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Abstract: To further improve on the competitiveness of the boundary element method (BEM), a hybrid version of it is used 

for a numerical solution of two dimensional nonlinear coupled viscous Burger’s equation. Adopting this approach to a 

discretized 2D spatial domain, the resulting integral equations arising from the singular integral theory are applied locally to 

each of the elements. The resulting nonlinear discrete equations are finally solved by the Picard iteration algorithm. The 

simulation results obtained, not only concur with analytical solutions, but also display high accuracy and are in agreement with 

those available in literature. 

Keywords: Two Dimensional, Coupled Nonlinear Burger’S Equation, Hybrid Boundary Element Method,  

Integral Equation, Singular Integral Theory, Discretization 

 

1. Introduction 

The two dimensional coupled nonlinear Burger’s equation 

forms an important class of a system of nonlinear parabolic 

and hyperbolic partial differential equations (PDEs) that 

models unsteady flow equations. It bears a close resemblance 

to the Navier-Stokes equations by incorporating the same 

convective and diffusive terms but differs by the absence of 

the pressure term. It is often used to study various aspects of 

physical phenomena involving among others turbulence, 

flow through shockwaves [1], sedimentation of particles in 

fluid suspensions or colloids under the effect of gravity [2], 

wave processes in thermo-elastic medium [3], dispersion in 

porous media, and vorticity transport. 

The analytic solution of the coupled nonlinear Burger’s 

equation involving various transformation techniques are 

given by Fletcher [4], Abazari and Borhanifar [5] and 

Ablowitz and Clarkson [6]. Other powerful methods of 

arriving at exact solutions include the homotopy perturbation 

method, Hirota’s bilinear method (Hirota [7]), and the delta 

method (Bender et al. [8]). Kaya [9], Zhu et. Al. [10] solved 

the system of coupled Burger’s equation by the Adomian 

decomposition method. Comparison between exact nonlinear 

equation solutions and those obtained numerically were 

carried out by Fletcher [11], Abdou and Soliman [12]. A 

combination of the homotopy perturbation and Pade’ 

approximation were applied by Kelleci and Yildrim [13] to 

study both the homogeneous and inhomogeneous coupled 

Burger’s equation. 

The finite element method (FEM) in combination with the 

spline-interpolation techniques have been used to solve the 

coupled nonlinear Burger’s equation (Kutluay, and Ucar 

[14]). Higher order accurate schemes have also been used 

(Esipov [3]). This is accompanied by those involving 

variational iteration method (Soliman 2009 [15], Abdou and 

Soliman [12]), Odibat and Momani [16]). Bahadir [17] 

applied a finite –difference fully implicit technique to the 

discretization of coupled nonlinear Burger’s equation and 

resolved the nonlinearity with the Newton’s method. Other 

finite difference applications can be found in Srivastava et al. 

[18], Srivastava et al. [19]. These followed earlier work by 

Wubs and Goede [20], and Goyon [21]. 

BEM literature reveals a paucity of information regarding 

the application of boundary element methods to the solution 
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of coupled nonlinear partial differential equations especially 

for 2D coupled nonlinear Burger’s equation Onyejekwe [22]. 

It is well known that considerable numerical difficulties arise 

in extending BEM application to inhomogeneous, non-linear, 

transient, coupled nonlinear problems Grigoriev [23], Siraj-

ul-islam et al. [24], Toutip [25]. The major drawback in these 

cases is the need to discretize the problem domain into an 

aggregation of cells or elements needed to deal with domain 

integrations. It will not be possible to go into details here. A 

comprehensive literature on this topic can be found in 

Grigoriev’s paper [23]. However it is noted that the current 

research trajectory of BEM still reveals an unresolved issue 

namely the drive to restrict or situate all domain integrals on 

the boundaries of the problem domain even if the physics of 

the problem dictates otherwise. The compelling need to make 

BEM a purely boundary-driven numerical technique 

motivates this trend. Unfortunately this is often accompanied 

by some numerical challenges some of which have been 

mentioned above and in some previous papers (Percher et al. 

