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Abstract: This paper presents wavelet based islanding detection in distributed generation (DG) interfaced to the microgrid. 

Also a new fast method is developed for islanding detection based on measuring the utility currents and voltages signals 

processed by discrete wavelet transform. These currents and voltages signals are measured before the main circuit breaker of 

microgrid network and their features extracted by discrete wavelet transform. These features are sum of wavelet coefficients 

energy and are used for distinguishing the islanding conditions from non-islanding ones. Because of changing in measuring 

point of currents and voltages signals from point of common coupling (PCC) in traditional methods to before the main circuit 

breaker in proposed method, this new method detects the islanding conditions faster than the other methods. The proposed 

method has been examined under various scenarios; including mains supply faults, various one, two, or three phases' grid 

faults, and changes of rate of produced energy on IEEE 1547 anti-islanding test system. The numerical studies show the 

feasibility and applicability of the proposed method with satisfactory results. 
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1. Introduction 

Increased penetration of distributed generation (DG) in 

power grids is evident to meet the increasing load demand 

and promote renewable energy sources. The increased DG 

penetration increases the distribution system complexity and 

raises several concerns. Among the most important concerns 

is islanding. Islanding is a condition in which a portion of the 

distribution system is comprised of DG, and local loads 

remains energized while they are unintentionally isolated 

from the rest of the system. The isolation could be a result of 

fault occurrence on the main distribution feeder. The 

re-closer will reconnect the isolated part of the system after a 

certain time interval (set by the system operator). This action 

is unfavorable since it may cause damage to the distribution 

system. Consequently, islanding detection (anti-islanding) 

becomes an important DG protection requirement. 

The islanding phenomenon usually occurs when the output 

power of the DGs and the load power are balanced, i.e., the 

load power is entirely supplied by DGs. At this time, if the 

utility is interrupted or failed, the disturbances of voltage and 

frequency of the DGs cannot be detected with the standard of 

UL1741 or IEEE1547 [1, 2]. 

Islanding detection methods can be divided into two 

categories: one is the passive islanding detection methods [3]; 

the other is the active islanding detection methods [4, 5]. In 

the passive islanding detection methods, the over/under 

voltage protection and over/under frequency protection are 

the basic passive islanding detection method for the DG to 

detect an islanding condition by monitoring parameters in 

point of common coupling (PCC) and then cause the DG to 

shut down when there is sufficient transition from normal 

specified conditions [3]. The flaw of these passive islanding 

detection methods are that when the power of DGs and the 

load are balanced there will exist a large NDZ making the 

passive islanding detection method fail and may not be 

reliable in high DG penetration cases. Therefore, the active 

islanding detection methods have become more important in 

recent years. Active frequency drift method is by adding dead 

time to the output current of inverter and results in PCC 

voltage and current distortion. Thus, when the utility is 

interrupted or failed, the frequency can drift to shift out of the 

NDZ [4]. For overcoming this, a new fast method is 

developed for islanding detection based on measuring the 

utility currents and voltages signals processed by discrete 

wavelet transform. These currents and voltages signals are 

measured before the main circuit breaker of microgrid 
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network and their features extracted by discrete wavelet 

transform. 

One of the most important challenges in the near future is 

the complete integration of the distributed generators (DGs) 

in electric power systems, especially at distribution level (i.e. 

in medium and low voltage networks). In fact, such 

integration would allow the best use of the renewable sources 

(RS) available on the territory and otherwise not exploitable. 

This implies a complete rethinking of the management and 

control of electricity networks, which have to move from 

passive systems to new active “smart grids” [6]. The existing 

passive systems are characterized by unidirectional energy 

flows and a limited amount of intelligent and automation 

functions. On the contrary, in the smart grids concept, energy 

flows are bidirectional and smart metering technologies and 

capabilities are needed, also with a two-way communications 

network and a number of other intelligent field devices, 

providing for monitoring, automation, protection and control 

actions [7]. In this method, measuring the utility currents and 

voltages signals are sent by two-way communications 

network smart grids. 

