
 

International Journal of High Energy Physics 
2015; 2(1): 1-12 

Published online January 31, 2015 (http://www.sciencepublishinggroup.com/j/ijhep) 

doi: 10.11648/j.ijhep.20150201.11 

ISSN: 2376-7405 (Print); ISSN: 2376-7448 (Online) 

 

Possible effects of Fierz transformations on vacua of some 
four fermion interaction models 

Bang Rong Zhou 

College of Physical Sciences, University of the Chinese Academy of Sciences, Beijing, China 

Email address: 
zhoubr@ucas.ac.cn (Bang Rong Zhou) 

To cite this article: 
Bang Rong Zhou. Possible Effects of Fierz Transformations on Vacua of Some Four Fermion Interaction Models. International Journal of 

High Energy Physics. Vol. 2, No. 1, 2015, pp. 1-12. doi: 10.11648/j.ijhep.20150201.11 

 

Abstract: A theoretical research on possible effects of the Fierz transformations on the ground states (vacua) of some 2flavor 

four fermion (quark) interaction models has been systematically conducted. It has been shown that, based on the known 

criterions of the interplay between the antiquark-quark and diquark condensates, in 4D spacetime, for the given 

antiquark-quark channel couplings with chiral symmetry and from the heavy gluon exchange, the effects of the Fierz 

transformations are not enough to change the feature that the models’ vacua would be in the pure antiquark-quark condensate 

phases. However, for a given pure scalar diquark channel coupling with the strength HS, the Fierz transformations will lead to the 

nontrivial effect that the model’s vacuum could be in the expected diquark condensate phase only if Nc<9 and HS is small, and as 

the increase of Nc and/or HS, the vacuum will get first in a coexistence phase with diquark and antiquark-quark condensates then 

up to a pure antiquark-quark condensate phase until Nc goes to infinite. The similar conclusions are also drawn from relevant 

four fermion interaction models in 2D and 3D spacetime. The general significance of the research is indicated. 

Keywords: Four Fermion Interactions, Fierz Transformations, Spinor and U(N) Space,  

Antiquark-Quark and Diquark Channels, Color Number Nc 

 

1. Introduction 

The four fermion interactions are very useful field theory 

models to describe dynamical spontaneous breaking [1–6] of 

symmetries and their restoring at high temperature and high 

density [7–10] as well as the color superconducting phase 

transitions at low temperature and high density [11–13]. For 

the involved four fermion interaction models with dynamical 

symmetry breaking (from now on the fermion will be called 

quark), the ground states (vacua) could be in the 

antiquark-quark ( -q q ) condensate phase or in the diquark 

( -q q ) condensate phase or in the coexistence phase of the 

above two condensates, depending on the interplay between 

the -q q and -q q condensates in the vacua [14–18]. The 

presupposition of such interplay is the coexistence of the 

scalar -q q and the scalar or pseudoscalar -q q channel 

couplings. On the other hand, for any given four fermion 

couplings, the fermion fields entering them can always be 

rearranged by the Fierz transformations, thus, by the Fierz 

transformations, a -q q channel coupling will be led to some 
-q q channel coupling, and the opposite case will also occur. 

This will inevitably lead to the coexistence of the two kinds of 

couplings in the resulting effective Lagrangian. Thus a natural 

question would be drawn out: whether the Fierz 

transformations could change the feature of the vacuum of a 

given four fermion interaction model? It seems that a 

systematical research on this topic has not appeared in the 

known literature. 

The possibility that the diquark condensates could emerge 

from the vacuum has been researched or touched on by some 

phenomenological models, including the 2 flavor Quantum 

Chromodynamics (QCD) instanton-induced NJL model with 

any c
N [14], the random matrix model of 2 flavor and c

N

color QCD [15] and a 2 flavor color superconducting model 

[16]. The main results show that such possibility has not been 

removed theoretically. 

To examine further this problem, we have made a more 

general analysis. Under the assumption that some -q q and 
-q q channel couplings coexist, by means of the effective 

potential method in the mean field approximation, we have 

researched the interplay between the -q q  and -q q

condensates in the vacuum respectively for 4D, 2D and 3D 
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four fermion interaction models with flavor 2fN = and color 

3
c

N = [17] and then extend the discussions to the case of any 

Nc [18], some useful criterions by which the -q q  and/or -q q

condensates could emerge from the vacuum are obtained. 

However, in the above work, the coexistence of some -q q  

and -q q  channel couplings is only an assumption, its 

possible origin was not be carefully considered. Certainly, the 

Fierz transformations could be one of the origins, and in fact, 

as a check of the derived criterions, the Fierz transformations 

were also briefly mentioned in the Conclusions of [17] for 

some 3cN =  models, e.g. 4D chiral invariant model and the 

heavy gluon exchange models, however, these did not 

constitute a systematical research on possible effects of the 

Fierz transformations on the vacua. 

In this paper, we will do a systematical research on such 

effects. In the case of 2
f

N =  and keeping cN  to be 

arbitrary, when some four fermion interaction couplings are 

given, we will examine how their Fierz transformations 

induce the couplings leading to -q q and -q q condensates and 

how this will affect the vacua of the models. The given starting 

four fermion couplings, which in 4D case are typical and in 

most cases, possibly relevant to QCD-like theory, include, 

besides the chiral invariant model and the heavy gluon 

exchange model, also the diquark channel coupling which has 

never been considered before. Because the strengths of the 

given couplings are assumed to be known, by the Fierz 

transformations, we will be able to fix uniquely the strengths 

of the -q q  and -q q channel couplings in the final effective 

Lagrangian, including their ratios. This makes it become 

possible, by means of the general criterions derived in [18], to 

obtain some definite conclusions of that whether the vacua are 

actually in the -q q  or -q q  condensate phase or in the 

coexistence phase of the two condensates. The results will 

show that in 4D spacetime, for given -q q  channel couplings, 

the effects of the Fierz transformations are not enough to 

change the models’ feature that the vacua would be in the pure 
-q q  condensate phases. The conclusion seems a little trivial , 

but it will be demonstrated systematically for the first time. 

Furthermore, for a given -q q  channel coupling, more 

interesting nontrivial effects will emerge from the Fierz 

transformations. In this case, the model’s vacuum could be in 

the expected -q q  condensate phase only if the -q q  channel 

coupling strength and the color number cN  are small enough, 

otherwise, as the -q q channel coupling strength and/or cN  

increase, the vacuum would be first in a coexistence phase 

with -q q  and -q q condensates and finally up to a pure -q q  

condensate phase. Similar conclusions will also be derived 

from the 2D and 3D models. This shows some spacetime 

dimensionality independence of the conclusions. It is 

emphasized that the basic ideas of the above research, 

including to relate the effects of the Fierz transformations to 

the vacua of a class of given four fermion interaction models 

with dynamical symmetry breaking, and working in the case 

of any cN and in the 4D, 2D and 3D spacetime, are all 

original and novel, and most of the obtained results appear in 

the literature for the first time. 