[26], Lorinczi [27], Lorinczi et al. [28], Archer et al. [29], 

Archer [30], Onyejekwe [31, 32], Onyejekwe and Onyejekwe 

[33] Archer and Horne [34]).  

Numerical experience shows that direct application of 

BEM theory performs poorly in the absence of a strong link 

between the problem domain and the boundary as is found 

in the Laplace equation. Hence there is always a need to 

modify BEM application for those problems that 

unambivalently incorporate the problem domain into 

problem formulation such as is found with body-force 

terms, nonlinearity, transience, heterogeneity, source and 

sink terms etc. Current efforts to prevail over this challenge 

have resulted in a variety of hybrid BEM techniques 

Grigoriev [23], Taigbenu [35], Onyejekwe [36], Onyejekwe 

[37], Taigbenu and Onyejekwe [38], Hibersek and Skerget 

[39], Onyejekwe [40], Grigoriev and Dargush [41], Perata 

and Popov [42], Portapilla and Power [43], Sladeck et al. 

[44], Toutip [25]. 

Hybrid BEM formulations, as promising simulation 

techniques, can either be regarded as extensions of the direct 

BEM approach or in most cases as specialized discrete forms 

of the traditional formulation that weigh more on the 

effective handling of the integral equations in a domain-

localized sense. It ought to be mentioned as well that one of 

the reasons that prompted this option is the unavailability of 

auxiliary equations and/or fundamental solutions for many 

challenging and realistic problems. Even when they exist, 

they do so in forms that are not easily computable. More 

often than not, this leads to intricate formulations and 

systems of equations with fully populated matrix. Hence 

aiming at hybrid BEM formulations that mimic other 

domain-based numerical methods in terms of localized 

discretizations, and at the same time incorporate some of 

their unique advantages should motivate hybrid BEM 

research. This approach brings a lot of attractive features 

such as formulation simplicity, slender sparse coefficient 

matrices and an efficient handling of domain discretization. 

Hybrid BEM techniques have not only displayed competitive 

potential in modelling complex engineering problems 

(Abashar [45], Pecher et al. [26], Onyejekwe [46-48], 

Lorinczi et al. [27, 28] Lorinczi et al. (2010), Nyirenda [49], 

Bagherinezhad and Pishvaie [50], Archer and Horne [51, 52] 

but also have displayed a remarkable ability to accurately 

represent coupled nonlinear mathematical equations 

(Ramsuroop [53]). 

2. Numerical Formulation 

Consider the two-dimensional non-linear Burger’s 

equation: 

2∂ ∂ ∂+ + = ∇
∂ ∂ ∂
u u u

u v u
t x y

κ                        (1a) 

2∂ ∂ ∂+ + = ∇
∂ ∂ ∂
v v v

u v v
t x y

κ                        (1b) 

where 
2 x y∇ = ∂ ∂ + ∂ ∂i j  is the 2-D gradient operator with 

spatial variables in x and y, t is the time dimension, 

1 Reκ = . Re is the Reynolds number and physically 

represents the ratio of inertia to viscous forces, 

( ) ( ), , , , ,u x y t v x y t  are velocity components in x and y 

directions to be determined. It should be mentioned that in 

convection dominated flows, there is a steepening effect of 

the nonlinear advection term, and this effect creates 

noticeable numerical challenges. Equations (1a) and (1b) 

admit initial and boundary conditions. For a domain 

( ){ }, : ,x y a x y bΩ = ≤ ≤  with a boundary Γ , the system is 

subject to the following initial conditions 

( ) ( ) ( ) ( )1, , 0 , , , ,= ∈ Ω ∀ ∈ Ωu x y x y x y or x yβ  (2a) 

( ) ( ) ( ) ( )2, , 0 , , , ,= ∈ Ω ∀ ∈ Ωv x y x y x y or x yβ  (2b) 

And boundary conditions: 

( ) ( ) ( ) ( )1, , , , , , 0= ∈Γ ∀ ∈ Γ ≻u x y t g x y x y or x y t  (3a) 

( ) ( ) ( ) ( )2, , , , , , 0= ∈ Γ ∀ Γ ≻v x y t g x y x y or x y t  (3b) 

where 
1 2 1
, gβ β

 
and 

2
g  are known functions. 

