

International Journal of Intelligent Information Systems
2013; 2(1) : 1-10

Published online February 20, 2013 (http://www.sciencepublishinggroup.com/j/ijiis)

doi: 10.11648/j. ijiis.20130201.11

Verification of telecommunication protocols based on
formal methods

Tkacheva Elena Borisovna, Lubov Demchenko Vasilievna, Saied Halawa Fawaz

Kharkiv National University of Radio and Electronics, Kharkov, Ukraine

Email address:
korov4enko@mail.ru (T. E. Borisovna), gladiy_lv@mail.ru (L. D. Vasilievna), saied.f.h@hotmail.com (S. H. Fawaz)

To cite this article:
Tkacheva Elena Borisovna, Lubov Demchenko Vasilievna, Saied Halawa Fawaz. Verification of Telecommunication Protocols Based on

Formal Methods, International Journal of Intelligent Information Systems. Vol. 2, No. 1, 2013, pp. 1-10. doi: 10.11648/j.ijiis.20130201.11

Abstract: This article is devoted to the development method for verification and detecting errors that can occur in the

operation of protocols for information exchange. The various steps of verification of telecommunication protocols are given

in the article; the construction of counterexample, which helps to identify the logical operations that lead to errors in the

protocols. Practical implementation of given method is shown on TCP.

Keywords: Verification, Model Checking, E-nets, Formal Grammars, Implementation Model, Specification Model

1. Introduction

Expansion of services set that are provided by info

communication technologies and also the progress of

information technologies leads to the necessary to develop

new network protocols or improve existing ones. Now

network protocols have a constant growth in the sphere of

requirements of protocols reliability and a list of provided

services from users, and increasing of requirements to the

time for protocols realization that are implemented by new

services from the side of companies at the same time. Thus,

the contradiction between requirements and opportunities

of design tools, development and deployment of protocols

is increasing all time.

As researches show [1, 2] the largest number of errors

occur at the stage of gathering requirements and forming

protocols’ specification. Typically, the protocols’

specifications are defined by a subset of natural language.

The implementation of the protocol in accordance with

these specifications may cause an ambiguous

misunderstanding of the requirements, which leads to

inconsistent work of protocols’ elements or various

versions of one protocol. One of methods of elimination

this problem is the formal presentation of the specification.

Verification is one of the methods that allow determining

existence errors in the protocol or service.

The existing methods of protocols’ testing have their

advantages and disadvantages. In case of applying testing

and simulation it is impossible to assess the correctness of

protocol behavior in all situations, they only can determine

the presence or absence of an error according to a certain

scenario. In case of telecommunication protocols

verification, the most widely used method is Model

Checking method. This method described in [3, 4]. It

allows to track the whole set of possible states of the

protocol that can identify nonstandard errors.

This method also allows constructing a counterexample

that is a variant of the protocol behavior, in which the error

can be corrected. However, this method has a significant

disadvantage –combinatorial “explosion effect” of the state

space that in the case of verification of complex

telecommunication protocols makes it impossible to use.

Thus there is a need to develop a new formal method for

verification of telecommunication protocols, which allows

eliminating the effect of the combinatorial explosion.

In this paper, we describe the steps and formal methods

(formal specification, analysis and verification) which help

to detect errors during the whole life cycle of protocol. The

primary contributions of this paper are:

Temporal logics demonstration (Leaner Temporal Logic,

LTL and Computational Tree Logic, CTL) which allow

describing the consecutive change of the state transitions.

Demonstration modified method for verification which is

based on Model Checking and use E-nets as instrument for

protocol modeling. Also this method used formal grammas

for deeper verification and reduction of the combinatorial

explosion (demonstrated in Fig. 2).

Demonstrating the steps of formulation transition firing

in E-nets (consider different types of transitions). The

developed method of comparing of formal grammar is

2 Tkacheva Elena Borisovna et al.: Verification of telecommunication protocols based on formal methods

based on comparison of languages that describes the

behavior of the implementation model and specification

model of telecommunication protocol.

Figure 2. A modified method of Model checking for verifying

telecommunication protocols.

2. Steps of Detecting Errors on Logic

Operation of Telecommunication

Protocols

2.1. Formal Specification

The specific of the protocols is that they have a

significant number of parallel processes which can

potentially interact at any time. Global properties of

parallel processes often cannot be formulated in terms of

the relationship between inputs and outputs. Temporal

logics are applied to facilitate the formal specification of

such properties.

Temporal logics allow formulating protocol requirements

and describing their basic properties, in sequences of

performed events and support the formulation of the

protocol behavior changes at any time [5]. The set of

requirements, which are submitted by the specification, is

defined by the set of atomic utterances. Temporal logics

also complemented by temporal operators, which determine

an order and a frequency of event occurrence.

Formally, temporal logic is defined as: TL=<A, O, C>,

where A - the alphabet of temporal logic; O - the set of

temporal operators; C - logical connectives.

