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Abstract: The particle is represented by the wave packet in nonlinear space-time continuum. Because of dispersion, the 

packet periodically appears and disappears in movement and the envelope of the process coincides with the wave function. 

There was considered the partial differential equation of telegraph-type describing the motion of such wave packet in spherical 

coordinate space. There was constructed also the analytical solution of this equation and the integral over all space of square of 

the gradient was supposed being equal to the mass of the particle identified with the wave packet.  As the solution depends on 

two parameter  L,m being positive integer, it was possible to calculate our theoretical particle masses for different L,m. So, we 

have obtained the theoretical mass spectrum of elementary particles. The comparison with known experimental mass spectrum 

shows our calculated theoretical mass spectrum is sufficiently verisimilar. 
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1. Introduction 

In the standard quantum theory, a micro particle is 

described with the help of a wave function with a 

probabilistic interpretation. This does not follow from the 

strict mathematical formalism of the nonrelativistic quantum 

theory, but is simply postulated. A particle is represented as a 

point that is the source of a field, but can not be reduced to 

the field itself and nothing can be said about its “structure” 

except with these vague words. 

This dualism is absolutely not satisfactory as the two 

substances have been introduced, that is, both the points and 

the fields. The points, that is the sources of a field, but not 

driven to the field. Presence of both points and fields at the 

same time is not satisfactory from general philosophical 

positions - razors of Ockama. Besides that, the presence of 

the points leads to non-convergences, which are eliminated 

by various methods, including the introduction of a re-

normalization group that is declined by many mathematicians 

and physicists, for example, P.A.M. Dirac. Modern quantum 

field theory can not even formulate the problem of finding a 

mass spectrum. The original idea of Schroedinger was to 

represent a particle as a wave packet  of de Broglie waves. As 

he wrote in one of his letters, he "was happy for three 

months" before British mathematician Darwin showed that 

the packet quickly and steadily dissipates and disappears. 

Then it turns out that this beautiful and unique idea to 

represent a particle as a portion of a field is not realizable in 

the context of wave packets of de Broglie waves. It was 

proved [14] by V.E. Lyamov and L.G Sapogin in 1968 that 

every wave packet constructed from de Broglie waves with 

the spectrum a(k) satisfying the condition of Viner-Pely (the 

condition for the existence of localized wave packets).  

( )
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becomes blurred in every case. Later, de Broglie tried to save 

this idea by introducing nonlinearity for the rest  of his life, 

but wasn't able to obtain significant results.  

The trouble with the many previous field unification 

attempts was in trying to construct a particle model from 

classical de Broglie waves, whose dispersion is such that the 

wave packet becomes blurred and spreads out over the whole 

of space. The introduction of nonlinearity greatly 

complicated the task but did not lead to a proper solution of 
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the problem.  

There is a school in physics, going back to William 

Clifford,  Albert Einstein, Erwin Schrödinger and Louis de 

Broglie, where a particle is represented as a cluster or packet 

of waves in a certain unified field. According to M. Jemer’s 

classification, this is a ‘unitary’ approach. The essence of this 

paradigm is clearly expressed by Albert Einstein’s own words: 

“We could regard substance as those areas of space where 

a field is immense. From this point of view, a thrown stone 

is an area of immense field intensity moving at the stone’s 

speed. In such new physics there would be no place for 

substance and field, since field would be the only reality 

and the laws of movement would automatically ensue from 

the laws of field.” 

However, its realization appeared to be possible only in the 

context of the Unitary Quantum Theory (UQT) within last 

two decades. It is impressive,  that the problem of mass 

spectrum has been reduced to exact analytical solution of a 

nonlinear integro-differential equation [14]. In UQT the 

quantization  of particles on masses appears as a subtle 

consequence of a balance between  dispersion and 

nonlinearity, and the particle represents something like a very 

little water-ball, the contour of which is the density of energy. 

The Unitary Quantum Theory (UQT) represents a particle 

as a bunched field (cluster) or a packet of partial waves with 

linear dispersion [1-11,14]. Dispersion is chosen in such a 

way that the wave packet would  periodically disappear and 

appear in movement, and the envelope of the process would 

coincide with the wave function. Based on this idea, the 

relativistic-invariant model of such unitary quantum field 

theory was built.  