In Sect.2 we will analyze the effects of the Fierz 

transformations on scalar and pseudoscalar isovector -q q  

channel couplings, the vectorial -q q channel couplings from 

heavy gluon exchange and scalar -q q channel couplings in 

4D spacetime and in Sect.3 and 4, the discussions will be 

extended to the similarities of the above three couplings in 2D 

and 3D spacetime. Finally, in Sect.5 we come to our 

conclusions. 

A brief introduction of the Fierz transformations and the 

explicit expressions of the Fierz transformation matrices as 

well as corresponding converse forms in spinor spaces of 4D, 

2D and 3D spacetime and in flavor or color ( )U N  space will 

be given in Appendix. For a given -q q channel coupling intL , 

its qq qq→  and qq qq→ channel Fierz rearrangements 

will be denoted respectively by
ex
intL  (exchange terms) and 

qq
intL ; For a given q-q channel coupling qqL , its qq qq→  

channel Fierz rearrangements and corresponding exchange 

terms will be denoted respectively by
qq

qqL  and 
qq ex

qq

−
L . In the 

following discussions, for a given coupling, we will always 

first put down directly the induced total effective Lagrangian 

after the Fierz transformations and then focus on its physical 

effects. 

2. 4D Four Fermion Interactions 

2.1. Scalar and Pseudoscalar Isovector Antiquark-Quark 

Channel Couplings 

The corresponding Lagrangian may be expressed by [1] 

2 2

4( ) 5[( ) ( ) ]S P aG qq qi qτ γ τ+ = +      (1) 

where ( 1, , 1)
fa a Nτ = −⋯  are the generators of the flavor 

group ( )
f f

SU N . In present paper, the summation of a 

Lorentz index is implied to combine into a Lorentz scalar and 

the summation of an index of the ( )SU N generator, unless 

specified otherwise, will always run over from 1 to 2 1N − . 

When 2fN = , the above 4( )S Pτ+L is chiral 

(2) (2)fL fRSU SU⊗ invarant.1 By using the transformations 

                                                             

1 This chiral symmetry reproduces the one of QCD with 3
c

N ≥ . Hence (1) can 

be related to QCD with 3
c

N ≥ . However, it can not simulate 2
c

N =  QCD with 

massless quarks, because the latter’s chiral symmetry is the higher (4)SU  [12, 

19–22]. It is easy to check that 
4( )S Pτ+L  in (1) does not have the (4)SU

symmetry. For instance, it is only a part of the whole instanton-induced four 

fermion couplings which are (4)SU invariant when 2
c

N = [21]. Based on the 

same grounds, the conclusions in 2
c

N =  case in present section are merely 

applicable for the given models here and not for 2
c

N =  QCD. In fact, the models 

considered here only the extensions of some 2
c

N =  QCD-relevant four 
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(A.8), (A.17), (A.9) and (A.18) in the Appendix, we can 

obtain respectively the Fierz rearranged 
4( )

ex

S Pτ+L  (exchange 

terms) and 4( )

qq

S Pτ+L , thus the total effective Lagrangian 

becomes  

2 2 2

5 5

5 5

4( ) 4( ) 4( ) 4( )

( ) ( ) ( )

  ( )( )

   + ( )( )

S P P a

c c

S A A A A

c c

P A A A A

eff qqex
S P S P S P S PL

G qq G qi q G qi q

H qi q q i q

H q q q q

L L L

τ

τ τ τ τ

γ γ τ
γ τ λ γ τ λ

τ λ τ λ
′ ′

′ ′

+ + + +

= + +

+

+

= + +

⋯

     (2) 

where we only display part of terms which could be physically 

interesting, A
τ  and A

λ ′  are separately the antisymmetric 

generators of the groups ( )f fSU N  and ( )c cSU N  and the 

ellipsis stands for all the other possible coupling, where 

( 1, , 1)a ca Nλ = −⋯  are the generators of ( )c cSU N . It is 

emphasized that 4( )

eff

S Pτ+L must be used in Hartree 

approximation. When 2fN = , the coupling constants in (2) 

have the following explicit expressions: 

(1 1 4 )     4

4

/ , / ,

/ .

S P c P c

S P

G G N G G G N

H H G

τ= = + = −
= − =

   (3) 

Equation (3) shows that, for the two flavor and c
N color 

model, the induced scalar -q q  channel interactions have a 

positive coupling constant SH , however, compared with the 

scalar -q q  channel interactions with the coupling constant 

SG , we always have the ratio 

/ (4 1) / 2 / .S S c c cG H N N N= + >        (4) 

Thus, based on the general criterion of interplay between 

the -q q  and -q q condensates [18], it is impossible to exist 

the scalar diquark condensates in the vacuum of this model. 

Such conclusion is also valid in the limit of 2cN = . It is 

indicated that, when 2cN = , the scalar -q q condensates 

qq  and the scalar -q q  condensates 5 2 2

cqi qγ τ λ  are both 

(2) (2)f cSU SU⊗ singlets, however , the former breaks 

(2) (2)fL fRSU SU⊗  chiral symmetry but the latter conserves 

it. Hence in the case of 2
c

N =  we also have spontaneous 

breaking of the chiral symmetry. In addition, it is noted that, 

after the Fierz transformations, the largest attractive channel 

couplings are still the terms 
2

( )qq and 
2

5( )aqi qγ τ  with the 

same coupling strength S PG G τ= , this fact certainly keeps the 

basic feature of the original 4( )S Pτ+L  in (1), including its 

                                                                                                        

fermion interaction models to any 
c

N  case and are not supposed to touch the 

very special 2
c

N =  QCD theory.  

 

chiral symmetry. 

2.2. Four Fermion Interactions from Heavy Gluon 

Exchange 

The corresponding Lagrangian is assumed to be [13] 

4( )
( )( )

V a a
g q q q qµ

λ µγ λ γ λ= −L            (5) 

with the constant g. It simulates the interactions induced by 

one gluon exchange in QCD. Similar to the steps taken in 

section 2.1., we can obtain the total effective Lagrangian for 

2
f

N =  

4( ) 4( ) 4( ) 4( )

2 2

5 5

          = ( ) + ( )

            + ( )( )+   

eff ex qq

V V V V

S V a

c c

S A A A A

G qq G q q

H qi q q i q

λ λ λ λ

µ
λ γ λ

γ τ λ γ τ λ′ ′

= + +

⋯

L L L L

    (6) 

with 

2 2

c
( 1)g/ 2( 1) /

(1 1 4 )/ .