Formalization of specification’s requirements can be

represented by two types of formulas: path formulas

)...(| n1 aaff = - statements true for the lifetime of the

process; state formulas)(| 1aPp = - statements are true for

a certain state of protocol [6, 7].

Path formulas are built from temporal operators over the

states formulas. The state formulas can be true on one state,

and the path formulas – during some path. The state

formula is a formula of logic language of predicates’

calculus over some elements of the program’s memory state.

Path formulas are constructed from the state formulas,

logical and temporal operators.

By means of temporal logics the following classes of

temporary properties of telecommunication protocols are

marked out:

� Liveliness – a property indicating that the protocol will

periodically go to the desired state;

� Security – a property indicating that the protocol is not

prone to erratic behavior;

� Correctness – during execution the protocol will enter

the desired state;

Often the implementation of the protocol is represented

as a mathematical model (usually modeling tools are the

varieties of automatons) [8]. The traditional approach of

Model Checking method based on complete search and

comparison of elements of temporal logic formulas and

finding their corresponding position in the implementation

protocol model, as well as establishing appropriate linkages

between the model states and elements of temporal logic

formulas.

If discrepancies between a protocol implementation (the

actual behavior, obtained during a model functioning) and

its specification are found, then a counterexample is being

formed that shows how to eliminate this discrepancy.

In Fig. 1 it is shown the traditional scheme of the Model

Checking method.

Figure 1. The traditional scheme of the Model Checking.

2.2. The Modification of the Model Checking Method

The application of model checking method can be

divided into the following steps [3, 4]:

1. Building of mathematical model of the analyzed

system and model specification.

2. The formalization of the protocol behavior on the

basis of the built model.

3. Presentation of a formal proof of the presence or

absence of the specified property in the system.

Within the bounds of the general problem of developing

methods for the communication protocols analysis at the

stage of requirements forming, specification and

implementation of the protocol the E-nets’ are selected as a

means of modeling [8].

Formally E-network is defined as a bipartite directed

 International Journal of Intelligent Information Systems 2013 1(1): 1-10 3

graph:),,,,,,(0MADLHPE = where P is a finite set of

places, H is a finite set of transitions, L is a direct

function of incidence, D is the inverse function of incidence

A is a finite set of transition feature set, 0M is initializes

the network.

Thus, the implementation and specification model,

represented as E-net model, is the input data for the method

of verification which is being developed.

2.2.1. Application of Formal Grammars. Verification on

The Basis of Formal Grammars

Formal grammars allow describing the protocol behavior

in the form of language words. Word is a state of protocol

(according to specification and implementation model),

which describe a sequence of protocol state transitions.

Thus, the problem of communication protocols verification

is reduced to the problem of checking the equivalence of

two languages that are based on formal grammars

describing their behavior.

Using this method allows to avoid the effect of

“combinatorial explosion” of the state space as comparison

of two formal grammars is based on sequential checking of

equivalence of chains of the languages which describe the

specification and implementation of the protocol.

The method of verification based on formal grammar

consists in following [9 - 11].

The set of possible behaviors (the chains of language) of

implementation and specification model of the protocol is

defined by the set of transitions which define the alphabet

of formal grammar (Σ). For the specification model the

initial state 0s
 is defined, which corresponds to the initial

statement of temporal logic formula that is true in a given

state (
ϕ=|0s

).

The final state of the implementation and specification

model of the protocol (F) is a key state which must be

achieved during functioning of the protocol. It is suggested

to use the following modification of the Model Checking

method depicted in Fig. 2.

The language is formed from the set of transitions that

have been launched during the states transition of the

protocol model. For solving the problem of checking the

equivalence of the two languages which are generated by a

formal grammar, it is necessary to introduce a few

statements and definitions.

During checking the equivalence of specification and

implementation of the protocol, the following situations can

occur:

1. For the specification model only one behavioral chain

is built:

)....()(10 ZhhSSL = (1)

Where 0S is the initial state of the model, which is

determined by marking of E-net, Zhh1 is the set of

active transitions of the model,)(SL is the behavior

language of the model.

2.2.2. Rules for Construction of Formal Grammar for

Different Type of Transition in E-Nets

T-transition models the execution of the event, when

coming only one condition. To fire T-transition to the lack

of label in the output position 0)(=Bp and the presence

of the label in the input position 1)(=Ap . The example of

T-translation is present in Fig. 3.

Figure 3. The structure of T-transition.

Rule of inference for T-transition has the next form:

}{}|{)(utvtvTuTTL =→= , .}t,,{,}{ tVvuNT ∈∈

F- Transition is used for branching flow conditions or

branching flow of transmitted data. For fire of F-transaction

needed the lack of label in position 0)(=Bp and

0)(=Cp , and existing label in input position 1)(=Ap .

The example of T-transition is present in Fig. 4.

Figure 4. The structure of F-transition.