The principal nonlinear relativistic invariant equation is 

following [6, 10, 11]: 

1 1 0
c dV

i u u
x x x

µ µ µ
µ µ µλ λ λ

γ

−
− ∂Φ Φ ∂Φ ∂ Φ − Φ − Φ =

 ∂ ∂ ∂ 
 
∫ℏ        (1) 

where �� =(ct,x); �� = (�
�
, 	
�
)  is the four-velocity of the 

particle, matrices �� (32x32) satisfy the commutation 

relations 

2g Iµ ν ν µ µνλ λ λ λ+ = , , 0,1, 2, 3,µ ν =  

and ��
is the metrical tensor. This fundamental equation of 

UQT describes, in our opinion, all properties of elementary 

particles. It is possible to derive from (1) the Dirac equation 

and also the relativistic invariant Hamilton – Jacoby equation 

[2,3,9,10]. We have succeeded in solving only the simplified 

scalar variant of eq. (1). However, the solution obtained has 

allowed to determine theoretically the elementary electrical 

charge and the fine-structure constant � with high precision 

(our theoretical value � = 1 137.962⁄ , the known 

experimental value � = 1 137,03552⁄  [7-11]). Our efforts to 

find more complete solution of eq.(1) were unsuccessful. 

Note, our approach based on Unitary Quantum Theory has 

nothing in common with Standard Model of Elementary 

Particles. 

Nevertheless, our idea to consider a particle as some 

moving wave packet which periodically disappears and 

appears in movement, has allowed to arrive to the conclusion 

[9-11] that such particle may be described by the common 

telegraph – type  equation of second order. In one-dimension 

case this equation is following:  

2
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Note, this equation would be relativistic invariant if the 

root �1 − �� ��⁄ 	would be placed in denominator. 

Equation (2) is satisfied exactly by relativistic invariant 

solutions in the form of a standard planar quantum-

mechanical wave and also in the form of disappearing and 

appearing wave-packet, viz.,  
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Or       
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where � is an arbitrary function of its argument (x-vt) 

We will show that eq. (2) (considered in the case of 3-

dimension coordinate space ( , !, � ) allows, namely, to 

determine theoretically the mass spectrum of elementary 

particles. Such equation for the function � = �( , !, �)  is 

following: 
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(the symbol m is replaced by M). We will use the natural 

system of units and put 	ℏ = 1, � = 1 , and will seek the 

solution of eq. (5) in the following form: 

2 2
exp

1 1

f iMt iMvr
u

r v v

 
= − 

 − − 
 ,                      (6) 

where # = #( , !, $) is some function not depending on t. 

This function represents as hardened wave packet in 

coordinate space ( , !, $)  Substituting  (6) in eq. (5) , we get 

2 2
2 2 2 2 2 2 2 2

2 2
2 cos 2 1 sin 1 sin

f f f f
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θ θ θ

θ
∂ ∂ ∂ ∂− + − + − +
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2
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f f
v θ θ

θφ
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.                                                            (7) 

We will seek the solution of eq. (7) in form:  

( ) ( , )Lmf R r Y θ φ= ,              (8) 

where 

(2 1)( )!
( , ) (cos ) exp( ),

2 ( )!

m
Lm L

L L m
Y P im

L m
θ φ θ φ

π
+ −

= ±
+

   (8) 

%&'	(�()!)	 is the Legendre function, *&'(!, $) is the 

spherical harmonic and L, m are nonnegative  integers 

L=0,1,2,3,…, + = 0,±1 ± 2 ± 3	 besides + ≤ . 

Substituting (8) in eq. (7), we come to the following equation 

with respect to the function  R(r) 

2
2 2 2 2 2 2

2

( ) ( )
1 2 ( ) 1 ( ) 1 0

d R r dR r
r v i Mvr R r L v R r L v

drdr

 
− − − − − − =  
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                                        (9) 

The solution /( ) = /&( )  of this equation depends on 

parameter L and we obtain the family of solutions  

0&,'( , !, �, 1)of equation (5) depending on parameters 

L,m. It is natural to suppose that every solution  0&,' of our 

equation (5) describes the amplitude of the partial world 

unitary potential Φ&,' determined by partial wave packet and 

the potential itself is represented by the quadrate of 

amplitude modulus, i.e.  

