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Abstract: This article focuses mainly on DNA mixture from two contributors, a victim and an unknown culprit. There are 

two areas I believe will be of interest to forensic scientists, police and a Jury. These areas are identification of an individual in a 

DNA mixture and familial DNA database searching of a culprit through a relative. In this article, I looked at identification of 

individuals in a mixture using Single Nucleotide Polymorphisms (SNPs) markers. SNPs are starting to be used for forensic 

identification; I employed them as they produce incredible results for identification in a two-person mixture. The conservative 

method I employed here is the random man not excluded probability – P (RMNE) approach, an inclusion probability method 

generally considered as a frequentist approach. It was found that an optimum allele frequency of 0.2 is required to produce 

almost certain identification with much distortion in identifying an individual even when inbreeding is up to 50% in a 

population. Another interesting thing is that relatives of a suspect whom are actual contributors to the DNA mixture can also be 

identified. In a case where there are relatives in the mixture it was found that twice the number of SNP panels is required to 

identify an individual than in a case where no relative is involved. And lastly, typing more SNP panels helps to improve 

identification and therefore produce forensically useful results. 
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1. Introduction 

The use of Single Nucleotide Polymorphisms (SNPs) 

markers in human identification is fast growing in the 

forensic field as the attention of forensic scientists and 

researchers is being drawn to this marker. SNP markers are 

the most abundant in the human genome. These make it easy 

to multiplex hundreds of thousands of them. They have a 

fairly low mutation rate compared to Short Tandem Repeat 

(STR) markers which is an advantage in terms of genetic 

stability which brightens the future of SNP markers for 

forensic work [1]. 

It is a known fact that SNPs are one of the most common 

genotyping markers apart from STR loci, which are the 

predominant loci used for identification. The crimes 

databases kept by countries were typed using STR loci. 

However, there are some draw backs to when STR loci are 

used. For instance, if I have a degraded DNA sample from a 

mass disaster, say from a plane crash, it will be difficult to 

obtain genetic information from this sample. This degraded 

DNA sample means that when typed with STR loci, little or 

no genetic information is obtained (which is not informative). 

Consequently, STR mitochondria DNA typing was 

developed to take care of the lapses caused by degraded 

DNA samples, though it is costly and time consuming [2]. 

This is where SNP markers come in. They are relatively 

cheap and less time consuming because of their abundance in 

the genome, yet they provide adequate genetic information 

needed as appropriate from a degraded sample. 

Prior to the use of SNPs for identification they were 

mainly used in genetics and evolution, biomedical research 

into diseases and drugs. Under identity testing, SNPs are 

prominently used for paternity testing, mass disaster and 

missing persons [3-5]. A complicated scenario is when SNPs 

are intended for identification in a mixture, this has been a 

subject of debate as to their use for mixtures. Since most SNP 

markers are bi-allelic, the two allele loci are not very 

informative in the identification of individuals in a mixture 

[1]. Butler et al [1] further state that apart from being 
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unreliable for mixture interpretation, the possibilities of SNP 

taking over as the predominant marker for human 

identification in forensic case work is still far from possible.  

However, more recently, researchers and forensic scientists 

have started to come out with methods for identification of 

humans in a mixture with SNP genotyping [6, 7]. A paper by 

Voskoboinik and Darvasi [8] presented a frame work that 

requires typing between 1000 and 3000 SNP panels, each 

with relatively low minor allele frequency, the idea being that 

an individual is expected to carry dozens of rare alleles, and 

this set of alleles will be carried in the complex mixture 

provided an individual with the alleles is a contributor to the 

mixture.  

Voskoboinik and Darvasi [8] have tried to look at a 

mixture of up to ten contributors, different numbers of 

independent SNPs and varying minor allele frequencies. As 

said from previous chapters I shall only be considering a two-

person mixture, and this will not change. However, there are 

other areas which I think will be of interest to look at; these 

include consanguinity in the population through 

incorporation of an inbreeding model. I will look at how 

results compare in both consanguineous and non-

consanguineous populations. Another thing they looked at in 

the article is the presence of a close relative (brother) in the 

mixture; I shall extend it to look at fathers. 