S c c c S

V c

G N N N H N

G N gλ

= − = −
= − −

，

     (7) 

Hence, the Fierz transformations have induced the scalar 
-q q  channel coupling and the scalar -q q  channel coupling, 

however, the corresponding coupling constants S
G  and S

H , 

in the case of 2
f

N = and any c
N , have the ratio 

2 1 2 ,   if  2/ ( ) / / .
S S c c c c

G H N N N N= − > >    (8) 

This result was given in the Appendix A of [13]. Thus, 

based on the general criterion given in [18], if 3
c

N ≥ , the 

ground state (vacuum) of the model could only be in anti- 

quark-quark condensate phase. In the limit of 2,
c

N =  

 1/
S S

G H = . This implies that we will be at a critical point 

between breaking and restoring of the chiral symmetry. Once 

there are the other couplings included, such balance would be 

broken and the system could come to the phase of either chiral 

symmetry breaking or chiral symmetry restoring, depending 

on the feature of the included couplings. 

2.3. Scalar Diquark Channel Interactions 

For describing two flavor color superconductors, one 

introduces the pure scalar -q q channel coupling with the Lag 

rangian [13, 18] 

4( ) 5 5
( )( ).

qq

c c

S S A A A A
H qi q q i qγ τ λ γ τ λ′ ′=L      (9) 

Equation (9) is used usually in the case with finite quark 

chemical potential, however, once it is put into a theory, then 

its Fierz transformations will be bound to induce some effects 

even in the case with zero quark chemical potential. In this 

paper we will research such effects on the vacuum of a given 

pure scalar -q q coupling model. In fact, based on the converse 

Fierz transformation matrices (A.10) and (A.19) we may put 
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down the Fierz rearranged 4( )qq

qq

S
L from -q q channel to -q q  

channel and furthermore by using the transformation (A.8) 

obtain its exchange term 4( )qq

qq ex

S

−
L  which is in fact identical to

4( )qq

qq

S
L . Thus the effective Lagrangian for 2

f
N =  becomes  

4( ) 4( ) 4( ) 4( )

2 2 2

4( ) 5
( ) ( ) + ( )

qq qq qq qq

qq

eff qq qq ex

S S S S

S S P a V a
G qq G qi q G q qµ

τ λγ τ γ λ

−

′

= + +

= + + +

L L L L

L ⋯
 (10) 

( 1) 4 8
S P c S c V S

G G N H N G Hτ λ= = − = −/ , /     (11) 

Hence, as a result of the converse Fierz transformations, we 

are led from the pure scalar -q q channel coupling (9) to the 

scalar and pseudoscalar isovector coupling 2( )qq  and 

2

5
( )

a
qi qγ τ . When 2

f
N = , they have the same coupling 

strengths S P
G G τ=  and this means that the chiral 

(2) (2)
fL fR

SU SU⊗ symmetry is maintained. Meantime, we 

are also led to the four fermion interactions similar to the ones 

induced by heavy gluon exchange, but with weaker strength 

8/
V S

G Hλ = − . It is interesting to make a comparison 

between the values of S
G  and S

H . For a given S
G  and 

S
H , equation (7) in [18] has given the possible least value 

points of the effective potential 4
( ),V σ ∆  (the ground states) 

of the model with the coupling terms corresponding to S
G  

and S
H , where σ  and ∆  represent the order parameters 

relevant to the scalar -q q condensates and the scalar -q q

condensates respectively. In present case, the induced S
G

depends on S
H and c

N , and (7) in [18] will be reduced to the 

following form: the ground state of the model will be at 

( )
( )
( )
( )

1

2 2

1

0     if 1/2 < (3 +1)/( 1)( 2), 9

    if        (3 +1)/( 1)( 2), 9

 0    if 4/( 1 9

S c c c c

S c c c c

S c c

H N N N N

H N N N N

H N N

σ σ
σ

 ∆ < − − <
∆ = ∆ > − − <
 > − >

ɶ

ɶ

ɶ

,

, ,

, ),

                     (12) 

where we have used the denotations 2 2
/

S S
H H π≡ Λɶ  and 

Λ is the 4D Euclidean momentum cutoff of the loop integrals. 

It is indicated that 9
c

N <  and 9
c

N >  correspond 

respectively to 2/ /
S S c

G H N<  and /
S S

G H 2 /
c

N> . 

Hence, when 9
c

N <  i.e. 2/ /
S S c

G H N< , for a given c
N , 

the system can be in a pure -q q  condensate phase only if the 

coupling strength S
H  is less than the critical value 

(3 +1)/( 1)( 2)
c c c

N N N− − . Especially, in the limit of 2
c

N = , 

the critical value of S
H  goes to ∞  and this implies that the 

system will only be in the chiral invariant pure -q q condensate 

phase. Once 3 9
c

N≤ <  and S
Hɶ exceeds the above critical 

value, the pure q-q condensate phase will be changed into a 

coexistence phase with the q-q and the -q q condensates, 

though the original purpose of our using 4( )qqS
L in (9) is only 

for expounding the pure qq condensate. In particular, for the 

realistic case with 3
c

N =  of QCD, the expected pure -q q

condensate phase could appear only if 5
S

H <ɶ . This is a very 

interesting result. Once the strength S
Hɶ of the given -q q

channel coupling is large enough, what could emerge from the 

vacuum will no longer be the expected diquark condensates, 

instead, be a coexistence of the -q q and -q q condensates. The 

critical value of S
Hɶ will decrease as the increase of c

N , for 

example, it becomes 25/42 for 8
c

N = . On the other hand, 

when 9
c

N >  i.e. /
S S

G H 2 /
c

N> , for a suffiently large 

S
Hɶ , there could exist only the -q q condensates and no the -q q

condensates. This statement will certainly keep to be valid 

until c
N → ∞ , consistent with the general conclusion 

reached in [18]. The present key point lies in that even if the 

starting point (9) is a pure scalar -q q channel coupling, as a 

result of the converse Fierz transformations, the above general 

conclusion is also true. 

3. 2D Four    Fermion Interactions 

3.1. Scalar and Pseudoscalar Isovector Antiquark-quark 

Channel Couplings 

Similar to the 4D case, we take the Lagrangian by 

2 2

2( ) 5
[( ) ( ) ].