Branching flow can be expressed as the formalism:

},{}|{)(ufzvfzvFuFFL =→= .}f,,,{,}{ tVvzuNF ∈∈

J- transition is used to simulate events that require two

conditions at the same time. J-transition is active, only in

one case, when both position А and В contains a label,

1)(=Ap and 1)(=Bp and position С doesn’t include

label, 0)(=Cp (Fig. 5).

Figure 5. The structure of J-transition.

Inference rules for the J-transition have the form:

4 Tkacheva Elena Borisovna et al.: Verification of telecommunication protocols based on formal methods

}{)(}|{)(uvjzJLjzJvvJJL =⇒→= ,

tV}j,,,{ N,}{ ∈∈ zvuJ .

MX- transition sets the direction of labels flow which

depending on the value of the predicate)(Sr (Fig. 6).

Figure 6. The structure of MX-transition.

Chaining is as follows:

| (, |)
()

() 0 (() 0) uxv

() { }

uSX u X S x X z
L MX

r S p C

L MX uxv

→ → → ⇒ 
= ⇒ 

⇒ = ∧ = → 

⇒ =

or

'

'

| (, |)
()

() 1 p(B) 0) uxz

() { }

uSX u X S x X a
L MX

r S

L MX uxz

→ → → = ⇒ 
⇒ = ∧ = → 

⇒ =

Where

tVzvuBCNXS ∈∈ }x,,,,,{,},{

MY- transition is used to model the priority processing of

different streams labels (Fig. 7).

Figure 7. The structure of MY-transition.

Chaining is as follows:

, , ,

() 0 (() 1, () 1, () 0)
()

, , ,

() 1 (() 1, () 1, () 0)

() { }

u y v y S y Y z

r S p B p A p C uyz
L MY uvSY

u y v y S y Y z

r S p B p A p C vyz

L MY uyz vyz

 → → → → 
 ⇔ = ∨ = = = → = ⇒ → → → → 
 ⇔ = ∨ = = = → 

⇒ = ∧

Where

tVvyuCBANYS ∈∈ }z,,,,,,{,},{

On the basis of the rules of inference of productions for

standard types of transitions E-nets formed method parse

the entire model of the protocol.

2.2.3. Checking te Equivalence o te Two Languages,

Generated by a Formal Grammar

On Fig. 8 shown a fragment of E-net, which specifies

one behavioral chain (one variant).

Figure 8. E-net fragment which corresponds a one variant of state

transition.

The initial state is 1P . The final state is 5P . This

language is finite and does not contain cycles. Language

that describes the behavior of the given fragment of E-net

can be represented as follows:

)()(3211 hhhPSL = (2)

2. Behavioral chain corresponds to several independent

sequences of states transition:

).........()(010 Zi hhShSSL ∪∪= (3)

In Fig. 9 it is shown a fragment of the E-net, for which a

few chains may appear. There is a possibility of deadlock

formation (transition 4h) in such network. All possible

scenarios of model behavior depending on the conditions of

triggering of the transition 1h are following.

Figure 9. The E-net fragment that corresponds to several independent

sequences of states transitions.

The initial state is 1P , the final state is 9P . Language

 International Journal of Intelligent Information Systems 2013 1(1): 1-10 5

that describes the behavior of the given fragment of E-net

can be represented as follows:

)'()(74531513176211 hhhhPhPhPhhhhPSL ∪∪∪= (4)

Moreover, the chain 31hP leads to the appearance of a

deadlock in the state 6P if the transition 5h is not active

or vice versa: the chain 51hP leads to the appearance of a

deadlock in the state 7P if the transition 3h is not active.

The transition 4h is considered to be live (active), if each

input position has at least one token.

There are parallel processes interacting with each other

(they correspond to the formation of cycles):

)...)...(()(10 Z
m

ji hhhhSSL = . (5)

A fragment of the E-net with the possibility of interleave

chain has a structure shown in Fig. 10.

Figure 10. E-net fragment which corresponds to the formation of cycles.

The presence of interleaved chains can indicate the

formation of loops. Verification of the models in which

may appear the loop is the most difficult task. The problem

is solved by an additional method of checking – algorithm

of double Depth-First Search (DFS) [12]. If interleaved

chains)...)...(()(10 Z
m

ji hhhhSSL = appear during building

of language models, then quantitative assessment of a

correspondence between the launch of transition in

specification and implementation models. Quantitative ratio

can be set by using an additional counter t; it corresponds

to the degree of transitions in the model specification

language.

In this situation, attributes of predicates have the

following meaning: if the number of tokens that hit the

position 4P greater than 3, they will be dropped, and if it is

less than 3, then the tokens need to hit the position 2P

again.