2. Materials and Method 

The Likelihood Ratio (LR) [9] is the most widely used 

recommended approach for interpretation of mixtures. It is 

case specific in the sense that it requires the profile of an 

arrested suspect or profile of a database person to be 

compared with the mixture in order to calculate the 

likelihood ratios. However, there is a frequentist approach to 

the interpretation of the mixture; this approach is called the 

Random Man Not Excluded-RMNE approach.  

The RMNE method is mainly a probability calculation -

P(RMNE), where a random person would not be excluded as 

a contributor to an observed DNA mixture, also known as the 

Inclusion probability [10]. 

Unlike the likelihood ratio, P (RMNE) is rather a 

conservative approach which will produce similar results as a 

likelihood ratio provided there are no dropouts and 

genotyping errors are avoided. 

The Random man not excluded probability is given by [8]: 

( )( ) ( ) ( )
n

lP RMNE P ij P ij= ×                         (1) 

where n  is the number of contributors at locus l , so for a 

two-person contributor to a mixture it will be written as

( )2
( ) ( ) ( )lP RMNE P ij P ij= × . The multi-locus random man 

not excluded probability across L SNP panels will then be 

written as 

( )( )2

1

( ) ( ) ( )

L

l

P RMNE P ij P ij

=

= ×∏                 (2) 

Note that this requires an estimate of genotype frequency. 

The basic thing about this approach is that we are only 

interested in the overall P(RMNE) calculation. One needs to 

make sure that there are no exclusions by making sure that 

we do not miss out any genotype at each mixture profile. 

Since SNP markers are not as polymorphic as their STR loci 

counterparts, the maximum mixture length is two (mixture 

profile AB) for any SNP panel; this makes it easy to follow 

through. Table 1 contains the entire genotype possibilities of 

a random man not excluded for each mixture scenario with 

their probabilities we sum them together to give an overall 

random man not excluded probability. The smaller the value 

of the P(RMNE) the bigger, we would expect the evidence to 

be that a suspect is an actual contributor to the DNA mixture 

given that a non-DNA evidence has been established against 

the suspect. So P(RMNE) is a way to find how many loci are 

needed for strong evidence. We cite an instance of how to go 

about the calculation in Table 1, taking for example mixture 

AB and a typed victim with genotype AA. Upon seeing this 

mixture and victim profiles, allele ‘B’ must be coming from 

the culprit which could either mean the culprit has AB or BB 

genotype. For each of AB or BB that could be the culprit’s 

genotype, a RMNE will have genotypes AB or BB. So 

P(RMNE) under a mixture AB and victim AA is;  

( ) ( ){ }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P AA P BB P AB P BB P AA P AB P AB P BB× × + + × × +                                          (3) 

Assuming Hardy-Weinberg equilibrium; 

2 2 2 3 2( 2 ) 2 ( 2 )A B B A B A B B A BP P P P P P P P P P+ + +                     (4) 

We decided to split it into in Table 1 so as to follow 

through easily. The reason that most suspects prefer evidence 

to be calculated using the RMNE approach is that since the 

defence hypothesis is usually never known; it does not 

depend on or make use of the suspect’s DNA profile [10]. It 

is far easier than a likelihood ratio to explain to the jury 

whom may not have an idea of how the calculations work. 

Table 1. P(RMNE) for unrelated two-person mixture (Assuming Hardy-Weinberg). 