S P a
G qq qi qτ γ τ+ = +L         (13) 

However, in 2D case, we need not to consider the 

continuous symmetries of a Lagrangian, since they can never 

be spontaneously broken based on Mermin-Wagner-Coleman 

theorem [23]. Formally (13) is the same as (1), but now the 

5
γ  in it is a 2 2×  matrix. The steps to conduct the Fierz 

transformations are similar to the ones taken in 4D case in 

Section 2. Based on the Fierz transformations (A.11), (A.17), 

(A.12) and (A.18), the resulting total effective Lagrangian 

2( )

eff

S Pτ+L  for 2
f

N =  becomes 

2( ) 2( ) 2( ) 2( )

eff ex qq

S P S P S P S Pτ τ τ τ+ + + += + +L L L L       (14) 

[ ]{ }2 2 2 2 2 2 2 2

2( ) 5 5 5 5 5
( ) ( ) ( ) ( ) 2( ) ( ) + ( ) ( ) 1

2 4

ex

S P a a c a a a a s

c

G G
qq qi q q q qi q q q N q q qi q qi q i

N

µ µ
τ γ τ τ γ γ γ λ γ τ λ γ λ γ′ ′ ′+    = + − − − − − − →   L  (15) 
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( ) ( ) ( ) ( ) ( ){ ( ) ( )}2( ) 5 5 5 5 5
1 2

4 ,

qq c c c c c c

S P S a S a A a A a s A a A a

a S A

G
qi q q i q qi q q i q i q q q qµ

τ µγ τ λ γ τ λ γ τ λ γ τ λ γ γ τ λ γ τ λ′ ′ ′ ′ ′ ′+
′ ′ ′=

 = − − → − ∑L  (16) 

where S
τ and S

λ ′  are respectively symmetric generators of 

( )
f f

U N  and ( )
c c

U N , including 0
2 1/

f f
Nτ ≡  and 0

λ ≡

2 1/
c c

N . It is indicated that when 2
f

N = , the coupling 

terms ( )2

a
q qµγ τ and ( )2

a a
q qµγ τ λ ′ have disappeared. We see 

that in 2( )

eff

S Pτ+L , the scalar and pseudoscalar isoscalar channel 

couplings 2( )qq  and 2

5
( )

a
qi qγ τ  keep to be the maximal 

attractive ones. Denote the respective coupling strengths by

S
G  and P

G τ  , then we will have ( )1 1 2/ .
S P c

G G N Gτ= = +   

Consequently the model will maintain its original feature 

unchanged. On the other hand, the Fierz transformations have 

also led to occurrence of the scalar and pseudoscalar -q q

attractive channel couplings ( ) ( )5  5

c c

S A S A
qi q q i qγ τ λ γ τ λ′ ′  and 

( ) ( )c c

A A A A
q q q qτ λ τ λ′ ′  with the coupling strength 

4/
S

H G= . However, considering the ratio 

2(2 +1)/ 2/ /
S S c c c

G H N N N= >        (17) 

we can affirm similarly based on the general criterion derived 

in [18] that for the 2D four fermion interaction model 

expressed by (13), only the antiquark-quark condensates, 

rather than the diquark condensates, are possible in its 

vacuum. 

3.2. Four Fermion Interactions from Heavy Gluon 

Exchange 

Take the Lagrangian to be 

( )( )2( )
,

V a a
g q q q qµ

λ µγ λ γ λ= −L       (18) 

where µγ are 2 × 2 matrices. After the Fierz transformations, 

the total effective Lagrangian 2( )

eff

VλL for 2
f

N =  can be 

expressed as follows. 

2( ) 2( ) 2( ) 2( )

eff ex qq

V V V Vλ λ λ λ= + +L L L L        (19) 

with 

( ) ( ) ( ) ( )
3 3

2 2 2 2 2 2

2( ) 5 5 0

0 0

 =1   ( 1)
2

, , /ex

V S a a a a a a f S c c

a ac

g
G q q qi q q q qi q G N g N

N
λ τ γ τ τ λ γ τ λ τ′ ′

= =

   = + − + = −
   ∑ ∑L        (20) 

and 

[ ] ( ) ( ) ( )

( ) ( ) ( )

2( ) 5 5 5

5 5 5

= ( 1) 2 1

1     ( 1) 2

,

,

/

, / .

qq c c

V c c a S a S s

a S A

c c

S a A a A s S c c

a S A

N g N qi q q i q i

H qi q q i q i H N g N

λ γ τ λ γ τ λ γ

γ τ λ γ τ λ γ

′ ′
=

′ ′
=

 − − + → 

 + + → = + 

∑

∑

L

                   (21) 

Since 0
S

H > , so the corresponding coupling terms are 

attractive. However, the ratio of the strengths of the scalar 

-q q  channel coupling 2( )qq and the scalar -q q  channel 

coupling ( ) ( )5  5

c c

S A S A
qi q q i qγ τ λ γ τ λ′ ′  is obtained to be 

c
2( 1)/ 2   for  2/ / , .

S S c c c
G H N N N N= − > >    (22) 

Hence, if 3
c

N ≥ , there will be antiquar-kquark condensates 

alone in the vacuum[18]. Equation (22) is the same as (8) in 

the 4D case. 

3.3. Scalar Diquark Channel Interactions 

The Lagrangian is given by [18] 

( ) ( )2( ) 5  5
.

qq

c c

S S S A S A
H qi q q i qγ τ λ γ τ λ′ ′=L      (23) 

It is indicated that (23) is different from (9) with S
τ having 

replaced A
τ in (9), because in 2D case the matrix 5

Cγ  is 

symmetric. We may use the converse matrices (A.13) and 

(A.19) in the Appendix to obtain the converse Fierz 

rearranged 2( )qq

qq

S
L  and furthermore use the transformation 

(A.11) in the Appendix to get its exchange terms 
-

2( ) 2( )
=

qq qq

qq ex qq

S S
L L , thus the total effective Lagrangian for 2

f
N =  

becomes 

( ) ( ) ( ) ( )
5

2 2 2 2

2( ) 2( ) 2( ) 2( ) 2( )

1

3( 1) 13 1
= +

2 4 2 4, ,
qq qq qq qq qq

b
s

eff qq qq ex b b b bc c

S S S S S S a a a a

i c c

N N
H q q q q q q q q

N Nµγ γ

λ τ τ λ−
′ ′

Γ =

 − −
= + + Γ − Γ + Γ − Γ 

 
∑L L L L L  (24) 