Language that describes the behavior of the fragment of

E-net (Fig. 10) is represented as follows

2
4

3
32

3
11211)(hhhhPhhPSL n∪= (6)

Thus, the output of the second chain shows that the

number of transition activation
2h does not affect the

launch of other transitions, and activation of transition
3h

is allowed only three times. Only in this case, based on the

definitions 2 and 3, the chain is allowed. For each of the

transitions the counter t has its own value:

2|,3|,|,3| 2
4

3
32

3
1 ==== ththnthth n . (7)

Using the definitions and statements above, and

considering examples of the graph topology of E-nets a

method of comparison of the two languages can be

formulated. It describes the dynamics of the specification

and implementation model behavior of telecommunications

protocols:

1. Building a protocol specification language)(SML .

)|()(0 FSML S →= γγ , where γ - single chain or a set

of chains which are generated from the initial state.

2. Performing a step-by-step building of a protocol

implementation language:

- determining the current state of the protocol

implementation model (in the first step the current state is

the initial)(0 RMS);

- determining the set of active transitions }{ Mh ;

- forming a launch chain for a set of active transitions:

1+→ MM hh .

3. The comparison of built language chains of protocol

implementation model with active language chain of

protocol specification model.

1 1

1 1

, | ,

(, ,) (, ,)

(,)

0, | ,

(, ,) (, ,),

ii i

ii i i

ii

ii

ii i i

MS S

i i MS S M

i MS

MS

i i MS S M

h True h h

h S h h M h

v h h and

False h h

h S h h M h

δ δ

δ δ

− −

− −











≡
≡

=
≠

≠

 (8)

4. If language chains of protocol implementation model

and language chains of protocol specification model are

equal then step 2 is repeated with the changing of current

state. Otherwise, the counterexample will be build.

2.3. Development of a Method of Forming

Counterexamples

The advantage of the suggested method of verification of

telecommunication protocols is the ability to form

counterexamples. Counterexample can determine the

protocol behavior, which can lead to an error [13].

For those situations where a formation of several parallel

chains)..........()(010 Zi hhShSSL ∪∪= is possible, some

fragment of the model is returned as a counterexample. It

includes an accessibility chain v and the followers of the

last matched transition 1+iMh (it is enough to indicate only

the first follower), as well as the state, the occurrence of

which is not valid in the given sequence:

6 Tkacheva Elena Borisovna et al.: Verification of telecommunication protocols based on formal methods

)|()(1 ψ=∪= + MM svhKL
i (9)

To prevent the loops formation in permissive sequences

and to check emptiness of protocol implementation model

language)(ML the algorithm of double Depth-First

Search [12] is used.

This algorithm is designed to find the permissive paths

both in specification and implementation models of a

protocol and is used by many verifiers, including SPIN

verifier and Bogor [14, 15]. In this algorithm, two

depth-first searches are interchanged. The first of them can

run the second one and the second, in its turn, can either

complete the entire algorithm or return control to the first

DFS. In this case, the first DFS continues its work. Each

DFS uses its own flag to mark the visited states.

The first DFS launches the second one when it is ready

to roll back from permissive state (jh). If during bypassing

the second depth-first search enters into the state which is

contained in the first DFS stack, then permissive path is

obtained. If not, then after terminating bypass the second

depth-first search returns control to the first.

Algorithm returns true, if permissive path was found, and

false – otherwise. If the algorithm returns true, then it can

recover permissive path: in the first DFS stack the path

from the initial state ih to some permissive state jh is

stored. This path is the required suffix β . The second DFS

stack stores the path from the state ih or the initial state of

the model to the state jh which is contained in the first

DFS stack.

Then, to complete this path by states that are in the first

DFS stack before the state jh , we get a cycle

iji hhh →→ that passes through a permissive state

ih , which is the required suffix β . Thus, the permissive

path will be obtained:

βvKL =)((10)

DFS algorithm finds a sequence that is allowed by the

E-net if and only if it exists. If the sequence does not exist,

the answer false is returned, which may indicate a lack of

active transitions in the protocol implementation model.

If the last matching symbol of implementation model

does not have any followers, i.e. the state which is

determined by the specification does not exist, false will be

returned as a counterexample and the sequence will be as

follows:

∪= vKL)(Ø (11)

It should be mentioned that all discrepancies are being

searched for each language chain separately. Only after all

the chains of the specification model are compared to the

chains of implementation model, a final verification result

with a positive response (conformance of protocol

implementation to its specification) or a counterexample

will be returned.

3. Results

As example we concede the process of verification for

TCP protocols (connection is established), with use to

different operation systems [10, 16].

Model of the connection protocol TCP, showing the

desired behavior that is based on the unit E-nets is as

follows (Fig. 11 and Fig. 12).

Figure 11. Specification model for connection process, built on the basis of unit E- net.

 International Journal of Intelligent Information Systems 2013 1(1): 1-10 7

The state Closed – corresponds initial stage of establish

connection, Listen – corresponds to the opening of the port

to listen for TCP connection requests, SIN’ send –

corresponds to the fact of the communication with the flag

of the SIN of the device (passive connection), SIN’ send –

corresponds to the formation request SIN device (active

compound), SIN’ received – corresponds to receiving a

message SYN, SIN not received - SYN message is received,

Send ACK, SYN +1 - build message ACK (reply message

SYN); Not generate ACK - the device does not respond,

cannot build message ACK, ACK received - match en

receiving a message ACK, ACK not received - ACK

message is not received, Established - session is set.