Islanding results in several safety and power-quality (PQ) 

issues, including abnormal variations in frequency and 

voltage in the power island, possibility of creating an 

ungrounded system depending on the transformer 

connections, and potential safety hazards for repair crews 

from unidentified islands. Most interconnection regulations, 

which are usually guided by the IEEE standards 1547–2003 

[8], recommend immediate disconnection of the DG, upon 

the formation of an island. This is achieved through 

anti-islanding protection, which is a subject that has been 

extensively studied [9]–[18]. 

Wavelet-transform-based techniques have been previously 

used for islanding detection in [15]–[17]. In [15] and [16], 

the absolute value of certain wavelet coefficient (of voltage 

or frequency signal) is compared against a threshold value; 

and if the relevant wavelet coefficient remains above this 

preset threshold for a period longer than a certain time 

threshold, an islanding condition is declared. These system 

specific threshold values are determined through trials and/or 

based on the experience of utility engineers [16]. A hybrid 

islanding detection algorithm based on wavelet transform, 

which is specifically for single-phase photovoltaic (PV) DG 

systems is discussed in [17]. An intelligence-based method is 

investigated in [18], which uses the decision-tree (DT) 

classifier, but with some complex set of features, including, 

total harmonic distortion of current/voltage, gradient of the 

product of voltage and power factor, etc. for classification. 

currents and voltages signals that are measured and their 

features extracted by discrete wavelet transform is explained 

in [19] and changing in measuring point of currents and 

voltages signals from point of common coupling in 

traditional methods to before the main circuit breaker is 

explained in [20]. In this article these two methods are mixed 

together. 

For detecting islanding in microgrids, this paper presents 

an on-line measurement method based on wavelet transform 

for current and voltage analysis. The remaining paper is 

organized as follows: Section 2 describes the continuous and 

discrete wavelet transform. Section 3 addresses proposing 

islanding detection method. The simulation results and 

operation of the islanding detection scheme are depicted in 

Section 4. Lastly, the conclusion is presented in Section 5. 

2. The Wavelet Transform 

Wavelet transform is a kind of time-frequency analysis, 

which has the characteristic of multi-resolution and can 

symbolize the signal’s characteristic in time-frequency field 

[21]. The shape of time-frequency window is variable while 

the size is invariable, namely time window and frequency 

window both are variable. It has higher frequency resolution 

and lower time resolution in low frequency segment while 

higher time resolution and lower frequency resolution in high 

frequency segment. It’s quite fit for detecting voltage signal 

carries non-stationary signal and showing the components. 

2.1. Continuous Wavelet Transform (CWT) 

Wavelet provides time-scale information of a signal, 

enabling the extraction of features that vary in time. This 

property makes wavelets an ideal tool for analyzing signals 

of a transient or non-stationary nature. The continuous 

wavelet transform of ( )tf  is a time-scale method of signal 

processing that can be defined as the sum over all time of the 

signal multiplied by scaled, shifted versions of the wavelet 

function ( )tψ . Mathematically, 
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Where ( )tf  is the original signal, ( )tψ  is the mother 

wavelet and is defined by: 
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The parameter a is the scale parameter of the wavelet, the 

parameter b is a translation parameter of the wavelet and 
( )baW f ,  is the wavelet transform. Unlike the discrete 

wavelet transform, any scale a can be chosen up to a 

maximum. The CWT is also continuous in terms of the shift 

b during computation; the analyzing wavelet is shifted 

smoothly over the full domain of the analyzed function. 

Instead of producing a time frequency map, a time-scale map 

is produced where the scale represents a frequency range. 

In (2), take a=2j, b⊂R, that is only doing binary discrete 

to scale parameter a, and translation parameter b still 

maintains continuous change, we call this kind of wavelet as 

binary wavelet. 

Because binary wavelet transform maintains continuous 

change of variable t, it does not damage the signal’s 

translation invariant character in x domain, and then binary 

wavelet transform is comprehensively applied in pattern 

recognition and signal’s singularity detection. We can see 
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from translation invariant character that: signal’s sharp 

change point is one by one corresponding to its modulus 

maxima of wavelet transform. Due to signal’s singular point 

contains important information, the modulus maxima of 

wavelet transform can depict the singular point and 

singularity of non-stationary signal, and then we can use it to 

detect islanding. 