Mixture profile Victim profile Culprit profile RMNE Inclusion Probability 

A AA AA AA 
6

A
P  

B BB BB BB 
6

B
P  

AB AA 
BB  BB or AB 

2 2 2(1 )
A B A

P P P−  

AB BB or AB 
3 22 (1 )

A B A
P P P−
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Mixture profile Victim profile Culprit profile RMNE Inclusion Probability 

BB 
AA  AA or AB 

2 2 2(1 )A B BP P P−  

AB AA or AB 
3 22 (1 )A B BP P P−

 

AB 

AA  AA or BB or AB 
32 A BP P  

 BB  AA or BB or AB 
32 A BP P

 

AB AA or BB or AB 
2 24 A BP P

 

Overall Inclusion Probability P(RMNE) 
 

6 6 2 2 2 2 3 2 3 2(6 ) 2 (2 ) 2 (2 )A B A B A B A B A A B BP P P P P P P P P P P P+ + − − + − + −  

 

3. Results and Discussion 

3.1. Effect of Minor Allele Frequencies and Different 

Number of SNP Panels on Random Man Not Excluded 

Probability 

Using Table 1 we intend to look at how minor allele 

frequencies and different numbers of SNP panels affect the 

P(RMNE) calculation. As I have stated in Section 2 above, as 

the value of P(RMNE) becomes smaller the more the 

evidence that an arrested suspect does contribute to the 

mixture. Small values between zero and one would not be 

very easy to keep track of so we have converted to the – log 

scale for convenience. We see from Figure 1 that when more 

SNP panels are used there is a great and significant impact on 

the improvement of – log P(RMNE). Foreman and Evett [11] 

proposed in their paper that a value of 10
-9

 as the standard 

report match probability for a ten locus STR system. A value 

of 10
-9

 for P(RMNE) can also be said with utmost certainty 

that a suspect not excluded from being a contributor to a 

mixture is actually a contributor to the DNA mixture [8]. If 

we are to go by this, then a 100 SNP panel will be sufficient 

to say a suspect not excluded from being a contributor to a 

mixture is actually a contributor to the DNA mixture. The 

relationship between –log P(RMNE) on the y-axis and 

different numbers of SNPs on the x-axis is linear (as SNPs 

increase the value of –log P(RMNE) increases as well). 

As allele frequencies are important in STR loci, so are they 

in SNP panels. Different populations may have different 

allele frequencies for the SNP and the calculation of random 

man not exclude probability depends on it. If one of the two 

allele frequencies is known, then the second is one minus the 

allele frequency of the first. We did look at a range of allele 

frequencies (0.1 – 0.5) in the calculations of P(RMNE). 

Budowle and van Daal [2] proposed using allele frequencies 

close to 0.5, the reason was for an increase in statistical 

power, but the graph in Figure 1 was able to show that an 

allele frequency of 0.5 leads to a decrease in –log P(RMNE). 

An allele frequency of 0.2 stood out amongst others to be 

optimal as in increasing the value of –log P(RMNE), even as 

the number of SNPs increases it improves the value of –log 

P(RMNE) progressively as well. 

Voskoboinik and Darvasi [8] gave the equation of 

calculating optimal the minor allele frequency as; 

1
1

n
MAF

n
= −

+
                                (5) 

where n is the number of contributors 

Upon inserting n=2 into that equation MAF=0.18, which is 

approximately 0.2, and this further confirms the optimality of 

the allele frequency of 0.2 and the essence of finding the 

right allele frequencies. As can be seen from both Figures 1 

and 2 the 0.5 allele frequency shows the least improvement 

in –log P (RMNE) as the SNP panel increases. From now on 

we will focus on allele frequencies 0.2 and 0.5. We will see 

how these two allele frequencies fare when we consider other 

components like consanguinity and close relatives in the 

mixture in the coming sub sections. 

 
Figure 1. –Log P(RMNE) as a function of different SNP panels for different number of minor alleles. 
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Note that the plot in Figure 2 is an extension of Figure 1 

simply by looking at a number of allele frequencies from 

0.005 through 0.5 with an interval of 0.005 between them. 

We are able to find out that allele frequencies above 0.06 will 

do better at identifying an individual in a DNA mixture. 

However, the bone of contention here for us is to find the 

right allele frequencies in order to accurately estimate the 

P(RMNE). We have seen that 0.2 is good for the simple 

setting, but what about the other settings? 

 

Figure 2. Density plot of –Log P(RMNE) as a function of minor allele frequencies for different number SNP panels. 