The first step is to establish the verification of the initial

state (0s) corresponding with the initial markup model

(0M), which corresponds to the following markup

)0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1(0 =M . The initial state is the

state of Closed. Only active transition is 1h . The final state

is established, which is a no terminal symbol.

Complete description of the protocol behavior scenarios

can be represented by the following chain of languages:

1 1 2 1 2 3

1 2 3 4

1 2 3 9 (() 3)

a c t a c t a c t

a c t a c t a c t

a c t a c t a c t

h h h h h h

h h h h

h h h h r x

→ →
→ ∪
∪ ≤

Figure 12. Implementation model for connection establishment, built on the basis of the E-machine network.

As it can be seen from the sequence at start of transition

acth3 two scenarios are possible connection, we consider

each of them separately:

First scenario:

1 2 3 4 1 2 3 4 5

1 2 3 4 5 6 1 2 3 4 5 8

(() 3)

act act act act act act act

act act act act act act act act act act

h h h h h h h h h

h h h h h h h h h h h h

r x

→ →
→ ∪

≤
1 2 3 9

1 2 3 9 2

1 2 3 9 2 3

1 2 3 9 2 3 4

1 2 3 9

2 3 9

(() 3)

(() 3)

(() 3)

(() 3)

(() 3)

(() 3)

a c t a c t a c t

a c t a c t a c t a c t

a c t a c t a c t a c t a c t

a c t a c t a c t a c t a c t a c t

a c t a c t a c t

a c t a c t a c t

h h h h r x

h h h h r x h

h h h h r x h h

h h h h r x h h h

h h h h r x

h h h r x

≤ →
≤ →
≤ →

→ ≤ ∪
∪ ≤

≤

1 2 3 9

2 3 9 2 3

1 2 3 9

1 2 3 9 2

1 2 3 9

2 3 9 2

3 2 3

1 2 3

(() 3)

(() 3)

(() 3)

(() 3)

(() 3)

(() 3)

a c t a c t a c t

a c t a c t a c t a c t a c t

a c t a c t a c t

a c t a c t a c t a c t

a c t a c t a c t

a c t a c t a c t a c t

a c t a c t a c t

a c t a c

h h h h r x

h h h r x h h

h h h h r x

h h h h r x h

h h h h r x

h h h r x h

h h h

h h h

→ ≤
≤ →

→ ≤
≤ →

→ ≤
≤ →

→
→ 9

2 3 9 2

3 2 3 4

1 2 3 9

2 3 9 2

3 2 3 2 3 9

1 2 3 9

3

(() 3)

(() 3)

(() 3)

(() 3)

(() 3)

(() 3)

t a c t

a c t a c t a c t a c t

a c t a c t a c t a c t

a c t a c t a c t

a c t a c t a c t a c t

a c t a c t a c t a c t a c t a c t

a c t a c t a c t

h r x

h h h r x h

h h h h

h h h h r x

h h h r x h

h h h h h h r x

h h h h r x

≤
≤ →

∪
→ ≤

≤ →
≤ ⇒

⇒ ≤
� � � � �� � � � ��

Sequence

8 Tkacheva Elena Borisovna et al.: Verification of telecommunication protocols based on formal methods

���� ����� ��
3

9321)3)((

>

≤xrhhhh actactact

leads to a dead end, and the rejection of labels (getting

into position с). Starting the transition acth5 as well as the

transition acth3 gives rise to two possible scenarios:

51 2 3 4 6a c ta c t a c t a c t a c th h h h h h ,

51 2 3 4 8 (() 3)a cta c t a ct a ct a c th h h h h h r x ≤ .

Let us consider each scenario separately.

1 2 3 4 5 8

1 2 3 4 5 8 2

1 2 3 4 5 8

2 3

1 2 3 4 5 8

2 3 4

1 2 3 4 5 8

(() 3)

(() 3)

(() 3)

(() 3)

a c t a c t a c t a c t a c t

a c t a c t a c t a c t a c t a c t

a ct a c t a c t a c t a ct

a c t a c t

a ct a c t a c t a c t a ct

a c t a c t a c t

a c t a c t a c t a c t a

h h h h h h r x

h h h h h h r x h

h h h h h h r x

h h

h h h h h h r x

h h h

h h h h h h

≤ →
≤ →

→ ≤

→ ≤
∪

2 3 9

1 2 3 4 5 8

2 3 9 5

6 7 2

1 2 3 4 5 8 2

3

3 9 5

(() 3)

(() 3) ...