Actually, wavelet transform is to decompose signal layer 

by layer according to different frequency band, and there will 

be signal of different frequency band in different scale after 

decomposing. Generally, the frequency of noise signal is 

comparative high, so it will exist only in lower scale of 

wavelet transform; but the frequency content of 

discontinuous signal is abundant, so there will be peak value 

in a certain scale range of its wavelet transform. When 

applying wavelet transform to detect non-stationary signal, 

the choice of scale parameter should be apt, and it is related 

to frequency component in non-stationary signal and the 

range of sampling frequency. In practice, the distribution of 

modulus maxima of wavelet transform is different in 

different scale. A modulus maximum exists in one scale, it 

will unnecessarily appear in another scale. So we can 

consider the modulus maxima of wavelet transform in several 

scales to decide the position of singular point. 

2.2. Discrete Wavelet Transform (DWT) 

The discrete wavelet transform (DWT) is a signal 

processing tool for the detection of the islanding condition 

when the time localization is required [22]. The DWT of a 

discrete function x(k) can be defined as: 
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where m and n are positive integers used to define scaling 

and translating factors employed to the selected mother 

wavelet ψ. Due to the possible values of m, the frequency 

bands which can be measured by applying the DWT are 

logarithmic. It is important that the response time of the 

anti-islanding detection algorithm will be shorter if a lower 

decomposition level is selected. As a consequence the 4th 

decomposition level has been selected. Other parameters, 

such as the employed mother wavelet and the number of 

filter coefficients have been adjusted by simulation. 

3. Proposing Islanding Detection Method 

When a fault happens in power network, the fault should 

be clear and the fault location should be disconnected from 

power system by circuit breaker. The time for fault clearing is 

the sum of relay operation time and interrupting fault current 

time by circuit breaker. Even in instantaneous operation 

mode of relay, 0.5 to 1 cycle is needed to send the open 

signal to the circuit breaker. Circuit breaker operation time 

depends on number of its operation and its type, in range of 3 

to 5 cycle. In this paper the utility current and voltage signals 

are measured at DGs side of utility circuit breaker. Therefore, 

islanding detection time isn’t affected by circuit breaker 

operation time and it takes time less than the local methods to 

detect the islanding condition by eliminating the circuit 

breaker operation time. The proposed measuring point is 

shown in Fig. 1. 

 

Figure 1. Location of current and voltage measuring point in the proposed 

Basic model with the transient-based islanding detection technique 

The islanding conditions detection in local method start 

after disconnection or opening of circuit breaker. The system 

parameters such as voltage, current and frequency are 

measured in local method and islanding condition is detected 

when these variations are sensed after the islanding happened. 

Islanding conditions can be detected before opening of utility 

circuit breaker, by movement the measuring point from PCC 

to after the utility circuit breaker. For the islanding detection 

in the proposed method the wavelet transform used in this 

paper. The islanding detection time is effectively decreased in 

proposed method.  

In this paper NDZ is eliminated because the conditions 

which create the islanding are identified by wavelet 

transform before the circuit breaker opens, while NDZ is 

created due to difference between active and reactive power 

when islanding is occurred in local method. No power quality 

problem exists in the proposed method because there is no 

disturbance injection. Therefore, this method doesn’t have 

the problems which exist in passive and active method [19]. 

The output of wavelet transform in this method is the 

feature which is selected by wavelet process to detect the 

islanding condition. In this paper, Daubechies wavelet is 

applied to extract the required feature for islanding detection. 

Maximum value of DWT forth level is the feature that is 

selected in this paper. The coefficient of this level is severely 

different between islanding condition and non islanding ones 

and can be used to distinguish these conditions accurately.   

The basic model of the passive islanding detection method 

proposed in this paper is illustrated in Fig. 1. Transient 
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waveforms of the currents and voltages in a power network 

contain unique signatures that reveal the cause of the 

corresponding transient event. The proposing islanding 

detection method is based on the hypothesis that the 

transients generated during the islanding event contain such a 

signature and a classifier can be developed to distinguish 

islanding events from the other disturbances. 