3. Hybrid BEM Procedure 

Details of this procedure have previously been dealt with 

elsewhere (Onyejekwe [54-56], Lorinczi [27, 28], Archer 

[30], Ramsuroop [53], Onyejekwe [54-56]); so only the most 

relevant will be mentioned. By Applying the Green’s 

theorem, the integral analogs of equations (1a) and (1b) are 

given as: 

( ), 0
Γ Ω

  ∂ ∂ ∂ ∂ ∂ − + + + + + =   ∂ ∂ ∂ ∂ ∂    
∫ ∫∫i

G u G u u u
u r t u G ds u v dA

n n x y t
λ

κ  (4a) 



 International Journal of Fluid Mechanics & Thermal Sciences 2017; 3(1): 1-15 3 

 

 

( ), 0
Γ Ω

  ∂ ∂ ∂ ∂ ∂ − + + + + + =   ∂ ∂ ∂ ∂ ∂    
∫ ∫∫i

G v G v v v
v r t v G ds u v dA

n n x y t
λ

κ
                                                    (4b) 

or 

( ) ( ) 1
, 0n n

Γ Ω

   ∂       − + ∇ ⋅ + ∇ ⋅ + − + =          ∂          
∫ ∫∫

yx

i

qqu u v
u r t u G G u ds G dA

t
λ

κ κ κ κ κ                              (5a) 

where ,x yq u q uκ κ= − ∇ ⋅ = − ∇ ⋅i j  

and 

( ) ( ) 1
, 0n n

Γ Ω

   ∂       − + ∇ ⋅ + ∇ ⋅ + − + =          ∂          
∫ ∫∫

yx

i

ssv u v
v r t v G G v ds G dA

t
λ

κ κ κ κ κ                                   (5b) 

where ,x ys v s vκ κ= − ∇ ⋅ = − ∇ ⋅i j  

where ( )ln iG z=  is the fundamental solution of 

( )2

iG zδ∇ =  in an infinite domain, 
i i

z r r= −  is the 

Euclidean distance between the field point and the source 

node at i, λ  is the shape function of the nodal angle at 
i

r . 

Although equations (4) and (5) were arrived at by exploiting 

the attractive features of BEM discretization, their 

implementation vis-à-vis the problem domain marks the 

point of departure between the boundary-only 

implementation of BEM and its hybridized form that does 

not consider domain integration as a disadvantage. To this 

end, suitable polygonal elements on which the discretized 

equations are numerically solved are employed to discretize 

the problem domain. A domain-driven-elemental approach 

exemplifies the limiting case of the domain decomposition 

technique whereby the subdomain is reduced to its barest 

minimum or finite elements (Taigbenu [35], Onyejekwe 

[36]). The key factors which are paramount at this stage of 

the solution process are identical to those of the finite 

element method (FEM) namely (a) linearization of the 

governing equations (b) interpolation of the functional 

quantities and continuity across element boundaries (c) 

choice of elements. For this study, we have elected to 

represent the distribution of scalar quantities by linear 

interpolation functions, that is j jNφ φ≈  where jN  are the 

linear interpolation functions. Introducing this interpolation 

relationship into equations (5a) and (5b) yields the following 

discrete element equations which are applicable to each 

element. 

1
0

               + + + ϒ + Ψ =               
                    

x x

ij j ij imj imj ij

j m m jj j

q qq u v du
R u L

k k k k dt
χ

κ κ
                                 (6a) 

where q uκ= − ∇ ⋅n  

and 

1
0

             
 + + + ϒ + Ψ =            

                    

yx

ij j ij imj imj ij

j m m jj j

sss u v dv
R v L

k k k k dt
χ

κ κ
                                  (6b) 

where s vκ= − ∇ ⋅n   

The coefficients are given by: 