(() 3)

(() 3)

(() 3)

(() 3)

c t

a c t a c t a c t

a ct a c t a c t a c t a ct

a c t a c t a c t a c t

a c t a c t a c t

a ct a c t a c t a c t a c t a c t

a c t a c t a c t

r x

h h h r x

h h h h h h r x

h h h r x h

h h h

h h h h h h r x h

h h r x h h

≤
≤ → ⇒

⇒ ≤
≤ ⇒

⇒ ∪
≤ ⇒

⇒ ≤

�������������

6 .a c t

Sequence leads to the rejection of labels (getting into

position с)

1 2 3 4 5 8

3

(() 3)act act act act acth h h h h h r x

>

≤
�������������

But

51 2 3 4 8 2

5 73 9 6 2

(() 3)

(() 3)

actact act act act act

act actact act act act

h h h h h h r x h

h h r x h h h h

≤ ⇒

⇒ ≤

to the stage of the connection:

51 2 3 4 8

2 3

5 79 6 2

(() 3)

(() 3)

()

a c ta c t a c t a c t a c t

a c t a c t

a c t a c ta c t a c t a c t

h h h h h h

r x h h

h r x h h h h

E s ta b lish e d O p e n

≤ ⇒

⇒ ≤

51 2 3 4 6

5 71 2 3 4 6

5 71 2 3 4 6 2

5 71 2 3 4 6 1 0

(() 3);

a cta c t a c t a c t a c t

a ct a c ta c t a c t a c t a c t

a ct a c ta c t a c t a c t a c t

a c t a cta c t a ct a c t a c t a c t

h h h h h h

h h h h h h h

h h h h h h h h

h h h h h h h h

r x

→
→

∪
∪

≤
5 71 2 3 4 6 2

5 71 2 3 4 6 2

()

a c t a c ta c t a c t a c t a c t

a c t a c ta c t a c t a c t a c t

h h h h h h h h

h h h h h h h h

E s ta b lish ed O p en

→
→ ;

5 71 2 3 4 6 10

5 71 2 3 4 6 10

2

(() 3)

(() 3) *

act actact act act act act

act actact act act act act

h h h h h h h h

r x

h h h h h h h h

r x h

≤ →
→

≤

Where * is symbolizes about possibility of any of the

previous scenarios,)(xr is the number of repeated

packages.

Thus, for the model specification condition active open

connections meet the following scenarios presented by the

language of P-type:

Where dEstablishe - final state; Closed – initial state.

On the basis of the constructed language of P-type, there

are seven basic scenarios connectionless protocol TCP

(active open), which include the possibility of accounting

retry limit in accordance with the specification.

However, there is the possibility of a third-party request

for the establishment of the session in the position SIN’

send (2p), in this situation value of the initial marking is

)0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1(0 =M .

51 2 3 4 6

7 2

5 71 2 3 9 6 2

51 2 3 9 8

76 2

()

()

((() 3))

()

((() 3)) (() 3)

(

acta ct a ct a ct act

act

l
a ct a cta ct ac t a ct a ct

l
a cta ct ac t a ct ac t

a ctac t

L P C losed h h h h h h

h h E stab lish ed O p en

h h h h r x h h h h

E stab lish ed O p en

h h h h r x h h r x

h h h E sta b lished

= → →
∪

≤ →
∪

≤ ≤ →

1 2 3 9

5 78 6 1 0

2

51 2 3 4 8 6

7 10 2

1 2 3 4

)

((() 3))

(() 3) (() 3)

()

((() 3))

(() 3) ()

(

l
act a ct act

a ct a cta ct a ct act

l
acta ct ac t ac t a ct act

act a ct

a ct ac t ac t

O p en

h h h h r x

h h r x h h h r x

h E stab lish ed O p en

h h h h h h r x h

h h r x h E sta b lished O pen

h h h h

∪
∪ ≤ →

≤ ≤ →
∪

≤ →
≤ ∪

5 8 6

7 2

(() 3))

()

l
act a ct act

act

h h r x h

h h E stab lish ed O p en

≤ →
∪

(11)

In this case the behavior of the protocol under the

connection can be represented by the following chain:

1 1 1 1 2 3

1 1 2 3 4 1 1

2 3 6

1 1 2 3 4 1 1

52 3 4

71 1 2 3 4

' (')

(') (')

(() 3) ,

(') (')

(') (() 3) ,

p a s p a s

p a s p a s p a s

p a s p a s p a s

p a s p a s p a s

p a sp a s p a s p a s

p a sp a s p a s p a s

C lo s e d h h h h h h

h h h h h h h

h h h r x

h h h h h h h

h h h h

h h h h h h r x

→ ∪ → ∪ →
∪ ∪ ∪

≤
∪ → ∪

∪ ∪ ≤

51 1 2 3 4

51 1 2 3 4

(')

(')

()

p a sp a s p a s p a s

p a sp a s p a s p a s

h h h h h h

h h h h h h

E s t a b l i s h e d O p e n

∪ →
∪

1 1 2 3 6

1 1 2 3 6 2

1 1 2 3 6

2 3

1 1 2 3 6

2 3 4

1 1 2 3 6

2

3

(') (() 3)