However, the event-specific characteristics embedded in 

the transient waveforms are not directly distinguishable. 

Therefore, they need to be pre-processed to extract features 

that assist fast classification response. Wavelet 

transformation is thus used for this purpose. Reference [23] 

by the authors of this paper examines the use of different 

pattern-recognition techniques for classifying islanding and 

non-islanding events using transient signals. This paper 

concludes that DT performs better than probabilistic neural 

networks or support vector machines. Based on the 

conclusions arrived in [23], DT was used as the classification 

technique in this paper [20].  

Two kinds of classifier are used and compared to each 

others, Decision-tree and Artificial Neural Networks 

Classifier. 

3.1. Artificial Neural Networks Classifier 

Pattern recognition involves different mathematical 

approaches to classify data (patterns) based either on a priori 

knowledge or on statistical information extracted from the 

patterns. 

Artificial neural networks (ANNs) have been used in many 

potential applications in power systems operation and control. 

Load forecasting, fault diagnosis/fault location, economic 

dispatch, transient stability and harmonics analysis are some 

of the application in which ANN was adopted as a classifier 

[24]. ANNs are often used as classifiers since they have the 

capability of learning complex mapping, linear or nonlinear 

from the input space to the output space [25]. The 

architecture and the training algorithm of the feed forward 

artificial neural network are used in this article. 

A training algorithm is defined as a procedure of updating 

the weights and biases of a network so the network will be 

able to perform the particular design task. The training 

algorithm is divided into two main categorizes: supervised 

learning, and unsupervised learning. ANN is classified under 

supervised learning.  

3.2. Decision-Tree Classifier 

DT is a logical model constructed based on the training 

data, and represented as a binary tree. The DT starts with the 

“Root,” which contains whole training dataset. Each 

“Internal Node” tests an attribute and each “Arc” corresponds 

to an attribute value. “Terminal Node” represents the 

predicted class [26]–[28]. Fig. 2 shows a sample structure of 

a DT of a two-class problem. Classification and regression 

trees (CART) [27]–[30] is a nonparametric technique that 

produces either classification or regression trees, depending 

on whether the dependent variable is categorical or numeric, 

respectively. The CART algorithm generates DTs based on a 

splitting rule. The basic idea of the splitting rule is to choose 

a split among all possible splits at each node so that the 

resulting child nodes are the “purest.” The splitting rule is 

processed in three steps as follows: 

1) Find the best split of each predictor variable. 

2) Find the best split of node. 

3) Assign the class. 

 

Figure 2. Example of a DT structure with 2 class problem 

4. Numerical Studies 

As proposed method using features that are sampled before 

main circuit breaker, a microgrid is introduced that has 4 

sections included 2 DG and a battery supply with some loads 

that could be a likely micro-grid. The distribution network 

derived from system shown in Fig.3 is simulated. It is a 

system with four areas including a diesel generator, a wind 

turbine, a storage area (Ni-Cd battery) and some loads. 

Numerical studies are carried out using Matlab/Simulink 

software. 

Microgrid could work itself, for example, Fig. 4 and 5 

show changing in load and synchronous generator power 

when microgrid is isolated from grid. Loads are decreased, 

but power producing of synchronous generator increased 

because of charging battery. 

The system has one switch SC1 (which is kept normally 

closed), making it possible to change the network 

configuration from in two classes of events, namely 

“non-islanding” and “islanding” were considered. The 

non-islanding cases simulated include: 1) normal operation; 2) 

temporary faults, including three phase to ground, three 

phase, line to line, and line to ground; 3) switching of loads; 

and 4) power decreasing of gird.  

The data were collected at different loading conditions and 

under different system faults obtained by opening and closing 

switch SC1. A total of 200 islanding and non-islanding cases 

were simulated and the three-phase currents and voltages 

measured at the terminals of SC1 were recorded. Nearly 70% 

of the data, which includes 140 islanding and non-islanding 

cases, were used for training. The remaining cases were used 

as testing data in DT classification and 15% of the data were 

used for training, and 15% of the remaining data, were used 
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for validating ANN classification. Testing data were 

extracted randomly from each category of events to ensure 

testing against all types of transient events. 

