

International Journal of Intelligent Information Systems
2013; 2(2): 34-39

Published online May 30, 2013 (http://www.sciencepublishinggroup.com/j/ijiis)

doi: 10.11648/j.ijiis.20130202.12

An application of the logitboost ensemble algorithm in
loan appraisals

Z. Kirori
1
, J. Ogutu

2

1School of Pure & Applied Sciences, Karatina University, Karatina, Kenya
2School of Computing & Informatics, University of Nairobi, Nairobi, Kenya

Email address:
zkirori@karatinauniversity.ac.ke(Z. Kirori), jogutu@uonbi.ac.ke(J. Ogutu)

To cite this article:
Z. Kirori, J. Ogutu. An Application of the Logitboost Ensemble Algorithm in Loan Appraisals, International Journal of Intelligent In-

formation Systems. Vol. 2, No. 2, 2013, pp. 34-39. doi: 10.11648/j.ijiis.20130202.12

Abstract: Mitigation of credit risk is a key aspect of portfolio management in any financial institution. This is primarily

due to difficulties in uncovering uncertainties in information provided by credit applicants and also due to lack of reliable

automated techniques that would improve the efficiency of manual underwriting procedures. In this paper, we report on the

results of a MSc. Thesis
1
 in the application of an ensemble learning algorithm in development of a computer program that can

greatly enhance the underwriting process. The implementation was based on the java netbeans development platform to

create an interface that was used to train a model and its subsequent use in predicting credit decisions. The results obtained

proved that such a mechanism can be applied to augment manual credit appraising processes, especially where large volumes

of applications are to be processed within limited timeframes.

Keywords: LogitBoost, Loan Appraising, LDA, Ensemble Learning

1. Introduction

Loans constitute the cornerstone of the banking industry’s

financial portfolios. The performance of loan contracts in

good standing guarantees profitability and stability of a bank.

Therefore the screening of the customer’s financial history

as well as the ability to remain faithful to new financial

obligations is a very significant factor before any credit

decision is taken and it is a major step in reducing credit risk.

We begin by highlighting the relevant base literature upon

which the experiment was setup and the subsequent expe-

rimental setup and finally the results obtained with corres-

ponding analysis and conclusion.

1.1. Problem Statement

Despite the increase in consumer loans defaults and

competition in the banking market, most of the Kenyan

commercial banks are reluctant to use artificial intelligence

technologies in their decision-making routines. Generally,

bank loan officers rely on traditional methods to guide them

in evaluating the worthiness of loan applications. A checklist

of bank rules, conventional statistical methods and personal

judgment are used to evaluate loan applications. Further-

more, a loan officer’s credit decision or recommendation for

loan worthiness is subjective.

After some experience, these officers develop their own

experiential knowledge or intuition to judge the worthiness

of a loan decision. Given the absence of objectivity, such

judgment is biased, ambiguous and nonlinear and humans

have limited capabilities to discover useful relationships or

patterns from a large volume of historical data. Generally,

loan application evaluations are based on a loan officers’

subjective assessment. Therefore, a knowledge discovery

tool is needed to assist in decision making regarding the

application.

Further, the complexity of loan decision tools and varia-

tion between applications is an opportunity for the use of a

machine learning tool to provide learning capability that

does not exist in other technologies. Ensemble meta mod-

eling techniques, are empirically some of the best machines

learning tools applicable to financial risk analysis.

1.2. Purpose of the Study

The purpose of this study was to develop a loan decision

system using the logistic regression Meta modeling algo-

rithm - Logitboost around Java based open source software

for the Kenya commercial banks. This is the first empirical

research of its kind in our country that addresses in a sys-

tematic way the issue of using Meta classifiers in loan ap-

 International Journal of Intelligent Information Systems 2013; 2(2): 34-39 35

plications. Further, the study champions the use of open

source software tools in business intelligence applications.

The general objectives of this study were to:

1) Implement the meta learning algorithm - LogitBoost to

develop as system for evaluating credit applications to

support loan decisions in Kenyan financial

institutions

2) Outline some of the challenges of using the learning

algorithm in the decision-making process for the

banking industry in Kenya

3) Champion the applicability of Java as an open source

software in business intelligence applications

1.3. Significance of the Study

From time immemorial in the banking sector, banks have

relied on the personal assessment of loan risks or on the

traditional statistical methods to predict the default of loans

instead of using a standardized evaluation tool. These tradi-

tional methods often require a great deal of subjective input

from underwriters, making them un-reliable and often lack

empirical and scientific backing. The development of ma-

chine learning models and tools has been welcomed as one

of the most exciting in business settings. The implementa-

tion of such models would considerably improve the quality

of decision making and the efficiency of credit analysis

processes.