3.2. Effect of Consanguinity in the DNA Mixture 

Bittles and Saggar [12] gave estimates of consanguinity in 

the populations in the world with North America, Western 

Europe and Oceania having the least consanguineous 

marriage rate <1%. Southern Europe, Japan and South 

America have between 1 and 5%. Consanguineous marriage 

is at its peak in the Middle East (Arab Nations) and parts of 

North Africa which can be up to 50% or more. With 

consanguineous marriage will come excess homozygosity in 

the population, which leads to deviation from Hardy-

Weinberg equilibrium. In order for it to be valid inbreeding 

has to be incorporated into the genotype proportions. 

( ) ( (1 ) )A AP AA P f f P= + −                                 (6) 

( ) 2 (1 )A BP AB P P f= −                                    (7) 

where f is the inbreeding coefficient. 

A look at Table 2 shows that it takes the same format as 

Table 1 only that inbreeding has been incorporated into the 

Hardy-Weinberg proportions. If f is set to zero it is exactly 

the same as the contents of Table 1. 

In Figure 3 (a) different levels of f were looked into as 

consanguinity varies between populations. The levels of 

inbreeding considered were 1%, 10%, 20% and 50%. A 

population such as that of the UK with an inbreeding 

coefficient ≤ 1% can still be tagged as no consanguinity (f = 

0) because there is no reasonable difference between it and 

when f = 0. The same thing that applies to the case when f = 

0 is seen for f = 0.01, which is again an allele frequency of 

0.2 represents the optimum.  

As can be seen in Figure 3 (b) and (c), the picture looks 

fairly similar, though as we move towards an allele 

frequency of 0.5 there is a significant improvement in the 

value of –Log P(RMNE). This can be seen clearly in Figure 

3 (c) suggesting that an increase in f will lead to an increase 

in –Log P(RMNE) value as we move towards the 0.5 allele 

frequency. Another thing that might be of interest is that 

when an allele frequency of 0.2 was looked at for all values 

of the inbreeding coefficient, there does not seem to be 

much difference in the corresponding value of –Log 

P(RMNE), unlike what we noticed in the case of the 0.5 

allele frequency. 

The plot for Figure 3 (d) looks very much like a projectile 

motion which attained a maximum height at allele frequency 

of 0.25 and remained steady up and till allele frequency of 

0.5. One thing can be said of this is that in a population 

where consanguineous marriage persists reaching up to 50%, 

a higher choice of allele frequencies is preferred in order to 

identify effectively individuals in a mixture. 

A direct comparison of 0.2 and 0.5 allele frequencies is 

hereby presented in a cluster bar chart for the different levels 

of inbreeding coefficients in Figure 4. As can be seen for the 

choice of 0.2 allele frequencies there is not much difference 

in the value of –Log P(RMNE) for different values of the 

inbreeding coefficient and even when f is at 50%. This 

cannot be said for the 0.5 allele frequency, as which its value 

for –log P(RMNE) when f = 0 or 0.01 is slightly above half 

the value of its 0.2 allele frequency counterpart. There is 

improvement in the value of –log P(RMNE) as f increases to 

0.5.  
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Table 2. P(RMNE) for unrelated two-person mixture with incorporation of inbreeding. 

Mixture profile Victim profile Culprit profile RMNE Inclusion Probability 

A AA AA AA ( ) 3

(1 )A AP f f P + −   

B BB BB BB ( ) 3

(1 )B BP f f P + −   

AB 

AA 
BB BB or AB ( ) ( ) ( )2 (1 ) . (1 ) . 1 (1 )A B A B AP P f f P f f P f P+ − + − + −  

AB BB or AB ( ) ( ) ( )2 22 (1 ) . 1 . 1 (1 )A B A AP P f f P f f P+ − − + −
 

BB 
AA  AA or AB ( ) ( ) ( )2 (1 ) . (1 ) . 1 (1 )A B A B BP P f f P f f P f P+ − + − + −  