 

Figure 3. Test model, microgrid connected to a grid 

The DWT and ANN were used to extract the features for 

the classifiers. Phase current and voltage signals were 

sampled at 10 kHz and every 0.05 sec is used for calculation. 

The DWT was performed on the sampled waveforms with 

the Daubechie’s 4 (Db4) mother wavelet. The approach for 

selecting the mother wavelet and sampling frequency was a 

trial-and-error procedure combined with prior experience. 

The successful application of Db4 for characterizing power 

system transients is reported in many studies [31]–[34].  

The choice of 10-kHz sampling frequency for detailed 

studies was based on the accuracy of classification, speed of 

detection, and hardware cost/capability required for real-time 

implementation. The original signals and the detail wavelet 

coefficients of the current and voltage measured in SC1 

terminals for 1) an islanding event, 2) a line-to-ground with 

impedance fault, and 3) a load trip situation. 

For example voltage and current of a three phase fault to 

ground with 0.01 Ohm resistance is shown in Fig.6. Analysis 

of current with Db4 in level 4 is shown in Fig.7 and finally 

sum of discrete wavelet transform current and voltage 

Calculation energy can be defined respectively as: 

 

D1Energy_Ic_D1Energy_Ib_D1Energy_Ia_EID1

D2Energy_Ic_D2Energy_Ib_D2Energy_Ia_EID2

D3Energy_Ic_D3Energy_Ib_D3Energy_Ia_EID3

D4Energy_Ic_D4Energy_Ib_D4Energy_Ia_EID4

++=
++=
++=
++=

    (4) 

D1Energy_Vc_D1Energy_Vb_D1Energy_Va_EVD1

D2Energy_Vc_D2Energy_Vb_D2Energy_Va_EVD2

D3Energy_Vc_D3Energy_Vb_D3Energy_Va_EVD3

D4Energy_Vc_D4Energy_Vb_D4Energy_Va_EVD4

++=
++=
++=
++=

    (5) 

The disturbance is applied at 0.2 s, and DWT coefficients 

are shown on an expanded scale that covers a time window 

of 0.05 s, extending from 0.2 s to 0.25 s. In addition to the 

obvious variations in the range of amplitudes, there are other 

noticeable differences between the islanding and 

non-islanding events. Furthermore, it is clear that different 

non-islanding events themselves hold identities. Thus, an 

approach, such as a simple threshold, cannot be used to 

distinguish between islanding and non-islanding events. 

Consequently, a more sophisticated method, involving 

pattern recognition, is required. 
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Figure 4. Amount of load is changed in microgrid after 5 sec. 

 

Figure 5. Power of synchronous generator varieties in microgrid after 5 sec. 

 

(a) 

 

(b) 

Figure 6. A three phase fault to ground with 0.01 Ohm resistance (a) Voltage 

(b) Current. 

 

Figure 7. A three phase fault to ground with 0.01 Ohm resistance (a) Voltage 

(b) Current. 

Direct use of wavelet coefficients, which are essentially 

waveforms, as inputs to a classifier (in this case, to a DT) is 

impractical. Thus, energies associated with the wavelet 

coefficients in a time window that encompass the transient 

were used as features for the classifier. Wavelet energy is 

obtained by integrating the square of the wavelet coefficient 

over a time window of 0.05 s. The analysis uses a moving 

window, thus preserving the temporal information. This time 

window length was selected after preliminary investigations 

as a compromise between the accuracy and response time. At 

each decomposition level, the energies of the three phases 

were added to form a combined “three-phase energy” value 

in the particular frequency band. This feature extraction 

method is illustrated in Fig. 8. Only the decomposition of 

Phase-a current is shown in detail to reduce the complexity of 

the figure. The so-calculated “three-phase energy” values of 

the currents and voltages create a 12-D feature space (6 
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levels of currents 6 levels of voltages) for each generator, if 

the output of six levels from the DWT is used. 

 

Figure 8. Feature extraction methodology [20]. 