Equation (24) contains the induced scalar channel term 
2( )qq and pseudoscalar channel term 2

5
( )

a
qi qγ τ which 

respectively have the coupling strengths 3( 1)
S c S

G N H= −

2/
c

N  and 1 2( ) /P c S cG N H Nτ = −  and it may be seen that, 

among all the -q q channel couplings of 2( )qq

eff

S
L , the scalar 

channel term 2( )qq is maximal attractive. We note that the 
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ratio of S
G  and the strength S

H of the scalar -q q channel 

coupling i.e. 2( )qqS
L  becomes 

[ ]( )3( 1)/4 2/ / .
S S c c

G H N N= −        (25) 

Based on the general criterion given in [18], if there exist 

the -q q  condensates alone in the vacuum, then the condition 

2/ /
S S c

G H N> must be satisfied, and from (25), this implies 

that 3 1( )/4 1    
c

N − > and it leads to 7 3 /
c

N > . Therefore, if

3 
c

N ≥ , the vacuum of the system will in fact only be in a 

-q q  condensate phase, even though the originally given 

interaction (23) is a pure scalar q-q channel coupling. On the 

other hand, if 2 7 3    /
c

N = < , we will have 2/ /
S S c

G H N< , 

however, owing to 0
S

G ≠ , theoretically one could just 

acquire a mixed phase with both -q q  and -q q  condensates, 

since in 2D case, it was proven that one could get pure -q q  

condensate phase in the vacuum only if 0
S

G =  [18]. 

4. 3D Four    Fermion Interactions 

4.1. Scalar and Isovector Antiquark-Quark Channel 

Couplings 

Since there is not 5
γ  matrix in 3D spacetime, the 

similarities of (1) and (13) in 4D and 2D case will be the 

Lagrangian expressed by  

2 2

3( )
( ) ( )

S S a
G qq q qτ τ+  = + L         (26) 

which is ( ) ( ) (1)
c c f f f

SU N SU N U⊗ ⊗ invariant. For 

convenience, the coupling strengths of the two terms in

3( )S Sτ+L  are assumed to be equal, but physically this is not 

essential. When 2
f

N = , by (A.14) and (A.17), the Fierz 

rearranged 

2 2

3( )

2 2

( ) ( )

                ( ) ( )
2

ex

S S

c

a a

G
qq q q

N

G
q q q q

µ
τ

µ

γ

λ γ λ

+

′ ′

 = − + 

 − + 

L

        (26a) 

and by (A.15) and (A.18), the Fierz rearranged 

( ){
( ) }

3( )
( )( )+ 1

4

     ( )( )+ 1  

,

qq c c

S S A a A a s

a S A

c c

S a S a s

G
q q q q

q q q q

µ
τ

µ

τ λ τ λ γ

τ λ τ λ γ

′ ′+
′ ′ ′=

′ ′

 = → 

 − → 

∑L

 (26b) 

Thus the total effective Lagrangian becomes  

( )

2 2

3( ) 3( ) 3( ) 3( )
= ( ) + ( ) ( )( ) +  ,

1 1     4/ , , / .

eff ex qq c c

S S S S S S S S S S a P A A A A

S c S P

G qq G q q H q q q q

G N G G G H G

τ τ τ τ τ

τ

τ τ λ τ λ′ ′+ + + += + + +

= − = =

L L L L ⋯
   (27) 

It should be indicated that, after the Fierz transformations, two 

maximal attractive channel couplings are still the terms 2( )qq  

and 2( )
a

q qτ contained in the original 3( )S Sτ+L . However, the 

two terms with the same coupling constant G  in 3( )S Sτ+L  

now have different coupling strengths S S
G G τ< . This implies 

that in the resulting 3( )

eff

S Sτ+L  the maximal attractive channel 

coupling will actually be the term 2( )
a

q qτ rather than the term 

2( )qq . So it is more reasonable to assume that the condensates 

a
q qτ  are formed more easily than the condensates qq , 

and this will lead to spontaneous breaking of the flavor 

( )
f f

SU N  (for 2
f

N =  i.e. isospin) symmetry. In this case 

we must replace the order parameter 2
S

G qqσ = −  by 

3
2

S
G q qτσ τ= −  (it is possible to fix the condensates in the 

3
τ direction through a rotation in isospin space). However, it 

may be proven that the derived expression for the effective 

potential of the model containing the new σ  will keep 

unchanged in form, hence the conclusions reached in [18] 

about interplay between the -q q  and -q q  condensates in 

the ground state (vacuum) is still true, the mere change is to 

replace the scalar channel coupling constant S
G  by the scalar 

isovector channel constant S
G τ  .  

Since 

4 2/ / ,
S P c

G H Nτ = >           (28) 

we can immediately conclude that although the Fierz 

transformations may bring about the -q q channel coupling 

corresponding to P
H  , it is still impossible to form the 

pseudoscalar diquark condensates 
c

A A
q qτ λ ′  in the vacuum 

and the vacuum could only be in the 3
q qτ  condenstate 

phase. 

4.2. Four    Fermion Interactions from Heavy Gluon 

Exchange 

The Lagrangian is given by  

( )( )3( )V a a
g q q q qµ

λ µγ λ γ λ= − ,    (29) 

where µγ is 2 × 2 matrices in 3D spacetime. When 2
f

N = , 

the Fierz rearranged 
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( ) ( ) ( ) ( )

( )

23
2 22 2

3( ) 2
0

2 2

13

4 2 4

3 1 2  / ,

ex c
V S a a a a a a

a c c c

S c c

Ng g
G q q q q g q q q q

N N N

G N g N

µ µ
λ τ τ λ γ τ γ τ λ′ ′

=

 −
= − − + 

 

= −

∑L

                  (29a) 

and 

( )

( )

( )

3( )

3 1 1
( )( ) ( )( ) ( )( )

4 4

1
+ ( )( ) +

4

              3 1 4  

,

/ .

cqq c c c c c cc
V P A A A A A S A S A A A A

c c

c cc
A S A S A S

c

P c c

N N
H q q q q g q q q q g q q q q

N N

N
g q q q q

N

H N g N

µ
λ µ

µ
µ

τ λ τ λ τ λ τ λ γ τ λ γ τ λ

γ τ λ γ τ λ τ τ

′ ′ ′ ′ ′ ′

′ ′

− += − −

− →

= +

L

     (29b) 

Thus the total effective Lagrangian becomes 

( )

3( ) 3( ) 3( ) 3( )

2 2

2

         [( ) +( ) ]+ ( )( )

             1 1 4 ( )  / .

eff ex qq

V V V V

c c

S a P A A A A

c a

G qq q q H q q q q

N g q q

λ λ λ λ

µ

τ τ λ τ λ
γ λ

′ ′

′

= + +

=

− − +

L L L L

⋯

  

Since the ratio  

2( 1)/ 2   for   2 / / , ,
S P c c c c

G H N N N N= − > >   (30) 

we can assert that there could not be the diquark condensates 

in the vacuum of the model if 3
c

N ≥  [18]. 