2
2 ( )

( , )L
Lm Lm Lm

R r
u Y

r
θ φΦ = = .                  (10) 

Further, we consider the gradient of this potential as the 

tension of corresponding field (it is the custom in 

electrodynamics) of the partial wave packet and consider the 

quadrate of the tension as the density 3&,'of the energy or of 

the wave packet’s mass distributed continuously in space. If 

we consider eq. (9) in some fixed spherical zone 45  of 

radius r , where the corresponding part of our hardened wave 

packet is placed, then it is natural to consider 6 = 6&,' as 

the mass of this part of the partial wave packet, i.e. as the 

integral of density 3&,'  over given spherical zone. Such 

approach allows to replace the mass M  in (9) by integral 

2 sin( )

r

Lm

Q

M W r drd dθ θ φ= ∫∫∫ ,                (11) 

Where 3&,'78� 9:Ф&,'8
�
  So, we will consider eq. (9) as 

the integro-differential equation with respect to the function 

( ) ( )LR r R r= . For the sake of simplicity; we will use the 

following expression for M (after discarding the members 

which depend on !, �	and omitting index L): 

2
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2

2

0

( )
( )

r
d R r

M r dr
dr r

= ∫ .                  (12) 

We will use the following way to solve our integro-

differential eq. (9). Viz., at first, we rewrite this equation in 

form  

2 2

2

1
2 ( ''( ) ( 1) ( )) 1

'( )
ivM R r r L L R r v

r R r
= − + − , (' ).

d

dr
=                                        (13) 

At second, we substitute integral (12) for M and differentiate left- and right-hand sides with respect to r. We obtain 

2
2 2 2 2

2 2 '

1
2 [ ( )] [ ( '' ( 1) )] 1 .

d R d
iv r R r L L R v

dr drr r R
= − + −                                                (13’) 
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At the third step, we set v=0  in (13’). The grounds are following. The solution of this equation depends on parameter v (the 

velocity of our particle). It is natural to suppose that the potential Ф describe processes which are continuous with respect to v 

(in any case, if v is less, than light velocity c), i.e.  <=+/( , �) = /( , �∗)	if  � → �∗and it is valid if  �∗ = 0 Besides, we want 

to determine the inner (proper) characteristic of our wave packet not depending on the velocity of its movement. So, we set 

v=0  and obtain the differential equation for  R(r) (after corresponding differentiation): 

23 2 2
3 2 2

3 2 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( 1)

d R r dR r d R r d R r dR r
r r L R r LR r r Lr L

dr drdr dr dr

   + + − − + +       

 ( )
2 ( 1) ( ) 0

dR r
L L R r

dr
+ + =                                                                                        (14) 

This equation possesses the analytical general solution (in addition to trivial constant solution): 

2 21 1
2 1 3 1

1 1 1 1
( ) exp( ) J( , ) exp( ) Y( , )

2 2 2 2 2 2

C C
R r C r r L C r C r r L C r= − + − + − + − ,                                (15) 

where @�, @�, @A are arbitrary constants and J and Y are the 

Bessel functions. Since we seek the finite solution R(r) for 

 ⟶ 0,  ⇢ ∞ and tending to zero for,  → ∞we set @A = 0 

and can set some positive value for @�, @�. The calculations 

show the choice of these constants has influence only on the 

absolute value of the masses calculated below but the ratios 

of these masses remain the same. We have chosen the 

simplest values and have obtained following solution 

1 2 32, 1, 0C C C= = =  

1
( ) exp( ) J( , )

2
R r r r L ir= − + ,                (16) 

where E(. + �
�
, = ) is the Bessel function of 1st  type with 

imaginary argument, or 

1

2
1

( ) exp( ) ( , )
2

L

R r i r r L r
+

= − Ι + ,                (16’) 

where G(. + �
�
,  ) is the modified Bessel function of 1st  type. 

Note, if v=0, then (13’) is reduced to following equation 

( 1) 0,
1

R L L R C R′′ ′− + − =  

where @� is some constant. The solution of this equation for 

coincides for @� = 0 with our solution (16’). 