1.4. Scope

The study was limited to the implementation of the Lo-

gitBoost meta learning algorithm for classification loan

analysis. Further, the study considered a binary output from

the classifier, hence dependent variable can only take on

accept or reject values with an emphasis on the banking

industry in Kenya; though the results can easily be genera-

lized to institutions elsewhere.

1.5. Limitations

Loan appraisal decisions can easily extend beyond the

“accept” or “reject” kind of classifications to include such

other spectral values as “fairly good”, ”good” and so on.

Although the classifier takes this into account through vot-

ing – in which those values that meet certain thresholds are

promoted to either of the classification values, most of such

incidences are minimal and can be handled through judg-

mental procedures by re-examining those peculiar cases and

applying policies as laid out. Further, the classifier labels

every classification instance with a level of confidence value.

The study has left such analysis to oversight procedures

especially where the confidence level of the classifier does

not meet a certain threshold.

2. Related Work

Loan approval is normally to accept applicants with low

credit risk, whereas high risk applications are rejected. This

makes credit control one of the key concerns in a bank’s

financial management [1].

The ongoing changes in the banking industry, in the form

of new credit regulations, the need for innovative marketing

strategies, the ever increasing competition and the constant

changes in customer borrowing patterns; call for frequent

adjustments to credit management in order to remain com-

petitive. Invariably, the amount of customer data required to

effectively screen a loan application is usually huge; often

not less than fifteen attributes. The traditional credit ap-

praising techniques based on a hybrid mixture of manual and

statistical techniques such as indices and reporting, credit

bureau references, post screening, fact act, multiple credit

accounts and initial credit line, the manual input are defi-

nitely inadequate in modern times. This calls for the use of

more efficient and effective loan screening tools and pro-

cedures.

Automated techniques have progressively become popu-

lar in contemporary loan appraisal processes. However,

judgmental inputs such as intuition, policy and information

oversights cannot be completely eradicated. One of the

earliest automated procedures uses statistical tools which

have fallen short of the inherent challenge for today’s

commercial banks is their desire to understand large

amounts of information and reveal useful knowledge to

improve decision-making. This is largely because the sus-

tainability of banks depends largely on their abilities to sift

through large volumes of data, to extract useful knowledge

and enforce this knowledge in their decisions.

Today, lenders are making increased use of new and in-

novative techniques – the key being data mining and ma-

chine learning to evaluate loan applications for business and

financial prospects [2, 3]. These techniques have been found

to outperform earlier approaches leading to increased com-

petitiveness. Further, ensemble learning algorithms – those

that combine a number of base algorithms, through empiri-

cal reports typically lead to better results. Credit appraisal

often amounts to making a decision whether to grant or to

reject an application. This is a classification problem and can

easily be implemented using a classification algorithm; the

output of which is Boolean or multi-valued. Boosting is

one of the most important recent developments in classifi-

cation methodology. Boosting works by sequentially ap-

plying a classification algorithm to reweighted versions of

the training data and then taking a weighted majority vote of

the sequence of classifiers thus produced [4-6]. For many

classification algorithms, this innovative strategy results in

dramatic improvements in performance [8]. This is a spe-

cialized case of regression analysis over discrete or ordinal

values; but basic regression-based learning algorithms have

inherent disadvantages. Better algorithms that overcome

these pitfalls have been developed and are collectively

known as Discriminant Analysis (DA) techniques or simply

Meta learning algorithms [3]. One such algorithm that ef-

fectively addresses these issues is the LogitBoost Meta

classifier - based on the log of the odds ratio for the depen-

dent variable [7, 8].

In the quest to find solutions to loan approval problem [9],

36. Z. Kirori et al.: An application of the logitboost ensemble algorithm in loan appraisals

the authors proposed a neural network banking model for the

Jordanian banks. Although the model was reported to per-

form relatively better than models developed using other

approaches; as part of the limitations and recommendation,

they suggested that such a model is usually a black box and

more insight the model parameters was required to make it

more effective. Further, they suggested an improvement to

the model by introducing a graphical interface for the loans

officer.

There have been various other attempts to deal with the

loan appraisal problem using various techniques [10] to

varied degrees of success.