(') (() 3)

(')

(() 3)

(')

(() 3)

(')

(() 3)

p a s p a s p a s

p a s p a s p a s p a s

p a s p a s p a s

p a s p a s

p a s p a s p a s

p a s p a s p a s

p a s p a s p a s

p a s

p

h h h h h r x

h h h h h r x h

h h h h h

r x h h

h h h h h

r x h h h

h h h h h

r x h h

∪ ≤ →
∪ ≤ →

→ ∪
≤ →

∪
≤ ∪

∪ ∪
≤ →

4 6

1 1

2 3 6 4

3

(() 3)

(')

(() 3) ,

a s p a s p a s

p a s p a s p a s p a s

h h r x

h h

h h h r x h

≤ ⇒

⇒ ∪
≤

� � � ��� � � � ��

 International Journal of Intelligent Information Systems 2013 1(1): 1-10 9

71 1 2 3 4

5 71 1 2 3 4

1 1

72 3 4

3

1 1 2 3 4 6

52 3 4

1 1

(') (() 3)

(')

(() 3)

(')

(() 3)

(')

(() 3

)

(')

p a sp a s p a s p a s

p a s p a sp a s p a s p a s

p a sp a s p a s p a s

p a s p a s p a s p a s

p a sp a s p a s p a s

h h h h h h r x

h h h h h h h

r x

h h

h h h h r x

h h h h h h

r x

h h h h

h h h

∪ ≤ →
∪

≤ ⇒

⇒ ∪
≤ ∪

∪ ∪
≤ →

∪
∪ ∪

��� ����� �� ���

2 3 4 6

2

5 73 4

52 3 4

(() 3)

(() 3)

p a s p a s p a s p a s

p a s

p a s p a sp a s p a s

p a sp a s p a s p a s

h h h

r x h

h h h h r x

h h h h

≤ →
≤

Provided passive opening match following behavioral

chain presented by the language of P-type:

1 1

52 3 4

1 1 2 3 6

52 3 4

71 1 2 3

2

53 4

() (')

()

(')

(() 3)

()

()

(')

(() 3)

()

p a sp a s p a s p a s

p a s p a s p a s

l
p a sp a s p a s p a s

p a sp a s p a s

p a s

p a sp a s p a s

L P C l o s e d h h

h h h h

E s t a b l i s h e d O p e n

h h h h h

r x

h h h h

E s t a b l i s h e d O p e n

h h h h h

r x h

h h h

E s t a b l i s h e d O

= → ∪
⇒

∪
∪ ∪

≤ ⇒

∪
∪ ∪

≤
⇒

1 1 2 3 6

2 3 4

7 52 3 4

(')

(() 3) ()

()

() | 3 ;

p a s p a s p a s

l
p a s p a s p a s

l
p a s p a sp a s p a s p a s

h h h h h

r x h h h

h h h h h

E s t a b l i s h e d O p e n l

p e n

∪ ∪

≤ ⇒

⇒

≤

∪

 (12)

Consider a model of the TCP connection to Unix-like

systems (Fig. 11).

According to the method of checking the equivalence

given in (8), step through the construction of the language

implementation of the protocol, to form a language

according to the rules of grammar for the initial state is

determined by the implementation model.

In the framework of our implementation of the protocol

TCP two connection option investigate: passive open and

active open.

Initializes the active connection is opened

)0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1(0 =M

passive open is possible at the initial marking

)0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1(0 =M .

In the case of an active open only one active transition

presents 1h , 1hClosed → . In passive opening typical

transition activity 1h and 1'h ,)'(11 hhClosed ∪→ .

Perhaps the formation of several parallel chains

)..........()(010 Zi hhShSSL ∪∪=

as a counterexample given fragment of the model, which

includes a chain of reach ability v and last matched

transition

1+iMh :)|()(1 ψ=∪= + MM svhKL
i

In the process of checking equivalence of languages that

describe the behavior of protocol implementation and

specifications models, found the following matching chain:

1

5 71 2 3 4 6 2

()

a c t a c ta c t a c t a c t a c t

v C l o s e d

h h h h h h h h

E s t a b l i s h e d O p e n

=
 (13);

2

51 1 2 3 4(')

()

p a sp a s p a s p a s

v C l o s e d

h h h h h h

E s t a b l i s h e d O p e n

=
∪ (14);

3

51 2 3 9

76 2

((() 3))

()

l
a c ta c t a c t a c t

a c ta c t

v C lo s e d

h h h h r x h

h h h

E s ta b l is h e d O p e n

=
≤ ⇒

⇒
 (15);

4

1 1 2 3 6

2 3 4

5

(') (() 3)

()

()

p a s p a s p a s

l
p a s p a s p a s

p a s

v C l o s e d

h h h h h r x

h h h

h

E s t a b l i s h e d O p e n

=
∪ ≤

⇒

⇒

 (16).