( ) ( ), , m

ij j ij ij j imj j

N
R N G ds L N ds G N dA

x
δ λ χ

Γ Γ Ω

∂ = ∇ ⋅ − = =  ∂ 
∫ ∫ ∫∫n  

( ),m

imj j ij j

N
G N ds G N dA

yΩ Ω

∂ 
ϒ = Ψ = ∂ 

∫∫ ∫∫  

All integrations can be done analytically for each of the rectangular elements. Without any loss in generality equations (6a) 

and (6b) can be given generically as: 



4 Okey Oseloka Onyejekwe:  An Element-Driven Boundary Integral Treatment for Nonlinearity: A Coupled  

Nonlinear Two-Dimensional Burger’s Equation Test Case 

1
1 1 0A B q C

+
+ + ΦΦ + + =

n
n n n n n d

dt
                                                                      (7) 

The temporal derivative in equation (7) is approximated by a finite difference scheme with a weighting factor ω  to give 

( )( ) ( )( )( ) ( )( ) ( ) ( )( ) ( )
( ) ( )1, 1 1, 1

2, 1 2, 1
1 1 0A A A q Bq C

+ + + +
+ + + + Φ − ΦΦ + − Φ + + − + =

∆

n m n m
m mn m n m nn n

t
ω ω ω ω               (8) 

where n is the iteration number, 1,m m+  represent the 

current ( )1 0t t t= + ∆  and previous ( )0t  times. With the 

introduction of known initial and boundary conditions, 

equation (8) can further be simplified into its coupled 

components to read: 

( ) ( ) ( ) ( ) ( )1, 1 1, 1

1
Z u Q q RHS

+ + + ++ =n n m n n m
                  (9) 

( ) ( ) ( ) ( ) ( )1, 1 1, 1

2
J v W s RHS

+ + + ++ =n n m n n m
                (10) 

The Picard algorithm is adopted for iterating the two 

nonlinear coupled equations and is started by: 

a Storing the known scalar values obtained from 

prescribed initial and boundary conditions in the right 

hand side vectors of equations (9) and (10) 

b Solving matrix equation (9) with the known values to 

obtain updated values of the scalar field 
( ) ( )( )1, 1 1, 1

,
n m n m+ + + +

u q   

c These latest iterates from (b) are then used to obtain the 

scalar field from equation (10) i.e. 
( ) ( )( )1, 1 1, 1

,
n m n m+ + + +

v s   

d The mean deviations from the latest iterates from the 

consecutive values of the dependent variables in (b) and 

(c) are compared and the iteration is stopped if the 

mean deviations are less than or equal to an a priori 

specified error tolerance ∈?. If this is not the case the 

procedure from steps (b) to (c) are repeated with refined 

iterates until convergence if finally achieved. 

e When convergence is finally achieved, a time increment 

is implemented to obtain a new set of converged scalar 

field for each time level.  

4. Numerical Examples and Discussion 

Some test problems have been chosen to validate the 

formulation described herein. The presence of analytical 

results will help to quantify the relative performance of this 

scheme when compared with other solution methods 

available in literature. For each of the tested problems, the 

initial and boundary conditions are determined by their 

analytical solutions. 

The accuracy and consistence of the scheme is measure in 

terms of errors defined by: 

( )

2

, ,

0 0

2

,

0 0

1 = =

= =

−
=

∆ ∆

∑∑

∑∑

n n
exact computed

i j i j

i j

n n
exact

i j

i j

u u

relative error
x y

u

   (11a) 

, ,

1= −
∆ ∆

exact computed

i j i javerage absolute error u u
x y

     (11b) 

where ,exact computedu u  represent exact and computed 

solutions. Equations (13a) and (13b) will also apply to the v 

dependent variable.  

4.1. Problem 1 

The exact solutions of equations (1) and (2) can be 

generated as shown in Fletcher (1983a): 

( )
( )( )

( )
( )( )

( )

3 1
, ,

4 4 1 exp 4 4 Re 32
,

3 1
, ,

4 4 1 exp 4 4 Re 32

= −  + − + −   ∈ Ω
= +
 + − + −  

u x y t
x y t

x y

v x y t
x y t

 (12) 

The computational domain is a square 

( ){ }, : 0 1,0 1x y x yΩ = ≤ ≤ ≤ ≤ , a uniform grid is applied 

with a mesh dimension of 0.05x y∆ = ∆ =  with the 

following problem parameters Re 100, 0.001t= ∆ = . 

