Time taken to build model: 0.06 seconds 

Time taken to test model on training data: 0.01 seconds 

5. Findings 

The results were interpreted along the following para-

meters for all the various training and testing strategies. 

5.1. Training and Testing Set 

5.1.1. Testing Accuracy 

The accuracy returned by the training set is 19 correctly 

classified instances out of 20 instances. This gives an accu-

racy of 19/20=95% 

Table 4. Test File Predictions 

inst# actual Predicted error distribution 

1 1:Accept 1:Accept  *0.817,0.183 

2 2:Reject 2:Reject  0.434,*0.566 

3 1:Accept 1:Accept  *0.951,0.049 

4 1:Accept 1:Accept  *0.795,0.205 

5 2:Reject 2:Reject  0.38,*0.62 

6 1:Accept 1:Accept  *0.563,0.437 

7 1:Accept 1:Accept  *0.823,0.177 

8 1:Accept 1:Accept  *0.821,0.179 

9 1:Accept 1:Accept  *0.97,0.03 

10 2:Reject 2:Reject  0.17,*0.83 

11 2:Reject 1:Accept + *0.824,0.176 

12 2:Reject 2:Reject  0.434,*0.566 

13 1:Accept 1:Accept  *0.824,0.176 

14 2:Reject 2:Reject  0.397,*0.603 

15 1:Accept 1:Accept  *0.824,0.176 

16 2:Reject 2:Reject  0.452,*0.548 

17 1:Accept 1:Accept  *0.696,0.304 

18 1:Accept 1:Accept  *0.608,0.392 

19 2:Reject 2:Reject  0.103,*0.897 

20 1:Accept 1:Accept  *0.922,0.078 

5.1.2. Precision 

Class =Accept: The number of correctly classified 

instances is 12 and that of instances classified as belong to 

the class is 13. This gives a precision value of 12/13=0.92 

Class =Reject: The number of correctly classified 

instances is 7 and that of instances classified as belong to the 

class is 7. This gives a precision value of 7/7=1 
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5.1.3. Recall 

Class =Accept: The number of correctly classified 

instances is 12 and the number of instances belonging to the 

class is 12. This gives a recall value of 12/12=1 

Class =Reject: The number of correctly classified 

instances is 7 and the number of instances belonging to the 

class is 8. This gives a recall value of 7/8=0.88 

 

1-Specificity 

Figure 2. Test Split ROC graph

5.1.4. Nature of ROC 

ROC was developed during the World War II to statisti-

cally model false positives and false negatives of radar de-

tections. It exhibits better statistical foundations than other 

performance measure techniques with diverse application in 

medicine and computing. The ROC graph is a plot of two 

measures: 

Sensitivity: The probability of true classifications given 

true instances i.e. P(true | true) calculated as a/a+b from a 

standard confusion matrix 

1-Specificity: The probability of true classifications 

given false instances i.e. P(true | false) calculated as 1- d/c+d 

The ROC area has the following indicators: 

. 1.0. Indicates a perfect prediction 

. 0.9. Excellent prediction 

. 0.8. Good prediction 

. 0.7. Mediocre prediction 

. 0.6. Poor prediction 

. 0.5. Random prediction 

. <0.5. Indicates something is wrong with the classifier 

The ROC produced for the described strategy was as 

shown in figure 2.The ROC graph is regular with an area of 

0.96. The value converted to 1 decimal place, these values 

indicate a perfect classification 

6. Discussion 

After a successful implementation of the stated system, 

the following were the key outcomes: 

 

Figure 3. Confusion Matrix 

6.1. Model Accuracy 

Three options were investigated for training the algorithm 

namely: 

a) The use of single file both for training and testing the 

model through stratified cross validation. This is a 

strategy where the training file was portioned into 

complementary data sets called the training set and the 

validation set. The technique was applied repeatedly 

by taking different partitions every time and the 

results averaged on the respective bounds. The model 

accuracy using this procedure was 86.86% making it a 

fairly reliable strategy 

b) The use of separate training and testing data sets 
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returned an accuracy of 95% making it a relatively 

better strategy 

c) The use of a ratio to determine the size of the training 

and testing files from one data set returned an 

accuracy of 88.64% 

Therefore, it implies from these findings that the use of 

separate files for training and testing of the model returns the 

best model accuracy and hence should be adopted. 

6.2. Predictive Accuracy 

The trained model was subjected to 20 instances of un-

classified data which had been carefully selected from a 

portion of the training and through analysis returned 19 

correctly classified instances resulting in a predictive accu-

racy of 95% 

Table 5. Discussion Summary 

Model Accuracy 

Training Options Percentage 

Single File 86.86 

Separate Files 95.00 

Split Ratio 88.64 

Predictive Accuracy 95.00 

7. Conclusion and Further Work 

Three suggestions are likely improve the model and hence 

the predictive accuracy of the learner: 

7.1. Parameter Tuning 

The training and testing procedures can be done severally 

with different input parameters and file sizes to settle on the 

most effective set for different learning processes. 

7.2. Cost Matrix 

A cost matrix can be fined as part of the training proce-

dure that penalizes wrong classifications especially the true 

negatives for this study. Further, the system can be improved 

by creating a web-based interface or porting it to a distri-

buted architecture platform. 

7.3. Confidence Levels 

Finally, as stated earlier in the introduction, it is not pru-

dent to completely rely on an automated credit appraising as 

some cases might require subjective interpretation and per-

sonal judgment. The best aspect of the classification’s output 

is that, the classifier generates levels of confidence on each 

classification instance whether negative or positive. This is a 

good basis for manually investigating such cases whose 

levels of confidence go below a certain threshold. As a 

conclusion, the reported work indeed confirmed that: 

1) Machine learning procedures can be applied in 

financial modeling applications to augment manual 

underwriting techniques 

2) These procedures can greatly improve the efficiency 

of such techniques because of their ability to handle 

large items of data generating very useful statistics 

3) This work can be improved through the use of 

enhanced data set pre-processing procedures, the use of 

a cost matrix as well as parameter tuning to settle on the 

most effective set for various data mining 

requirements. 
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