3. Experiment Design

The solution to the problem was an adaptation of ensem-

ble machine learning strategies where a ‘weak’ classifier,

commonly referred to as a base classifier was boosted

through a series of adjustments through weighting and

re-sampling to develop a better learner which was an addi-

tive aggregate of individual learners. The boosting method

was developed around the Probably Approximately Correct

(PAC) model that entails transforming ‘weak learners’ into

‘strong learners’. The reported technique derives from the

intuitive understanding that instead of putting all the effort

on finding highly accurate base classifiers, it becomes suf-

ficient or even desirable to use a set of weaker hypotheses.

3.1. Decision Stump: Base Classifier

A decision stump is a decision tree with only a single root

node. It works as follows:

1. Looks at all possible thresholds for each attribute

2. Selects the one with the max information gain

3. Resulting classifier is a simple threshold on a single

feature

a) Outputs a +1 if the attribute is above a certain threshold

b) Outputs a -1 if the attribute is below the threshold

3.2. Combining Classifiers

In this study, ‘majority voting’ was adopted for combining

hypothesis from different learners. In majority voting, to

predict the class of a new item, each base classifier got to

vote for either the ‘accept’ or the ‘reject’ class. A accept

classification for a loan decision meant pointed to a suc-

cessful application while a reject classification pointed to the

alternative.

It can be proven (as discussed here-under), that under the

assumption that all individual classifiers have the same

prediction rate and that the distribution of the data correctly

classified by each base classifier is independent and random,

this is the best possible strategy. Figure 1 illustrates the

combination criterion.

3.3. Logistic Regression

The implementation detailed lay in the use of a logistic

regression that models the posterior class probabilities Pr (G

= k|X = x) for the K classes. In our study, the variable k was

bi-valued and took on either ‘accept’ or ‘reject’ values and K

was set at 2. Logistic regression models these probabilities

using linear functions in x while at the same time ensuring

they sum to one and remain in [0,1]. The model was speci-

fied in terms of K −1 log-odds that separate each class from

the base class K.

3.4. Boosting Algorithm

a) With K attributes , there are K different decision

stumps to choose from

b) At each stage of boosting

i. given reweighted data from previous stage

ii. Train all K decision stumps

iii. Select the single best classifier at this stage

iv. Combine it with the other previously selected

v. classifiers

vi. Reweight the data

vii. Learn all K classifiers again, select the best,

combine,

viii. reweight

ix. Repeat until you have T classifiers selected

3.5. Tools and Equipment

The development platform used for this project mainly

included the following open source software products:

3.5.1. Java JDK Software Kit

The Java Development Kit (JDK) which is a Sun Micro-

systems product released under the GNU General Public

License (GPL) was one of the packages used especially for

the compilation of the source files.

3.5.2. Java Netbeans IDE

The NetBeans IDE which is a Java based open-source

IDE was also used in the development of the system’s

graphical user interface (GUI) and for coding and testing of

the system.

3.5.3. Weka Class API

Weka which is open source software issued under

the GNU General Public License providing a collection of

machine learning algorithms for data mining tasks was in-

tegrated into the development platform.

4. Implementation and Testing

The system was implemented on a Java platform com-

prising of the JDK compiler, netbeans IDE developer, weka

API and the exe4j executable file converter.

4.1. Model Building and Testing Strategies

The model was built using the training dataset and tested

using three strategies. We report on cross validation as un-

der.

4.1.1. Cross-Validation Strategy

 International Journal of Intelligent Information Systems 2013; 2(2): 34-39 37

i. Separate data into fixed number of partitions (or folds)

ii. Select the first fold for testing, whilst the remaining folds

are used for training.

iii. Classify and obtain performance metrics.

iv. Select the next partition as testing and use the rest as

training data.

v. Classify until each partition has been used as the test set.

vi. Calculate an average performance.

Figure 1 Boosting Algorithm

Empirical studies suggest that using 10 partitions (tenfold

cross-validation) often yields the same error rate as if the

entire data set had been used for training. This and other

strategies were used and results compared.

4.1.2. Testing Dataset

This strategy relies on two separate files, one for training

and the other for testing. The two files can be generated by

portioning a given data set into two and saving them sepa-

rately.