AB AA or AB ( ) ( ) ( )2 22 (1 ) . 1 . 1 (1 )A B B BP P f f P f f P+ − − + −
 

AB 

AA  AA or BB or AB ( ) ( ) ( ){ }2
2 (1 ). (1 ) . (1 ) 1 (1 )A B A A A B AP P f f f P P f f P P f P− + − + − + + −  

 BB  AA or BB or AB ( ) ( ) ( ){ }2
2 (1 ). (1 ) . (1 ) 1 (1 )A B B A A B AP P f f f P P f f P P f P− + − + − + + −

 

AB AA or BB or AB ( ) ( ){ }2 2 2
4 (1 ) . (1 ) 1 (1 )A B A A B AP P f P f f P P f P− + − + + −

 

Overall Inclusion Probability P(RMNE) 
 

( )( ) ( )( )
( ) ( ) ( )( )

( ) ( )

3 3

2 22 2

2

(1 ) (1 )

(1 ) . 1 (1 ) (1 ) 1 (1 )

2 (1 ) (1 ) 1 (1 )

A A B B

A B A A A B B B

A B A A B A

P f f P P f f P

P P f f P f P P P f f P f P

P P f P f f P P f P

+ − + + − +

+ − + − + + − + − +

− + − + + −  

 

The choice of 0.5 allele frequency will not be good in a population with low consanguinity for identifying individuals in a 

two-person mixture. An unmistakable fact is that increasing SNP panels will increase –log P(RMNE) for identification in the 

mixture even when consanguinity is at its peak. When the number of SNP panels is doubled there is a corresponding double 

effect on –log P(RMNE) value (higher value shows that an arrested suspect truly is a contributor of the DNA mixture).  

 
Figure 3a. Plot of –Log P(RMNE) as a function of minor allele frequencies for different number SNP panels when inbreeding coefficient (f) is 0.01. 

 
Figure 3b. Plot of –Log P(RMNE) as a function of minor allele frequencies for different number SNP panels when inbreeding coefficient (f) is 0.1. 
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Figure 3c. Plot of –Log P(RMNE) as a function of minor allele frequencies for different number SNP panels when inbreeding coefficient (f) is 0.2. 

 
Figure 3d. Plot of –Log P(RMNE) as a function of minor allele frequencies for different number SNP panels when inbreeding coefficient (f) is 0.5. 

 
Figure 4. A clustered bar chart showing –Log P(RMNE) on the y-axis and level of consanguinity (f = 0, f = 0.01, f = 0.1, f = 0.2 and f = 0.5) in the mixture 

when considering allele frequencies of 0.2 and 0.5 for 500 and 1000 SNP panels (both on x-axis). 

3.3. Effect of the Suspect’s Relative in the DNA Mixture 

Two close relative that can be investigated are the parent 

and sibling. These two relations were the only ones looked at 

in earlier chapters and this chapter will not be an exception. 

In a case where a crime was committed by the father or the 

brother of the arrested suspect, the random man not excluded 

probabilities are calculated for each of the relations simply 

by multiplying Table 1 by the appropriate weight 

representing a relation. Table 3 contains the genotypic 

weights for the relationship that exists between father and 

child. The same process of multiplication is also done for 

siblings where the genotypic weights for it were presented in 

Table 4. Below are Table 5 and Table 6 for the random man 

not excluded probabilities calculations for the two relations 

we are currently looking at. 
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Table 3. Parentage Likelihood ratio for different combinations of genotype. 

Child Father Likelihood Ratio 

AA AA 
1

A
P

 

AA AB 
1

2
A

P
 

AB AA 
1

2
A

P
 

AB AC 
1

4
A

P
 

AB AB 
1 1

4 4
A B

P P
+  

AA BB 
0 AA BC 

AB CD 

Table 4. Sibling Likelihood ratio for different combinations of genotype. 