Comparison of numerical and exact solutions shows that the 

proposed formulation achieves very close results for 

different values of Reynolds number. Figs. 1a and 1b are 

very close to those obtained analytically (Tamsir and 

Srivasta [57]). Tables 1a,1b, 1c and 1d display the absolute 

errors resulting from a comparison of numerical and 

analytical results for velocity profiles at different values of 

Reynolds number. A revealing information is the magnitude 

of absolute errors generated in representing areas of steep 

slope in the u and v velocity profiles. Figs. 1c and 1d 

display their relative magnitudes relative to those obtained 

in other areas of the profiles. 

Table 1a. Numerical results for u velocity in comparison with exact solutions 

at t= 0.5 for Re=100, .0001∆ =t , (example 1). 

(x, y) Numerical Exact Abs. Error 

(0.100000, 0.100000) 0.534028 0.543322 0.009294 

(0.500000, 0.100000) 0.500270 0.500353 0.000083 

(0.900000, 0.100000) 0.500002 0.500002 0.000000 

(0.300000, 0.300000) 0.516242 0.543322 0.027080 

(0.700000, 0.300000) 0.500028 0.500353 0.000324 

(0.100000, 0.500000) 0.735927 0.742214 0.006287 

(0.500000, 0.500000) 0.534824 0.543322 0.008498 

(0.900000, 0.500000) 0.500269 0.500353 0.000084 

(0.300000, 0.700000) 0.734717 0.742214 0.007498 

(0.700000, 0.700000) 0.542311 0.543322 0.001011 

(0.100000, 0.900000) 0.749901 0.749946 0.000045 

(0.500000, 0.900000) 0.741808 0.742214 0.000406 

(0.900000, 0.900000) 0.539545 0.543322 0.003778 
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Table 1b. Numerical results for v velocity in comparison with exact solutions at t= 0.5 for Re=100, .0001∆ =t , (example 1). 

(x, y) Numerical Exact Abs. Error 

(0.100000, 0.100000) 0.965972 0.956678 0.009294 

(0.500000, 0.100000) 0.999730 0.999647 0.000083 

(0.900000, 0.100000) 0.999998 0.999998 0.000000 

(0.300000, 0.300000) 0.983758 0.956678 0.027080 

(0.700000, 0.300000) 0.999972 0.999647 0.000324 

(0.100000, 0.500000) 0.764073 0.757786 0.006287 

(0.500000, 0.500000) 0.965176 0.956678 0.008498 

(0.900000, 0.500000) 0.999731 0.999647 0.000084 

(0.300000, 0.700000) 0.765283 0.757786 0.007498 

(0.700000, 0.700000) 0.957689 0.956678 0.001011 

(0.100000, 0.900000) 0.750099 0.750054 0.000045 

(0.500000, 0.900000) 0.758192 0.757786 0.000406 

(0.900000, 0.900000) 0.960455 0.956678 0.003778 

Table 1c. Numerical results for u velocity in comparison with exact solutions at t= 0.5 for Re=50, .0001∆ =t , (example 1). 

(x, y) Numerical Exact Abs. (?) Error 

(0.100000,0.100000) 0.571735 0.578513 0.006778 

(0.500000,0.100000) 0.507501 0.509055 0.001554 

(0.900000,0.100000) 0.500633 0.500769 0.000136 

(0.300000,0.300000) 0.557219 0.578513 0.021294 

(0.700000,0.300000) 0.505997 0.509055 0.003058 

(0.100000,0.500000) 0.702971 0.711992 0.009021 

(0.500000,0.500000) 0.566951 0.578513 0.011562 

(0.900000,0.500000) 0.507953 0.509055 0.001102 

(0.300000,0.700000) 0.700424 0.711992 0.011568 

(0.700000,0.700000) 0.577499 0.578513 0.001014 

(0.100000,0.900000) 0.745264 0.746374 0.001110 

(0.500000,0.900000) 0.710125 0.711992 0.001867 

(0.900000,0.900000) 0.578351 0.578513 0.000162 

Table 1d. Numerical results for v velocity in comparison with exact solutions at t= 0.5 for Re=50, .0001∆ =t , (example 1) 