1 2C = −  

1 2

1 1
( ) _ exp( ) I( , ) _ exp( ) K( , )

2 2
R r C r r L r C r r L r= − + + − +  

So, we obtain the following expression for the partial 

world unitary potential  Ф&' (taking into consideration (6, 8, 

8’, 10) :  
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Now, we form � 9:Ф&' considered as the tension of the world unitary field and form also the quadrate of its modulus 

considered as the mass density 3&'. We obtain: 
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               (18) 

The integrals of 3&' over all spherical space ( , !, �) for different  L=0,1,2  and + = 0,±1,±2,≤ .  is equal to 
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required different masses 6&'of elementary particles, i.e. 

( )
2

2

0 0 0

sinLm LmM W r drd d

π π

θ θ φ
∞

= ∫ ∫ ∫                (19) 

Since 3&'do not depend on � and the Legendre functions 

in expressions of 3&'  may be integrated analytically, we 

calculated, at first, analytically (with help of Mathematica-9) 

the integrals  

2

2 2

0 0 0

sin( ) 2 sin( )LmU Wr d d Wr d

π π π

θ θ φ π θ θ= =∫ ∫ ∫             (20) 

and then calculated numerically (with the help of 

Mathematica-9) the integrals  

0

Lm LmM U dr

∞

= ∫                            (21) 

For example, we have obtained for L=0 и m=0 (with help 

of Mathematica-9): 
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For L=1,m=1, we have obtained (with help of 

Mathematica-9) 
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and 

11 0.00006798678730.M =  

The calculations for small values of  L are sufficiently 

simple. But for large L, the quantities 0&'are represented by 

long polynomials in r and cosh( ) , sinh	( ) with enormous 

numerical coefficients and the integration of these 

polynomials meets serious technical difficulties.  

We consider the ensemble L+1 particles (masses) with 

given L and + = 0…± . to be one family and we will use 

the notations 6&O, 6&�, …6&&  for particles (masses) of the 

family with given L. We have calculated and analyzed in full 

the masses of 49 families (L=0…48, i.e. of 1225 particles. 

Our PC with 3GHz, RAM=32GB  has required for these 

calculations nearly 3 weeks of computing time. All 

calculations were checked by Maple-18.  

We have compared our theoretical spectrum for 1225 

masses with known experimental spectrum for elementary 

particles measured in MeV. The zero-point for the matching 

of both spectra was required. We have taken for such 

matching the quotient of the muon mass to the electron mass. 

As we know, this quotient for observed muons and electrons 

is measured experimentally [15] with the most precision and 

is equal 206.768283(10). Each our calculated mass was 

divided consecutively by all other 1224 masses and the 

resulting quotients were compared with the mentioned 

number. It turned out that the quotient of our masses 

6�P,�O 6QR,QS⁄  is equal to 206.7607796 (with relative 

divergence 0.0039%) and we have taken our mass 6QR,QS 

equal to 0.2894982442536304*10T�O for zero-point, i.e. for 

our electron mass. After, there were divided all other 1224 

masses 6&' by 6QR,QS and we have obtained our theoretical 

spectrum in electron masses which may be compared (after 

expressing in MeV) with known experimental masses. Here is 

the Table.1 with our masses 6&'  for 33 cases of the well 

coincidence with well known experimental values (relative 

errors are less than 1% in 30 cases and between 1.3% and 

1.8% in three cases): 

(e – electron, µ - muon, 0π - π -meson, p − proton etc.) 

Table 1. Theoretical (2nd Column) and calculated masses (3rd Column) for 

various values of the parameters L and m. The particle notation is showed in 

the 4th column, whereas the error percentage between the theoretical and 

calculated masses is presented in the 5th column. 