Table 1. Test split error

Correctly Classified Instances 60 68.1818 %

Incorrectly Classified Instances 28 31.8182 %

Root mean squared error 0.45 -

Coverage of cases (0.95 level) - 97.7273 %

Total Number of Instances - 88

Table 2. Test split class accuracy

Class Precision Recall ROC Area

Accept 0.709 0.918 0.709

Reject 0.444 0.148 0.709

Wtd. Avg. 0.628 0.682 0.709

Table 3. Test Split Confusion Matrix

 Classified As

 A=Accept B=Reject

Class A=Accept 56 5

 B=Reject 23 4

4.1.3. Split Dataset

This strategy is similar to the use of two files as discussed

earlier but relies on the learner to automatically partition a

given data set into two given a split percentage

4.1.4. Predictions Using a Test File

Options: -F -R -I 15

Number of performed iterations: 15

Time taken to build model: 0.06 seconds

Time taken to test model on training data: 0.01 seconds

5. Findings

The results were interpreted along the following para-

meters for all the various training and testing strategies.

5.1. Training and Testing Set

5.1.1. Testing Accuracy

The accuracy returned by the training set is 19 correctly

classified instances out of 20 instances. This gives an accu-

racy of 19/20=95%

Table 4. Test File Predictions

inst# actual Predicted error distribution

1 1:Accept 1:Accept *0.817,0.183

2 2:Reject 2:Reject 0.434,*0.566

3 1:Accept 1:Accept *0.951,0.049

4 1:Accept 1:Accept *0.795,0.205

5 2:Reject 2:Reject 0.38,*0.62

6 1:Accept 1:Accept *0.563,0.437

7 1:Accept 1:Accept *0.823,0.177

8 1:Accept 1:Accept *0.821,0.179

9 1:Accept 1:Accept *0.97,0.03

10 2:Reject 2:Reject 0.17,*0.83

11 2:Reject 1:Accept + *0.824,0.176

12 2:Reject 2:Reject 0.434,*0.566

13 1:Accept 1:Accept *0.824,0.176

14 2:Reject 2:Reject 0.397,*0.603

15 1:Accept 1:Accept *0.824,0.176

16 2:Reject 2:Reject 0.452,*0.548

17 1:Accept 1:Accept *0.696,0.304

18 1:Accept 1:Accept *0.608,0.392

19 2:Reject 2:Reject 0.103,*0.897

20 1:Accept 1:Accept *0.922,0.078

5.1.2. Precision

Class =Accept: The number of correctly classified

instances is 12 and that of instances classified as belong to

the class is 13. This gives a precision value of 12/13=0.92

Class =Reject: The number of correctly classified

instances is 7 and that of instances classified as belong to the

class is 7. This gives a precision value of 7/7=1

38. Z. Kirori et al.: An application of the logitboost ensemble algorithm in loan appraisals

5.1.3. Recall

Class =Accept: The number of correctly classified

instances is 12 and the number of instances belonging to the

class is 12. This gives a recall value of 12/12=1

Class =Reject: The number of correctly classified

instances is 7 and the number of instances belonging to the

class is 8. This gives a recall value of 7/8=0.88

1-Specificity

Figure 2. Test Split ROC graph

5.1.4. Nature of ROC

ROC was developed during the World War II to statisti-

cally model false positives and false negatives of radar de-

tections. It exhibits better statistical foundations than other

performance measure techniques with diverse application in

medicine and computing. The ROC graph is a plot of two

measures:

Sensitivity: The probability of true classifications given

true instances i.e. P(true | true) calculated as a/a+b from a

standard confusion matrix

1-Specificity: The probability of true classifications

given false instances i.e. P(true | false) calculated as 1- d/c+d

The ROC area has the following indicators:

. 1.0. Indicates a perfect prediction

. 0.9. Excellent prediction

. 0.8. Good prediction

. 0.7. Mediocre prediction

. 0.6. Poor prediction

. 0.5. Random prediction

. <0.5. Indicates something is wrong with the classifier

The ROC produced for the described strategy was as

shown in figure 2.The ROC graph is regular with an area of

0.96. The value converted to 1 decimal place, these values

indicate a perfect classification

6. Discussion

After a successful implementation of the stated system,

the following were the key outcomes:

Figure 3. Confusion Matrix

6.1. Model Accuracy

Three options were investigated for training the algorithm

namely:

a) The use of single file both for training and testing the

model through stratified cross validation. This is a

strategy where the training file was portioned into

complementary data sets called the training set and the

validation set. The technique was applied repeatedly

by taking different partitions every time and the

results averaged on the respective bounds. The model

accuracy using this procedure was 86.86% making it a

fairly reliable strategy

b) The use of separate training and testing data sets

 International Journal of Intelligent Information Systems 2013; 2(2): 34-39 39

returned an accuracy of 95% making it a relatively

better strategy

c) The use of a ratio to determine the size of the training

and testing files from one data set returned an

accuracy of 88.64%

Therefore, it implies from these findings that the use of

separate files for training and testing of the model returns the

best model accuracy and hence should be adopted.