(x, y) Numerical Exact Abs. Error 

(0.100000,0.100000) 0.928265 0.921487 0.006778 

(0.500000,0.100000) 0.992499 0.990945 0.001554 

(0.900000,0.100000) 0.999367 0.999231 0.000136 

(0.300000,0.300000) 0.942781 0.921487 0.021294 

(0.700000,0.300000) 0.994003 0.990945 0.003058 

(0.100000,0.500000) 0.797029 0.788008 0.009021 

(0.500000,0.500000) 0.933049 0.921487 0.011562 

(0.900000,0.500000) 0.992047 0.990945 0.001102 

(0.300000,0.700000) 0.799576 0.788008 0.011568 

(0.700000,0.700000) 0.922501 0.921487 0.001014 

(0.100000,0.900000) 0.754736 0.753626 0.001110 

(0.500000,0.900000) 0.789875 0.788008 0.001867 

(0.900000,0.900000) 0.921649 0.921487 0.000162 
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Fig. 1a. U velocity profile at t = 0.5 for Re=100, .0001t∆ = , (example 1). 

 

Fig. 1b. V velocity profile at t = 0.5 for Re=100, .0001t∆ = , (example 1). 
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Fig. 1c. Absolute error profile u velocity at t = 0.5 for Re=50, .0001∆ =t , (example 1) 

 

Fig. 1d. Absolute error profile for v velocity at t = 0.5 for Re=50, .0001∆ =t , (example 1). 

4.2. Problem 2 

The computational domain is given as 

( ){ }, : 0 0.5,0 0.5x y x yΩ = ≤ ≤ ≤ ≤
 
and the initial and 

boundary conditions are: 

( ) ( ) ( )
( ) ( ), ,0 sin cos

0 0.5,0 0.5 ,
, ,0

= +  ≤ ≤ ≤ ≤= + 

u x y x y
x y x y

v x y x y

π π
 (13a) 
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( ) ( ) ( ) ( )
( ) ( )

0, , cos , 0.5, , 1 cos
0 0.5, 0

0, , , 0.5, , 0.5

= = +  ≤ ≤ ≥= = + 

u y t y u y t y
y t

v y t y v y t y

π π
 (13b) 

( ) ( ) ( ) ( )
( ) ( )

,0, 1 sin , ,0.5, sin
0 0.5, 0

,0, , ,0.5, 0.5

= + =  ≤ ≤ ≥= = + 

u x t x u x t x
x t

v x t x v x t x

π π
 (13c) 

We deploy 20×20 grids for the numerical computations for 

0.0001t∆ =  and Re 50=  and Re 100= . There are no 

analytical solutions to compare our results with in this case. 

However figs. 2a, 2b, 2c and 2d of u and v velocity profiles 

are very close to those of Shukla et al. [60]. In addition 

Tables 2a and 2b show a comparison of numerical values 

with those of G uɺɺ lka c
ɶ

 [58], Bahadir [17], Jain and Holla 

[59], Srivastava et al. [18]. They all appear to give very close 

profiles for the u and v velocities. 

Table 2a. Comparison of numerical results for u velocity profile at t= 0.625, for Re=50 .0001∆ =t  (example 2). 

Coord (x, y) Present Work Gulkac [58] Bahadir [17] Jain and Holla [59] Srivastava et al. [18] 

(0.1,0.1) 0.971460 0.966595 0.96668 0.97258 0.976146 

(0.3,0.1) 1.152764 1.14835 1.14827 1.16214 1.15280 

(0.2,0.2) 0.863023 0.85918 0.85911 0.86281 0.86307 

(0.4,0.2) 0.979359 0.97644 0.97637 0.96483 0.97981 

(0.1,0.3) 0.663136 0.66026 0.66619 0.66318 0.66316 

(0.3,0.3) 0.771935 0.76939 0.76932 0.77030 0.77230 

(0.2,0.4) 0.581622 0.57974 0.57966 0.58070 0.58180 

(0.4,0.4) 0.75770 0.75686 0.75678 0.74436 0.75856 

Table 2b. Comparison of numerical results for v velocity profile at t= 0.625, for Re=50 .0001∆ =t  (example 2) 