First sibling Second sibling Likelihood Ratio 

AA AA 2

1 1 1

4 2 4
A A

P P
+ +  

AA AB 
1 1

4 4
A

P
+  

AB AC 2

1 1 1

4 2 4
A A

P P
+ +  

AB AB 
1 1 1 1

4 8 8 8
A B A B

P P P P
+ + +  

AA BB 
1

4
 AA BC 

AB CD 

I was able to produce a plot using 500 and 1000 SNP 

panels for different values of allele frequencies from 0.005 

through 0.5. This is shown in Figure 5 for relations and no 

relations in the mixture. As can be seen from the figure, 

when there is no relation of the suspect half of SNP panels 

required to identify a relation is needed, so far inclusion of a 

relative like father and brother, twice the number of SNP 

panels for no relation is needed. The plot in figure 5 seems to 

be partitioned into 3 segments. Upon looking at the mid 

segment (containing 1000 SNPs-father, 1000 SNPs-brother 

and 500 SNPs- no relative) we can see that the three relations 

in this segment follow almost the same line from 0.05 till it 

reaches the optimum point at 0.2, then there is a gradual 

decrease as we move along other allele frequencies.  

Lastly, a clustered bar chart was put in place to compare 

the 0.2 and 0.5 allele frequencies for the different 

relationships, Figure 6. We can see that the choice of the 0.2 

allele frequency has the upper hand at improving the value of 

–log P(RMNE) in identification of an individual in a mixture 

compared to the 0.5 allele frequency. The highest value of –

log P(RMNE) came for 0.2 an allele frequency under no 

relatives in the mixture, confirming what we saw in Figure 5 

with the others trailing behind. Another thing is that if there 

are no relatives in the mixture one can still use 0.5 allele 

frequency because the –log P(RMNE) produced for 

identification is higher than when there is a relative of the 

suspect in the mixture (but it is not as good as 0.2). 

Identification of a father in a mixture is slightly better than a 

brother.  

 
Figure 5. Density plot of –Log P(RMNE) as a function of minor allele frequencies for comparison among the three relationships (no relative, a father and a 

brother) in the mixture considering only 500 and 1000 SNP panels. 

Table 5. P(RMNE) of a father being part of the two-person mixture (Assuming Hardy-Weinberg). 
 

Mixture profile Victim profile Culprit profile RMNE Inclusion Probability 

A AA AA AA 
5

AP  

B BB BB BB 
5

BP  

AB 

AA 
BB  BB or AB 

2 2

A BP P  

AB BB or AB 
3 ( 1)A B BP P P +

 

BB 
AA  AA or AB 

2 2

A BP P  

AB AA or AB 
3( 1)A B AP P P +
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Mixture profile Victim profile Culprit profile RMNE Inclusion Probability 

AB 

AA  AA or BB or AB 
32 A BP P  

 BB  AA or BB or AB 
32 A BP P

 

AB AA or BB or AB 
2 24 A BP P

 

Overall Inclusion Probability P(RMNE) 
 

5 5 2 2 3 36 ( 3) ( 3)A B A B A B B A B AP P P P P P P P P P+ + + + + +  

Table 6. P(RMNE) of a sibling being part of the two-person mixture (Assuming Hardy-Weinberg). 

Mixture profile Victim profile Culprit profile RMNE Inclusion Probability 

A AA AA AA 
6

2

1 1 1
.

4 2 4
A

A A

P
P P

 
+ + 

 
 

B BB BB BB 
6

2

1 1 1

4 2 4
B

B B

P
P P

 
+ + 

 
 

AB 

AA 

BB  BB or AB 
2 4 3 3

2

1 1 1 1 1
2

4 2 4 4 4
A B A B

B B B

P P P P
P P P

   
+ + + +   

   
 

AB BB or AB 
3 3 4 21 1 1 1 1 1

2 4
4 4 4 8 8 8

A B A B

B A B A B

P P P P
P P P P P

   
+ + + + +   

     

BB 

AA  AA or AB 
4 2 3 3

2

1 1 1 1 1
2

4 2 4 4 4
A B A B

A A A

P P P P
P P P

   
+ + + +   

   
 

AB AA or AB 
3 3 2 41 1 1 1 1 1

2 4
4 4 4 8 8 8

A B A B

A A B A B

P P P P
P P P P P

   
+ + + + +   

     