4.3. Pseudoscalar Diquark Channel Coupling 

The corresponding Lagrangian is given by 

3( )
( )( ).

qq

c c

P P A A A A
H q q q qτ λ τ λ′ ′=L        (31) 

By using the converse matrices (A.16) and (A.19) in the 

Appendix, we may obtain the Fierz rearranged form 3( )qq

qq

P
L  of 

(31) from -q q  channel to -q q  channel, and then by (A.14) 

in the Appendix get its exchange terms 3( ) 3( )qq qq

qq ex qq

P P

− =L L , thus 

when 2
f

N = , their sum becomes  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

3( ) 3( )

1
1   

2 4
,

qq qq

qq qq ex c P
P P P a a a a s S a S

c

N H
H q q qq q q q q G q q G qq

N

µ
ττ λ τ λ γ τ−

′ ′
−    + = − + − − → = + +

   
L L ⋯  (32) 

where ( 1) 2 0/
S c P c S

G N H N Gτ = − = − > ，this implies that 

only the term ( )2

a
q qτ  is a (maximally) attractive interaction 

which could induce the isovector condensates a
q qτ . As has 

been indicated in the sector of scalar and isovector -q q  

channel couplings, making the substitutions a
qq q qτ→  

and S S
G G τ→  , we can conduct the same discussions and 

reach the same conclusions as the ones obtained in [18，24 ] 

about interplay between the -q q  and -q q condensates. A 

special feature is now that the induced coupling constant S
G τ  

depends on P
H  and c

N . Let 3
2

S
G q qτσ τ= −  and ∆  

represent the order parameters respectively corresponding to 

the -q q  and -q q  condensates, then the conclusion (34) in 

[18, 24] will be reduced to the following equation which 

shows the least value points of the effective potential 

3
( ),V σ ∆  being at  

( ) ( )
( )

1

1

0 4 51 8if
 

if 50 1 2( 1),

cP

cP c

NH

NH N
σ

σ

 ∆ ≤ <>∆ =  >> −

ɶ

ɶ

, , /
,

, , /
 (33) 

where 2

3
/

P P
H H π≡ Λɶ , 3

Λ  is the 3D Euclidean momentum 

cutoff of the loop integrals. It is indicated that 5
c

N =  

corresponds to 2/ /
S P c

G H Nτ = . We see from (33) that the 

four fermion interactions used to describe pure pseudoscalar 

diquark condensates, after the converse Fierz transformations, 

will induce the -q q channel coupling term 2( )
a

q qτ  and lead to 

interplay between the -q q  and -q q  condensates in the 

ground state. In this model, besides enough coupling strength 

P
Hɶ , the -q q condensates could be formed only if 4 5

c
N ≤ <  

and in that case the ground state could be in a pure -q q

condensate phase; however, once 5
c

N >  and untill 

c
N → ∞ , we will be able to get merely the -q q condensates 

a
q qτ  instead of the diquark condensates.  

5. Conclusions 

In this paper, we have theoretically analyzed possible 

effects of the Fierz transformations on the vacua of several 

given typical 4D, 2D and 3D two flavor and cN color four 
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fermion interaction models. The results can be summarized as 

follows.  

It is shown that after the Fierz transformations, the 4D and 

2D scalar and pseudoscalar isovector couplings keep to be the 

maximal attractive ones with the strength S
G , and some 

scalar diquark channel couplings with the strength S
H will be 

induced; in the case of 3D scalar and isovector coupling with 

equal strength, the isovector coupling will become the 

maximal attractive one with the strength S
G τ and one also gets 

the induced pseudoscalar -q q  channel coupling with the 

strength P
H . However, it is found that the resulting ratios 

/
S S

G H  and /
S P

G Hτ  are both always greater than the 

critical value 2 /
c

N . This indicates that no diquark 

condensates could be generated in the vacua of these models, 

hence the above interaction models will maintain to be the 

ones merely to describe possible -q q  condensates. The 

above results are valid for any c
N . 

For the four fermion interactions from heavy gluon 

exchange, no matter in 4D or 2D or 3D case, after the Fierz 

transformations, we will always get the ratio of the induced 

scalar -q q  channel coupling strength S
G  and the induced 

4D and 2D scalar or 3D pseudoscalar -q q  channel coupling 

strength S
H or P

H  expressed by 

2( 1)// / .
S S S P c c

G H G H N N= = −   

On the same ground as the above, if 3
c

N ≥ , this removes 

the possibility to emerge the diquarnk condensates from the 

vacua and only the -q q condensates could exist in the vacua. 

When the starting points are the pure diquark scalar or 

pseudoscalar channel couplings with the strengths S
H or P

H , 

the nontrivial effects of the Fierz transformations on the vacua 

will be displayed. Owing to the converse Fierz 

transformations, we will get the induced -q q channel 

couplings including the exchange terms with the strength S
G  

or S
G τ and this is bound to lead to interplay between the -q q  

and -q q  condensates. We have found that, independent of 

dimensionality of spacetime, the expected -q q condensates 

could emerge from the vacua only if 0

c c
N N< , a critical value 

determined by the conditions 2/ /
S S c

G H N<  or /
S P

G H

2 /
c

N<  which is 9, 7/3 and 5 for 4D, 2D and 3D case 

respectively. 

In 4D case, when 9
c

N < , only if the coupling strength S
H

is less than some c
N dependent critical value, we may get a 

pure -q q condensate phase, otherwise , we will obtain a 

coexistence phase with the -q q and -q q  condensates. For 

the realistic case of 3
c

N = , the above critical value of S
H

corresponds to 2 2 5/
S

H πΛ = . Hence, owing to the Fierz 

transformations, a sufficiently strong -q q  channel coupling 

could lead to not the expected pure -q q condensates, instead 

only a coexistence of the -q q  and -q q condensates in the 

vacuum. In 2D case, even if 7 3/
c

N < , we can only obtain a 

coexistence phase with the two condensates. In 3D case, only 

under the condition 4 5
c

N ≤ <  we may have a pure -q q

condensate phase. 