,L mM
 

THEORY EXPERIMENT NOTATION ERROR% 

48,45M
 

0.51099906 0.51099906 e -- 

16,10M
 

105.6545640 105.658387 µ  0.0036 

18,4M
 

135.8958708 134.9739 0π  0.683 

23,0M
 

137.2902541 139.5675 ,π π+ −  1.62 

14,1M
 

541.7587460 548.86 η  1.29 

7,7M
 

894.0806293 891.8 * *0
,K K

+  0.25 

12,1M
 

936.3325942 938.2723 p 0.206 

10,4M
 

957.1290490 957.2 ω  0.0083 

9,5M
 

1110.473414 1115.63 Λ  0.462 
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8,6M
 

1224.151552 1233 0
1b  0.71 

11,1M
 

1271.916682 1270 *
K  0.14 

9,4M
 

1331.705434 1321.32 −Ξ  0.78 

10,2M
 

1378,127355 1382.8 0∑  0.33 

12,0M
 

1524.617683 1520.1 2Λ  0.29 

8,5M
 

1549.444919 1540 5±  1F  0.28 

7,6M
 

1595.510637 1594 1ω  0.094 

9,3M
 

1601.282953 1600 'ρ  0.08 

6,6M
 

1718.917400 1720 3
0N  0.06 

10,1M
 

1774.917815 1774 *
3K +  0.051 

8,4M
 

1906.842877 1905 5
+∆  0.096 

9,2M
 

1965.115639 1950 4∆  0.77 

11,0M
 

2092.497779 2100 4Λ  0.35 

7.5M  2195.695293 2190 N(2190) 0.25 

7,4M
 

2818.645188 2820 cη  0.048 

10,0M
 

2954.549810 2980 η  0.85 

6,5M
 

3082.979571 3096 J
ψ  0.42 

7,3M
 

3543.664516 3556.3 χ  0.35 

5,5M
 

3687.679612 3686.0 'ψ  0.04 

7,2M
 

4496.650298 4415 '''ψ  1.84 

6,4M
 

5642.230394 5629.6 bΞ  0.8 

5,3M
 

9499.927309 9460.32 R` 0.41 

6,1M
 

10075.78271 10023.3 R`` 0.523 

7,0M
 

10533.15222 10580 R``` 0.442 

2,2M
 

131517 125000-140000 Higgs  

0,0M
 

6962274 ? Dzhan ? 

Note, the ratio of our proton mass 6��,� and our electron 

mass 6QR,QS is equal 1832.355 with relative error 0.207% in 

comparison with well known experimental ratio 1836.152167. 

Our calculated spectrum containing 169 masses from muon 

to the heaviest mass approximates also others well known 

particles and, although the coincidences with experimental 

data are worse but quite acceptable (with relative divergences 

not more than several per cent). The mass values for negative 

m coincides with the mass valued for positive m 

(antiparticles?). 

On the whole, this table shows the striking coincidence of 

our theoretical values with essential quantity of the known 

experimental masses and, by no means, such coincidence 

may be called occasional. The probability of such occasional 

coincidence is less 10TPO.Note, the choice of the nominee for 

the electron’s mass is not unique and may be further 

calculations of families with L=60..100  would allow to 

obtain the better result. Our calculated theoretical spectrum 

contains also the values near to the masses of quarks. The 

experimental data for quarks are not so precise and are 

determined in an indirect way. We give the separate Table.2 

with the calculated and experimental quark masses.  

Table 2. Theoretical and calculated values for quark masses. 

,L mM
 

Theory Experiment Notation 

38,16M
 

5.003455873 3-7 down 

30,25M
 

2.75072130 1.5-3.0 up 

20,4M
 

94.4251568 95 25±  strange 

11,1M
 

1271.9166 1250 90±  charm 

6,4M
 

4300.86662 4200 70±  beaty 

3,0M
 

179100   178000 4300±  truth 

We have carried out also the series of calculation 6&' for 

L exceeding 48 including L=60. The ratio of maximal 6O,O 

=0.0039443641689  to minimal 6PO,PO 

=0.3909395521*10T�� is of order10W. The ratio of maximal 

6O,O  to the mass 6��,� =0.53046407191*10TX of proton is 

equal 74400. This number does not contradict the known the 

experimental data. 

Note, the radial function ( )LmU r  being the density mass  

as function of r, is equal zero always for r=0 and for all L, m, 

and, at first, increases very swiftly on the right from for r=0 

and then very swiftly decreases. The plot of ( )LmU r  reminds 

for large L quasi delta-function approaching to coordinates 

origin as L increases (very simplified analogy is shown on 

Fig.1). 

 

Fig. 1. The density mass function U00 (for L=0, m=0) dependance on the 

radius r. 

Such theoretical model describes a particle as very small 

bubble in space-time continuum cut by spherical harmonics. 