Coord (x, y) Present Work Gulkac [58] Bahadir [17] Jain and Holla [59] Srivastava et al. [18] 

(0.1,0.1) 0.098688 0.09832 0.09824 0.09773 0.09869 

(0.3,0.1) 0.141566 0.14119 0.4112 0.14039 0.14158 

(0.2,0.2) 0.167525 0.16689 0.16681 0.16660 0.16754 

(0.4,0.2) 0.170948 0.17073 0.17065 0.17397 0.17110 

(0.1,0.3) 0.263771 0.26269 0.26261 0.26940 0.26378 

(0.3,0.3) 0.226400 0.22582 0.22576 0.22463 0.22654 

(0.2,0.4) 0.328432 0.32754 0.32745 0.32402 0.32851 

(0.4,0.4) 0.324710 0.32447 0.32441 0.31822 0.32500 

 

Fig. 2a. V velocity profile at t= 0.625 for Re=50, .0001∆ =t , (example 2). 
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Fig. 2b. U velocity profile at t= 0.625 for Re=50, .0001∆ =t , (example 2). 

 

Fig. 2c. U velocity profile at t= 0.625 for Re=100, .0001∆ =t , (example 2). 
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Fig. 2d. V velocity profile at t= 0.625 for Re=100, .0001∆ =t , (example 2). 

4.3. Problem 3 

The computational domain for the coupled nonlinear Burger’s equation is specified as ( ){ }, : 0 1,0 1Ω = ≤ ≤ ≤ ≤x y x x . It 

admits the following initial and boundary conditions: 

Initial conditions: 

( ) ( ) ( ) ( ) ( )( ) ( ), , 0 4 cos 2 sin Re 2 sin 2 sin , ,= − + ∈ Ωu x y x y x y x yπ π π π π                          (14a) 

( ) ( ) ( ) ( ) ( )( ) ( ), , 0 2 sin 2 cos Re 2 sin 2 sin , ,= − + ∈ Ωv x y x y x y x yπ π π π π                           (14b) 

Boundary conditions: 

( )

( ) ( )
25

Re
2 sin

0, , 0
Re

− 
 
 = − ≥

t

e y

u y t t

π
π π

 (14c) 

( )

( ) ( )
25

Re
2 sin

1, , 0
Re

− 
 
 = − ≥

t

e y

u y t t

π
π π

 (14d) 

( ) ( ), 0, 0, 0, ,1, 0, 0= ≥ = ≥u x t t u x t t  (14e) 

( ) ( )0, , 0, 0, 1, , 0, 0= ≥ = ≥v y t t v y t t  (14f) 

( )

( ) ( )
25

Re
sin 2

,0, 0
Re

− 
 
 = − ≥

t

e x

v x t t

π
π π

 (14g) 

( )

( ) ( )
25

Re
sin 2

,1, , 0
Re

− 
 
 = − ≥

t

e x

v x t t

π
π π

 (14h) 

The exact solutions are specified as 

( )

( ) ( ) ( )

( ) ( ) ( )

2

2

5
Re

5
Re

4 sin cos 2

, ,

Re 2 sin 2 sin

−

−

 
 
 = −
 

+ 
 

t

t

e y x

u x y t

e x y

π

π

π π π

π π
(14i) 

( )

( ) ( ) ( )

( ) ( ) ( )

2

2

5
Re

5
Re

2 sin 2 cos

, ,

Re 2 sin 2 sin

−

−

 
 
 = −
 

+ 
 

t

t

e x y

v x y t

e x y

π

π

π π π

π π
 (14j) 

This example tests the ability of the scheme to handle 

relatively high Reynolds number. Comparison of numerical 

and analytical profiles of the velocity profiles (Figs. 3a, 3b, 

3c and 3d) and with those of Tamsir and Srivastava [57] 

confirm accurate results. Tables 3a and 3b give in addition to 

values relative and average absolute errors confirm the 

reliability of this formulation.  
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Table 3a. Numerical results for u velocity profile at t= 1.0, for Re=1000 .0001∆ =t  (example 3). 