Once 0

c c
N N> , until c

N → ∞ , in all cases we will obtain 

only the -q q  condensates and no the -q q  condensates in 

the vacua, though the original purpose to introduce the pure 
-q q  channel couplings is to deal with the diquark 

condensates.  

The above results show that for the models which originally 

do not contain the diquark channel couplings, it seems to be 

unnecessary for us to worry about the occurrence of the 

diquark condensates in the vacua through the Fierz 

transformations. However, for a model of given diquark 

channel couplings, for example, in 4D spacetime, one must 

note that the expected pure diquark condensates could appear 

only in the case of weak coupling and some small c
N , and 

this is just the nontrivial effect of the Fierz transformations on 

the model’s vacuum to which now one must pay special 

attention. In addition, if one attempts to extend the above 

analysis based on the mean field approximation to higher 

order correction of the 1 /
c

N  expansion, then because the 

above effects induced by the Fierz transformations depend on 

the value of c
N , more careful consideration must be 

conducted. 

The analysis made in this paper can be extended to the case 

of finite temperature and finite quark chemical potential where 

the Fierz transformations will lead to the interplay between the 

thermal -q q  and -q q condensates which could or could not 

affect the feature of the ground state of a thermal four fermion 

interaction model. 

In this paper, we only research some special 2 flavor and 

c
N color four fermion models, however, the discussions may 

be of more general significance for any 2 flavor and c
N color 

four fermion model, since for any given such model, the Fierz 

transformations can always lead to scalar -q q  and scalar or 

pseudoscalar -q q  channel coupling and induce the interplay 

between the corresponding condensates in the ground state. In 

addition, similar or possibly different effects may be assumed 

to emerge from more general four fermion interaction models 

with dynamical symmetry breaking. It is just the above 

research which, for the first time, connects the Fierz trans- 

formations with the ground states of a class of four fermion 

interaction models with dynamical symmetry breaking thus 

provides us a new angle of view to inspect this class of models. 

In any case, theoretically, the possible ground state effects of 

the Fierz transformations should become an implicit factor to 

build and treat such class of models.  

Appendix: Fierz Transformations 

The Fierz transformations in Dirac spinor space of 4D 

spacetime and in ( )U N space can be found in Appendix A of 

[13]. However, for this paper to be selfcontained and 

convenience of use, we will still give a brief introduction of 

the Fierz transformations and list all the necessary explicit 

expressions for the transformations, including the new results 
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in spinor space of 2D and 3D spacetime and the converse 

forms of all the nonselfconverse Fierz transformations.  

Consider a local four fermion interaction of spinor fields 

( )q q x≡  with f
N flavors and c

N colors, the corresponding 

Lagrangian is 

( )2

12 34 1 2 3 4
,

a a a

int
g q q g q q q q= Γ = Γ ΓL      (A.1) 

where g is the coupling constant, aΓ is outer product of the 

linearly independent matrices in spinor, flavor ( )
f f

U N  and 

color ( )
c c

U N  space, the numbers 1, 2, 3 and 4 represent the 

indices of the elements of aΓ , for instance, the number 1 can 

represent 1 1 1
s f c for the product matrix , or 1

s , 1
f and 1

c  

when aΓ is separately limited to the matrix acting on spin, 

flavor and color space etc. and an index repeated always 

means its summing. In view of anticommutativity of the 

fermion fields q , (A.1) may be rewritten by  

12 34 1 4 3 2
: a a ex

int int
g q q q q= − Γ Γ =L L         (A.2) 

or 

12 34 1 3 4 2
: a a qq

int int
g q q q q= Γ Γ =L L         (A.3) 

In the above expressions, we will restrict ourselves to 

Hartree-type approximation, for example, in (A.2), 1
q is 

contracted with 4
q and 3

q is contracted with 2
q  thus ex

int
L  

will give exchange diagram of int
L , and in (A.3), 1

q is 

contracted with 3
q and 4

q is contracted with 2
q  thus qq

int
L  

will give the coupling term of antiquark-antiquark ( )-q q  and 

quark-quark ( )-q q . For this purpose, in (A.2) we must rewrite 

the matrices 

12 34 14 32
,

a a a b b

b

b

cΓ Γ = Γ Γ∑          (A.4) 

Where b  runs over all the linearly independent matrices 
bΓ . 

In this paper, (A.4) will be called the Fierz transformation 

of the - -q q q q→ channel. By means of (A.4), (A.2) becomes 

( )2

.
ex a b

int b

b

g c q q= − Γ∑L       (A.5) 

On the other hand, in (A.3) we must rewrite the matrices  

( ) ( )12 34 13 42
,

a a a b b

b

b

d C CΓ Γ = Γ Γ∑     (A.6) 

where C  is the charge conjugate matrix in spinor space. 

Equation (A.6) will be called the Fierz transformation of the
- -q q q q→ channel. By means of (A.6), (A.3) becomes 

( ) ( ) ,
qq a b c c b

int b

b

g d q q q q= Γ Γ∑L     (A.7) 

where Tcq Cq= and Tcq q C=  are charge conjugates of the 

fields q and q  respectively. 

The problem to solve the Fierz transformations is reduced 

to calculate the expansion coefficients a

b
c  and a

b
d  in (A.4) 

and (A.6). In view of the outer product feature of aΓ  and the 

similarity of the group ( )f fU N  and ( )
c c

U N , we can 

consider separately the cases of that aΓ are the matrices in 

spinor space and that { }1,
a

a
τΓ =  with 1 as the unit matrix 

and τa(a = 1, · · · , N − 1) as the generators of the group 
( )SU N . 

In the following we will give explicit expressions of the 

Fierz transformations, of the matrices in spinor spaces in 4D, 

2D and 3D spacetime and of the U (N ) generators. 

A.1. Matrices in Spinor Space 

A.1.1. 4D Spacetime 

The independent 4 × 4 Dirac matrices are 

5 5
1      ( , =0, 1, 2, 3), , , ,

s
i µ µ µνγ γ γ γ σ µ ν . 