Curious, such model, namely, was considered by A. Poincare 

[12]. 

Certainly, we do not intend to assert that our results are 

adequate in full to the known experimental mass spectrum of 

elementary particles. The divergences are present. Our 

theoretical spectrum contains the large quantity (1053) of 

masses between electron mass and muon mass but such real 

particles are not observed till now. Our spectrum contains 

many light particles 6&'  (L>48) with masses differing 
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extremely little one from another. It may be supposed there is 

exists quasi-continuous distribution of lightest particles not 

affirmed till now by experiments. We suppose that  this 

region of our calculated spectrum contains also the values 

corresponding to masses of all 6 neutrinos, and it will be 

possible to discover their theoretical masses after sufficiently 

precise experimental determination of their masses. 

Our spectrum contains 169 particles from the muon to the 

heaviest particle 6O,Obut there is observed the large quantity 

of particles in this interval with short “life-time” (so called 

“resonances”) of order 10T�� sec. These divergences require 

the further researches. With respect to light particles, it may 

be supposed there are exist some selection principles (not 

discovered till now theoretically) for such particles and these 

principles lead to essential decreasing of particles quantity 

between muons and electrons. We suppose that such 

principles arise theoretically from some relations between the 

tensors of different valences (ranks) and spherical functions 

for different L,m and leave this complicate problem for future 

researches. May be these light particles constitute the dark 

matter.It arise the question with respect to the particles with 

short “life-time”: may we take all these particles for 

elementary? Our Unitary Quantum Theory allows 

formulating the following criterion. “If the way which the 

particle (which we identify with appearing and disappearing 

wave packet) passes from the moment of its appearing to the 

moment of its destruction is much longer than de Broglie 

wave, then such particle may be called elementary”. Have we 

reason to call “elementary” the particle with life-time of 

order 10T��  ? Let us point to following essential 

circumstance. Viz., if we will use the Schrödinger equation in 

spherical coordinates (relativistic-noninvariant) or Klein—

Gordon equation (relativistic-invariant) instead our initial 

equation (5), then we will come to the same theoretical mass 

spectrum. Really, the mention Schrödinger equation is 

following: 

2 2 2
2

2 2 22

2

1
2 sin sin cos sin

sin
0

2 sin

u u u u u
r r

r r u
i

tMr

θ θ θ θ
θ θθ φ

θ

 ∂ ∂ ∂ ∂ ∂+ + + +  ∂ ∂∂ ∂ ∂ ∂  + =
∂

ℏ
ℏ

,                    (22) 

where M is the particle’s mass. We will seek the solution of 

this equation in form of unitary wave  

packet  f: 
2

exp( )
2

f Mv Mv
u i t i r

r
= − +

ℏ ℏ

                 (23) 

where # = #( , !, �)		is the function of coordinates and does 

not depend on the time. The function u is considered as the 

amplitude of the world unitary potential Ф. Substituting (23) 

in (22), we obtain (after simplification) following equation 

2 2 2
2 2 2 2 2

2 2 2
sin 2 sin sin 2 sin 0

2

f f f f f
r iMvr

rr
θ θ θ θ

θ θ φ
∂ ∂ ∂ ∂ ∂− + + + =

∂ ∂∂ ∂ ∂
ℏ

ℏ ℏ ℏ .                                        (24) 

This equation coincides with our equation (7) if we put √1 − ��		instead ℏ. The further study described above remains 

without changes. Let us consider Klein—Gordon equation in spherical coordinates and in natural units system (c=1,ℏ = 1) 

2 2 2
2

2 2 2 2
2

2 2

1
2 sin sin cos sin

sin
0

sin

u u u u u
r r

r r u
M u

r t

θ θ θ θ
θ θθ φ

θ

 ∂ ∂ ∂ ∂ ∂+ + + +  ∂ ∂∂ ∂ ∂ ∂  − − =
∂

,                               (25) 

where M is the particle’s mass. We will seek the solution  

2 2
exp

1 1

f iMt iMvr
u

r v v

 
= − 

 − − 
,                                                                                  (26) 

where # = #( , !, �) is the function of coordinates not depending explicitly on t. Substituting (26) in (25), we obtain following 

equation after simplification: 

2 2 2 2
2 2 2 2 2 2 2 2

2 2 2

1
sin 1 2 sin sin 1 1 sin2 0

2

f f f f v f
r v ivr M v v

rr
θ θ θ θ

θθ φ
∂ ∂ ∂ ∂ − ∂− − + − + − + =

∂ ∂∂ ∂ ∂
.                   (27) 

This equation coincides in full with our equation (7) and 

we will come to the same results. 