Initially, a DT and an ANN were trained for microgrid 

using all 8 features that are calculated from (4) and (5). In 

Table I, EVD and EID denote the energy values of the level 

wavelet coefficient of the voltages and the currents, 

respectively for 4 examples. An analysis of Table I shows 

that the relevancy of some of the features is very low and 

they can be omitted without significantly reducing the 

accuracy. 

Table 1. EVD and EID values of the level wavelet coefficient of the voltages 

and the currents. 

Ex.4 Ex.3 Ex.2 Ex.1  

3.976009 1.88537 0.012433 0.012403 EID4 

0.600069 1.870209 0.007209 0.007196 EID3 

44.46214 11.76482 0.000737 0.000735 EID2 

1857.722 9.74209 2.30E-06 2.29E-06 EID1 

0.446404 0.383118 0.029556 0.029793 EVD4 

3.041684 2.535627 0.017396 0.017385 EVD3 

0.833201 0.451739 0.001784 0.001778 EVD3 

0.310759 0.040049 6.05E-06 6.02E-06 EVD3 

1 1 0 0 State 

4.1. Classification with Artificial Neural Networks  

 

Figure 9. Structure of ANN. 

Artificial neural network that is used for classification is a 

feed-forward network with 8 inputs and 1 output. It has 2 

layers and training that is used for this network is a 

Levenberg-Marquardt using Mean Square Error (mse) for 

decreasing of errors. Structure of ANN is shown in Fig.9 and 

error histogram is shown in Fig.10. Under these structure and 

results, accuracy of this ANN is about 84%. 

 

Fig 10. Error histogram of ANN. 

4.2. Classification with Decision-Tree 

The DT classifier trained for all states. With the testing 

data for the microgrid, it achieved an overall accuracy over 

99% in identifying islanding events. Table II shows decision 

tree rules for islanding detection and Fig. 11 shows branch of 

decision tree.  

Table 2. Decision tree rules for islanding detection. 

 Decision tree for regression 

1 
if x6<0.0173962 then node 2 elseif x6>=0.0173962 then node 3 else 

0.84 

2 
if x4<2.28792e-006 then node 4 elseif x4>=2.28792e-006 then node 

5 else 0.545455 

3 
if x6<0.0174052 then node 6 elseif x6>=0.0174052 then node 7 else 

0.985075 

4 fit = 1 

5 
if x7<0.00178427 then node 8 elseif x7>=0.00178427 then node 9 

else 0.387755 

6 
if x1<0.0124798 then node 10 elseif x1>=0.0124798 then node 11 

else 0.888889 

7 fit = 1 

8 fit = 0 

9 
if x5<0.0295559 then node 12 elseif x5>=0.0295559 then node 13 

else 0.76 

10 fit = 1 

11 fit = 0 

12 fit = 1 

13 
if x5<0.0295561 then node 14 elseif x5>=0.0295561 then node 15 

else 0.5 

14 fit = 0 

15 fit = 1 
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Figure 11. Decision-tree 

5. Conclusion 

This paper dealt with islanding detection based on discrete 

wavelet transform. Changing the location of current and 

voltage signals measuring point after the utility circuit 

breaker makes this method more effective for islanding 

detection in the network with multiple DGs. Islanding 

detection time is decreased by using the DWT for feature 

extraction. 

A trained DT classifier is able to successfully categorize 

the transient generating events as “islanding” or 

“non-islanding” using the energy associated with the wavelet 

coefficients. When tested with a large number of test cases, 

the proposed technique shows more than 99% overall 

classification accuracy beside ANN that only shows 84% 

classification accuracy. 

As it mentioned, for detecting islanding, this paper 

presented an online measurement method based on wavelet 

transform for current and voltage analysis and results could 

be described in brief: 

1. Islanding detection time is decreases using signals 

before main circuit breaker. 

2. Reliability is increased using transient signals that are 

sent from network with less noise effects besides using 

further noisy signals in microgrid in other methods. 

Several issues remain for the future works within 

distribution networks and microgrids, such as other 

classification methods, using fuzzy method in DT 

classification, using other sample signals such as frequency 

deviation, and using other time frequency analysis such as 

S-transform, Hyperbolic S-transform, and TT-Transform 

instead of wavelet transform. These are the subjects of 

ongoing research. 
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