As a counterexample, the following chain:

1

51 2 3 4 8

()

a cta ct a ct a ct a ct

L K C losed

h h h h h h

=
; (17)

2

5 71 2 3 4 6 8

()

ac t a c ta c t a c t ac t a c t a c t

L K C lo sed

h h h h h h h h

=
; (18)

3

1 1 2 3 6

()

(') pas pas pas

L K C losed

h h h h h

=
∪ ; (19)

4

1 1 2 3 4 6

()

(') p a s p a s p a s p a s

L K C lo s e d

h h h h h h

=
∪ . (20)

Obtained counterexamples (17-20) indicate that

transitions acth8 and pash6 in the implementation of the

protocol does not correspond to requirements of the

specification. According to algorithm DFS, for transition

firing acth8 requires labels in positions 11p and 13p , that

it is impossible. Labels in positions 5p and 7p requires

for the firing transition pash6 , but that it is impossible in

implementation model too.

Thus, this method of comparison chains language models

can verify the equivalence of the behavior of the

specification and implementation of the protocol.

4. Conclusion

In the article suggested a modified method for

verification and detecting the errors that arise in the

operation of protocols for information exchange. This

method is based on Model Checking method for verifying

telecommunication protocols and additionally used the

formal grammars to show possible solutions for resolving

the issue.

The use of formal grammars also helps to avoid

“combinatorial explosion effect” of the state space which

constructs the implementation and the specification models.

10 Tkacheva Elena Borisovna et al.: Verification of telecommunication protocols based on formal methods

This effect is achieved through the implementation of

sequential equivalence checking chains languages, models

describing the behavior specification and implementation

of the protocol.

The model specification and implementation protocol,

which built using the apparatus E-net, are as input data

verification method. Presentation protocol by E-model

helps to build one chain behavior of the protocol.

The main advantage of this method compared to the

known, is to avoid conflicts between the implementation

and specification of the protocol by constructing a

counterexample.

To check the efficiency of the developed verification

method for equality of languages built on the basis of the

rules of formal grammar for suggested verification protocol

on TCP with its implementation in Unix systems on

establishing connection stage.

References

[1] ISO/IEC 14102:2008. Information technology - Guideline
for the evaluation and selection of CASE Tools, 2008.

[2] The Standish Group. The Scope of Software Development
Project Failures: The Standish Group. Stanford, 2009,
http://www.cs.nmt.edu/~cs328/reading/Standish.pdf.

[3] Jr. Clarke, M. Edmund, and A. Peled, Model Checking, MIT
Press, 1999, ISBN 0-262-03270-8.

[4] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L.
Petrucci, and P. Schnoebelen, Systems and Software
Verification: Model-Checking Techniques and Tools, 2009.
ISBN 3-540-41523-8

[5] C. P. Stirling, “Modal and temporal logics for processes”.
LNCS 1043, 1996, pp. 149–237.

[6] J. Bradfield, C. Stirling, “Modal logics and mu-calculi”,

Inf.ed.ac.uk

[7] G Nutt, “Evaluation Nets for Computer Systems

Performance Analysis”. FJCC, AFIPSPRESS. 1972, pp. 279

– 286.

[8] A. Mironov, “A new method of verification of protocols of

data transmission through unreliable medium”, Summer

School in Software Engineering and Verification, Moscow,

2011, pp. 261 –276.

[9] N. Chomsky, "Three Models for the Description of
Language". IRE Transactions on Information Theory 2 (2).
1956, pp. 113–123. doi:10.1109/TIT.1956.1056813.

[10] E. Korovchenko, “Models and methods for analysis and
verification telecommunications protocols based on the
E-networks and formal grammars”, Master’s thesis,
Kharkov national University of Radio electronics, Oct.
2011.

[11] E. Duravkin, E. Korovchenko, “The formalization of
the information exchange protocols behavior provided by
models based on E-network”, the problems of
telecommunication (e-journal). vol. 1 (3). pp. 28 – 38, 2011:
http://pt.journal.kh.ua/2011/1/1/111_duravkin_verification.p
df.

[12] A.T.S. Abu-Jassar, O. Tkachova, “Patterns for reliable
Web-services”, The problems of telecommunication
(e-journal). vol. 2 (7), pp. 36–42, 2012:
http://pt.journal.kh.ua/2012/2/1/122_tkachova_web.pdf.

[13] L. Hoffman, “Talking Model-Checking Technology”,
Communications of the ACM, 2008, pp. 110–112.

[14] Formal Grammar: 14th International Conference, FG 2009,
Bordeaux, France, July 25-26, 2009.

[15] J. Postel, Transmission control protocol. RFC 793,
California, sept. 1981, 85 p.

[16] A. Strunk An algorithm to predict the QoS-Reliability of
service compositions. In: SERVICES, 2010, pp. 205–212.