6.2. Predictive Accuracy

The trained model was subjected to 20 instances of un-

classified data which had been carefully selected from a

portion of the training and through analysis returned 19

correctly classified instances resulting in a predictive accu-

racy of 95%

Table 5. Discussion Summary

Model Accuracy

Training Options Percentage

Single File 86.86

Separate Files 95.00

Split Ratio 88.64

Predictive Accuracy 95.00

7. Conclusion and Further Work

Three suggestions are likely improve the model and hence

the predictive accuracy of the learner:

7.1. Parameter Tuning

The training and testing procedures can be done severally

with different input parameters and file sizes to settle on the

most effective set for different learning processes.

7.2. Cost Matrix

A cost matrix can be fined as part of the training proce-

dure that penalizes wrong classifications especially the true

negatives for this study. Further, the system can be improved

by creating a web-based interface or porting it to a distri-

buted architecture platform.

7.3. Confidence Levels

Finally, as stated earlier in the introduction, it is not pru-

dent to completely rely on an automated credit appraising as

some cases might require subjective interpretation and per-

sonal judgment. The best aspect of the classification’s output

is that, the classifier generates levels of confidence on each

classification instance whether negative or positive. This is a

good basis for manually investigating such cases whose

levels of confidence go below a certain threshold. As a

conclusion, the reported work indeed confirmed that:

1) Machine learning procedures can be applied in

financial modeling applications to augment manual

underwriting techniques

2) These procedures can greatly improve the efficiency

of such techniques because of their ability to handle

large items of data generating very useful statistics

3) This work can be improved through the use of

enhanced data set pre-processing procedures, the use of

a cost matrix as well as parameter tuning to settle on the

most effective set for various data mining

requirements.

References

[1] Qiwei G., Binjie L. (2008). Identifying Potential Default
Loan Applicants - A Case Study of Consumer Credit Deci-
sion for Chinese Commercial Bank. Southwestern University
of Finance and Economics, Chengdu, Sichuan, China.

[2] Witten, I. H., and Frank, E. (2008). Data Mining Practical
Machine Learning Tools and Techniques. ACM SIGKDD
Explorations Newsletter Volume 11 Issue 1, June 2009
Pages 10-18.

[3] Veronica S. M. (2003). Towards the use of C4.5 algorithm for
classifying banking dataset. Integral, Vol. 8 No. 2. Pages
105-116

[4] Martin, S. (2008). Ensemble Learning. UCL Department of
Computer Science. Accessed from:
http://machine-learning.martinsewell.com/ensembles/ensem
ble-learning.pdf.

[5] Holmes, G., Pfahringer, B., Kirkby, R., Eibe, F., and Hall, M.
(2003). Multiclass Alternating Decision Trees. Accessed
from: www.cs.waikato.ac.nz/~mhall/pubs.html.

[6] Bauer, E., Kohavi, R. (2006). An Empirical Comparison of
Voting Classification Algorithms: Bagging, Boosting, and
Variants. Machine Learning, vv, 1-38

[7] Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive
logistic regression: a statistical view of boosting. Accessed
from:
http://www.stanford.edu/~hastie/Papers/AdditiveLogisticRe
gression/alr.pdf. Date:

[8] Agresti A. (2007). Building and applying logistic regression
models. An Introduction to Categorical Data Analysis. Ho-
boken, New Jersey: Wiley. Accessed from:
http://onlinelibrary.wiley.com/doi/10.1002/9780470114759.
ch5/summary

[9] Shorouq, F. E., Saad, Ghaleb, Y., Ghaleb, A. E. (2010.).
Applying Neural Networks for Loan Decisions in the Jorda-
nianCommercial Banking System. IJCSNS International
Journal of Computer Science and Network Security, VOL.10
No.1

[10] Liang-Hsuan C., and Tai-Wei C. (1999). A fuzzy cre-
dit-rating approach for commercial loans: a Taiwan case.
Omega, International Journal of Management. Science. Vol
27, 407-419