AB 

AA  AA or BB or AB 
32 A BP P  

 BB  AA or BB or AB 
32 A BP P

 

AB AA or BB or AB 
2 24 A BP P

 

Overall Inclusion Probability P(RMNE) 
 

{ }2 4 2 2 2 4 2 2

3 2 2 3 3 3

3 3 2 2

1
( 2 1).( ) ( 2 1).( )

4

( 1) ( 1) ( 1).( )

2 2 4

A A A A B B B B A B

A B B A B A A B A B A B

A B A B A B

P P P P P P P P P P

P P P P P P P P P P P P

P P P P P P

 + + + + + + + + 
 

+ + + + + + + 
 + + 
  

 

 
Figure 6. A clustered bar chart showing –Log P(RMNE) on the y-axis and three relationships (no relative, a father and a brother in the mixture when 

considering allele frequencies of 0.2 and 0.5 for 500 and 1000 SNP panels (both on x-axis). 

4. Conclusion 

The conservative approach of Random man not excluded 

probability P(RMNE) used in this chapter for two person-

mixtures was able to give us a clue into finding the right and 

optimum allele frequency to use. The magnitude of 

P(RMNE) depends on the allele frequency that has been 

used. A 0.2 allele frequency is considered to be good enough 

to produce the expected random man not excluded 

probability based results produced in our simulations and 

equation (6) of the Voskoboinik and Darvasi [8] article. 

Identification of individuals in a population where 

consanguinity thrives even at 50% is not an issue provided 

the optimum allele frequency is used. In the case where a 
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relative of the suspect contributes to the mixture, a lower 

value of the -log P(RMNE) is produced compared with when 

there is no relative in the mixture, but increasing the number 

of typed SNP panels can address this and thereafter improve 

identification. 

Acknowledgement 

The author thanks Dr. Karen Ayres for the supervisory role 

and assistance in writing the R-codes. 

 

References 

[1] Butler, J. M., M. D. Coble, and P. M. Vallone, STRs vs. SNPs: 
thoughts on the future of forensic DNA testing. Forensic 
Science, Medicine, and Pathology, 2007. 3(3): p. 200-205. 

[2] Budowle, B. and A. van Daal, Forensically relevant SNP 
classes. Biotechniques, 2008. 44(5): p. 603-8, 610. 

[3] Mo, S.-K., et al., Exploring the efficacy of paternity and 
kinship testing based on single nucleotide polymorphisms. 
Forensic Science International: Genetics, 2016. 22: p. 161-
168. 

[4] Rapley, R. and S. Harbron, Molecular analysis and genome 
discovery. 2011. 

[5] Kidd, K. K., et al., Developing a SNP panel for forensic 
identification of individuals. Forensic Sci Int, 2006. 164(1): p. 
20-32. 

[6] Egeland, T., I. Dalen, and P. F. Mostad, Estimating the number 
of contributors to a DNA profile. Int J Legal Med, 2003. 
117(5): p. 271-5. 

[7] Egeland, T., et al., Complex mixtures: A critical examination 
of a paper by Homer et al. Forensic Science International: 
Genetics, 2012. 6 (1): p. 64-69. 

[8] Voskoboinik, L. and A. Darvasi, Forensic identification of an 
individual in complex DNA mixtures. Forensic Sci Int Genet, 
2011. 5(5): p. 428-35. 

[9] Rudin, N. and K. Inman, Likelihood Ratio and Probability of 
Exclusion, in An Introduction to Forensic DNA Analysis, 
Second Edition. 2001, CRC Press. 

[10] Buckleton, J., C. M. Triggs, and S. J. Walsh, Forensic DNA 
Evidence Interpretation. 2004: CRC Press. 

[11] Foreman, L. A. and I. W. Evett, Statistical analyses to support 
forensic interpretation for a new ten-locus STR profiling 
system. Int J Legal Med, 2001. 114 (3): p. 147-55. 

[12] Saggar, A. K. and A. H. Bittles, Consanguinity and child 
health. Paediatrics and Child Health. 18(5): p. 244-249. 

 

 