So, different initial equations (5), (22), (25) (the last is 

relativistic invariant and the other two are relativistic non-

invariant) lead to the same theoretical mass spectrum. Note 

the following remarkable fact: the standard theory allowed to 

detect spectra by using always the quantum equations with 

outer potential and as corollaries to geometric relations 

between de Broglie wave length and characteristic dimension 

of potential function. The quantum equation of our theory do 

not contain the outer potential and describe a particle in 

empty free space; the mass quantization arises owing to  the 
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delicate balance of dispersion and non-linearity which 

provides the stability of some wave packets number. It is the 

first case when spectra are detected by using the quantum 

equations without outer potential. 

Table 3. Values of the mass (in MeV) for the particles spectrum in increasing 

order 

105.655 105.94   

120.31 121.826   

135.896 137.29   

153.827 159.796   

180.895 187.69   

219.639 221.135   

269.993 270.91   

318.997 335.848   

408.316 423.36   

529.951 531.566   

705.247 705.477   

936.333 957.129   

1524.62 1549.43   

2334.9 2557.69   

4315.87 4496.65   

10533.2 12941.1   

71060.4 87704.5   

 

106.241 108.291 

122.664 125.522 

142.287 144.326 

162.135 162.192 

192.661 192.917 

224.06 225.089 

276.443 280.151 

339.955 341.136 

423.429 432.83 

539.326 541.759 

730.141 738.98 

996.316 1110.47 

1595.51 1601.28 

2818.65 2906.6 

5642.23 6026.01 

16897. 18035.6 

131517. 179100. 

 

108.997 109.597 

125.71 127.187 

145.96 147.309 

165.33 172.249 

195.832 199.852 

231.432 231.656 

281.016 289.488 

342.52 349.235 

445.413 459.388 

560.236 571.51 

812.354 828.374 

1135.57 1137.9 

1718.92 1774.92 

2954.55 3082.98 

6570.85 6666.64 

18261.3 25000.7 

266419. 601983. 

 

110.133 112.784 

127.237 127.306 

147.698 149.62 

177.091 178.559 

203.297 205.588 

241.805 249.092 

300.299 301.848 

357.381 366.838 

461.593 472.253 

606.559 619.012 

866.997 894.081 

1224.15 1271.92 

1906.84 1965.1 

3545.66 3687.68 

7358.75 9219.36 

28935.4 33698.9 

1.20005x106 3.4545X106 

 

117.054 118.136 

131.445 133.013 

149.905 153.765 

178.758 180.585 

209.097 218.681 

252.972 253.184 

304.024 314.364 

373.402 402.126 

504.945 521.772 

672.537 686.757 

897.982 915.038 

1331.71 1378.13 

2092.5 2195.7 

3832.21 4300.87 

9499.93 10075.8 

36955.4 54518.8 

6.96227x107  

Here is the Table.3 with all our theoretical masses from the 

muon to the heaviest 6O,O (MeV) . 

In view of all said above, we are bold, nevertheless, to say 

that our results represent the substantial advancement on the 

way of solution for the extremely complicated theoretical 

problem of the mass spectrum for elementary particles and to 

underline that this advancement is owing to our Unitary 

Quantum Theory. We hope that further analysis with the help 

of exact equation (1) of our theory will allow to obtain more 

precise results. 

We would like to propose the name “Dzhan—particle” for 

our heaviest particle 6OO in honour of the general Air Force 

RF cosmonaut V.A. Dzhanibekov. As we know, particles with 

mass of such order are observed in cosmic rays.  

The authors are thankful to cosmonaut V.A. Dzhanibekov, 

to professors V.M. Dubovik (Dubna, JINR) and F.A.Gareev 

(Dubna, JINR), and to professor Yu.L.Ratis (Samara State 

University) for support of our work and fruitful discussions. 
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