The Fierz tranformationtions become  

( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

4

1 1 1 1 1
12 34 14 32

4 4 4 4 8

1 1 1 1 15 5 5 512 34 14 32
4 4 4 4 8

1 1
34 321 1 012 14

2 2

1 15 5 51 1 03412 142 2

1
3 3 0 0

3412 2

1 1 1 1s s s s

s
qq qq

i i i i

F

µ µ
µ µ

µ µ
µ

µν
µν

γ γ γ γ

γ γ γ γ

γ γ γ γ γ γ γ

σ σ

− −

− − −

− −

− − − −

− −

→

  
  
  
  
  

=   
  
  
  
    

   �����������

( )
( ) ( )

( )
5 32

3214

     - -  channelq q q q

µ

µν
µν

γ

σ σ

 
 
 
 
 

→ 
 
 
 
 
 

     (A.8) 
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( )

4

1 1 1 1 1
5 513 42

4 4 4 4 8

1 1 1 1 1 13 42
4 4 4 4 8

1 1 5 5 421 1 0 13
2 2

1 1
1 1 0 42132 2

1
3 3 0 0

42132

 =      - -  channel

s
qq qq

i C Ci

C C

C C
q q q q

C C

C C

F

µ
µ

µ
µ

µν
µν

γ γ

γ γ γ γ

γ γ

σ σ

− − −

− −

− −

− −

→

  
  
  
  
  

→  
  
  
  
    

  �����������

                (A.9) 

We note that the matrix 4s
qq qqF →  is selfconverse, i.e. 

4 2( ) 1
s

sqq qqF → = , thus for the - -  channelq q q q→ , the 

positive and the converse Fierz transformations are identical. 

However, the same conclusion is not true for the - -  q q q q→  

channel. In fact, the converse of the matrix 4s
qq qqF →  is 

( )4 4

1 4 1 4 1 4 1 4 1 8

1 4 1 4 1 4 1 4 1 81

1 1 1 2 1 2 0

1 1 1 2 1 2 0

3 3 0 0 1 2

/ / / / /

/ / / / /

/ /

/ /

/

s s
qq qq qq qqF F

− −
−−

−→ →
− − −
− −

 
 
 ≡ =
 
  
 

 (A.10) 

which corresponds to the converse of the transformation (A.9). 

Obviously, ( )4 4

1

.
s s

qq qq qq qqF F
−

→ →≠   

A.1.2. 2D Spacetime 

The independent 2 2×  matrices in spinor space are 
0 1

51  ( =0,1),  ,s
µγ µ γ γ γ= , and the charge conjugate matrix 

1C γ= − . One adoption of µγ  is that 0 3 1 2 , iγ σ γ σ= =  

with Pauli matrices iσ  ( 1 2 3), ,i = . The Fierz transformations 

become 

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

2

1 1 1

2 2 212 34 14 32
1 1 1

5 5 5 512 34 14 322 2 2

1 1 034 3212 14

1 1 1 1

     - -  channel

s s s s

s
qq qq

i i i i q q q q

F

µ µ
µ µ

γ γ γ γ

γ γ γ γ

−

−

→

    
    
    = →    
    

    
    �������

                    (A.11) 

( ) ( )
( ) ( )

( ) ( )
( )

2

1 1 1

2 2 2 5 513 42
1 1 1

13 422 2 2

1 1 0 4213

=      - -  channel

s
qq qq

i C Ci

C C q q q q

C C

F

µ
µ

γ γ

γ γ

− −

−

→

  
  
   →  
  

   
   �������

                    (A.12) 

 

It is also indicated that 2 2 1( )
s s
qq qq qq qqF F −

→ →=  is 

selfconverse, but 2
s
qq qqF →  is not, the latter’s converse is 

2 2

1 1 1

2 2 2

1 1 11

2 2 2

1 1 0

( )
s s

qq qq qq qqF F− − −→ →

−

 
 
 ≡ =  
 
 
 

      (A.13) 

which leads to the converse of the transformation (A.12).  

A.1.3. 3D Spacetime  

The independent 2 2×  matrices in spinor space are 

1  ( =0,1,2),s
µγ µ  and the charge conjugate matrix 2C γ= , 

but no 5γ  exists. One adoption of µγ is that 0 3γ σ= , 

1 1iγ σ= , 2 2iγ σ=  with the Pauli matrices ( 1 2 3), ,
i iσ = . 

The Fierz transformations are  

( ) ( )

( ) ( )
( ) ( )

( ) ( )
3

1 1
12 34 14 32

2 2

3 1
34 3212 142 2

1 1 1 1

     ( - -  channel)
s s s s

s
qq qq

q q q q

F

µ µ
µ µγ γ γ γ−

→

    
    = →            �����

                        (A.14) 
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( ) ( )

( ) ( )
3

1 1
13 42

2 2

3 1
42132 2

=      ( - -  channel)

s
qq qq

C C

q q q q
C C

F

µ
µγ γ

− −

−

→

  
   →      �����

 (A.15) 

Similarly, the matrix 3
s
qq qqF →  is selfconverse, but 3

s
qq qqF →  

is not. The converse of the latter is 

3 3

1 1

1 2 2

3 1

2 2

( )
s s

qq qq qq qqF F
−

−
→ →

− −

 
 ≡ =  
 
 

        (A.16) 

which will generate the converse of the transformation (A.15).  

A.2 Generators of U(N) 

We denote the generators of the group ( )SU N  by aτ  

( 1 1), ,a N= −⋯  and denote 0 2  1/ Nτ ≡ , where 1 is the 

N N×  unit matrix, they are normalized by Tr 2a b abτ τ δ= . 

The Fierz transformations may be expressed by  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

12 34 14 32

12 34 14 32

( )

1 1 21 1 1 1
       ( - -  channel)

2 22( 1) 1a a a a

U N
qq qq

N
q q q q

N N N

F

τ τ τ τ

→

    
   = → 

    −    �����������

/ /

/ /            (A.17) 

( ) ( )
( ) ( )

13 42

13 42

( )

1 2 1 2
 =        ( - -  channel)

( 1) ( 1)

S S

A A

U N
qq qq

q q q q
N N N N

F

τ τ

τ τ

→

  
  →  − − +  �������������

/ /

/ /                 (A.18) 

In (A.18) Sτ  (including 0τ ) and Aτ  are respectively 

symmetric and antisymmetric generators of ( )U N . It is 

indicated that the matrix 
( )U N

qq qqF →  is selfconverse, but 

( )U N
qq qqF →  is not. The converse of the latter is  

( ) ( )1
)

( 1) 1 2
(

( 1) 1 2

U N U N
qq qq qq qq

N N
F F

N N

− =→ →
+ 

≡  − − 

/ /

/ /
 (A.19) 

which corresponds to the ( )U N  Fierz transformation of 

qq qq→  channel. 

It is emphasized that in the discussions of this paper, when 

( )U N  is considered as the flavor-related group ( )f fU N , 

the generators will be denoted by (1 ),f aτ  or ( , )S Aτ τ and 

when ( )U N  is considered as the color-related group ( )c cU N , 

the generators will be denoted by 1 )( ,c aλ  or ( ),S Aλ λ . 
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