(x, y) Numerical Exact Absolute Error 

(0.100000,0.100000) -0.006594 -0.006498 0.000097 

(0.500000,0.100000) 0.007496 0.007392 0.000103 

(0.900000,0.100000) -0.004835 -0.005464 0.000629 

(0.300000,0.300000) 0.007188 0.008171 0.000982 

(0.700000,0.300000) 0.004253 0.003791 0.000462 

(0.100000,0.500000) -0.022465 -0.024768 0.002303 

(0.500000,0.500000) 0.025169 0.023923 0.001247 

(0.900000,0.500000) -0.013511 -0.013940 0.000429 

(0.300000,0.700000) 0.007188 0.008171 0.000982 

(0.700000,0.700000) 0.004253 0.003791 0.000462 

(0.100000,0.900000) -0.006594 -0.006498 0.000097 

(0.500000,0.900000) 0.007496 0.007392 0.000103 

(0.900000,0.900000) -0.004835 -0.005464 0.000629 

relative error(u) =0.000992  

avg absolute error(u) =0.000028  

Table 3b. Numerical results for v velocity profile at t= 1.0, for Re=1000 .0001∆ =t  (example 3). 

(x, y) Numerical Exact Absolute Error 

(0.100000,0.100000) -0.007530 -0.007265 0.000265 

(0.500000,0.100000) -0.000648 -0.000000 0.000648 

(0.900000,0.100000) 0.005427 0.006109 0.000681 

(0.300000,0.300000) -0.009014 -0.009135 0.000121 

(0.700000,0.300000) 0.004326 0.004238 0.000088 

(0.100000,0.500000) -0.000000 -0.000000 0.000000 

(0.500000,0.500000) -0.000000 -0.000000 0.000000 

(0.900000,0.500000) 0.000000 0.000000 0.000000 

(0.300000,0.700000) 0.009014 0.009135 0.000121 

(0.700000,0.700000) -0.004326 -0.004238 0.000088 

(0.100000,0.900000) 0.007530 0.007265 0.000265 

(0.500000,0.900000) 0.000648 0.000000 0.000648 

(0.900000,0.900000) -0.005427 -0.006109 0.000681 

relative error(v) =0.000995 

avg absolute error(v) =0.000007 

 

Fig. 3a. Numerical v velocity profile at t= 1.0 for Re = 1000, .0001∆ =t , (example 3). 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

X

numerical v velocity profile

Y

v
(x

,y
,t

)



12 Okey Oseloka Onyejekwe:  An Element-Driven Boundary Integral Treatment for Nonlinearity: A Coupled  

Nonlinear Two-Dimensional Burger’s Equation Test Case 

 

Fig. 3b. Analytical v velocity profile at t= 1.0 for Re = 1000, .0001∆ =t , (example 3). 

 

Fig. 3c. Numerical u velocity profile at t= 1.0 for Re = 1000, .0001∆ =t , (example 3). 
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Fig. 3d. Analytical u velocity profile at t= 1.0 for Re = 1000, .0001∆ =t , (example 3) 

5. Conclusion 

By using numerical examples with analytical solutions, we 

have shown the utility of the recent formulation in handling 

nonlinear transient coupled nonlinear 2D partial differential 

equations of the Burger’s or Navier-Stokes types [60, 61] in a 

straightforward manner. The emphasis here is to arrive at a 

hybrid boundary integral approach devoid of undue 

complexity in handling some of the major numerical 

complexities that degrade the competitiveness of the 

boundary element method. Another equally important 

consideration is to explore how a relatively straightforward 

modification of BEM theory could render it accessible to 

many BEM users when handling the type of problems that 

relate to real life applications. Accurate representation of the 

scalar field has been produced in those areas where direct 

BEM application had previously been deficient. 
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