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Abstract: Power system stabilizers (PSS) has been widely used to enhance damping due to the electromechanical low 

frequency oscillations occurrence in power systems. In this paper, a new method is used for the online tuning of parameters of 

conventional power system stabilizers (CPSS) using fuzzy logic. Fuzzy logic enables mathematical modeling and computation 

of some nonlinear parameters of the system, which are usually derived empirically by utilization of expert knowledge rules. 

Various literatures has shown that fuzzy logic controller is one of the most useful methods for expert knowledge utilization. 

This type of controller is adaptive in nature and can be used successfully as a power system stabilizer. The design of fuzzy 

logic controllers is mainly based on fuzzy rules and input/output membership functions. Simple and efficient clustering 

algorithms allow data classification in distinct groups using distance and/or similarity functions. In the present paper, the 

optimum generation of fuzzy rules base using Fuzzy C-means (FCM) clustering technique is used. In fact, data are classified 

and the number of fuzzy rules which depends on convergence radius is determined. Finally, the performance of proposed FCM 

controller is compared with that of conventional controller. The active power, reactive power and bus voltages used as inputs to 

the fuzzy logic network based power system stabilizer and the parameters of the optimum stabilizer , i.e. gain factor as well as 

time constants of the lead/lag compensator, are the outputs of the proposed system. The design method has been successfully 

implemented on a single machine power system connected to an infinite bus over various operating conditions. 

Keywords: Dynamic Stabilizer, Power System Stabilizers, Online Tuning of Parameters,  

Fuzzy C-Means Clustering Prediction 

 

1. Introduction 

Power systems are complex and nonlinear. In these 

systems, electromechanical low frequency oscillations are 

produced. The electromechanical oscillations between 

connected synchronous generators is an inherent 

phenomenon. To overcome these oscillations, power system 

stabilizer is widely used. Recent research is related to 

lead/lag compensators [1, 2, 3]. 

Electromechanical low frequency oscillations in 

transmission networks are an important issue in power 

systems which its study will contribute largely to stability 

problem [1,2]. The performance of excitation systems and 

high gain AVR in terms of transient stability improvement 

and normal performance of the system is very desirable, but 

these excitation systems with high gain and fast action also 

can cause system instability. This type of instability known as 

low frequency oscillation (LFO) in the range of 0.2-3 Hz 

reveals negative impact of excitation systems on utilization 

of a power system. Depending frequency oscillation, these 

oscillations are classified into three types of local (Local 

Mode), Inter area (Inter Area Mode) and intra area (Intra 

Plant Mode) which among them, local mode is considered 

here. In other words, this type of instability can be harmful to 

system safety and also can limit the maximum transmittable 

power by the system [4]. Low frequency oscillations (LFO) 

occurrence is due to inadequacy of inherent damping of  the 

system. To modify and improve the dynamic stability and 

enhance the damping of low frequency oscillations, various 

solutions has been proposed and applied. These solutions 

include fast acting governor, system topology alteration, 

modification in synchronous machine design, protection 
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devices exploitation, FACTS devices exploitation, 

characteristics modification of voltage regulators and 

excitation systems, and installation of power system 

stabilizer in production units. These methods aren't economic 

and since the designed systems for generators are often old, 

their structural replacement isn't possible. The most 

economic and efficient way to overcome oscillations problem 

is providing sufficient damping for rotor oscillations. This is 

done by effective exploitation of the power system stabilizer. 

In fact, PSS applies a supplement control signal to the  

generator excitation system in order to quickly damp the 

power system oscillations following disturbance. The aim of 

a power system stabilizer design is to provide generator with 

additional damping torque in critical oscillating frequencies 

without influencing synchronizing torque. As mentioned 

earlier, the input also can be a signal of frequency error, 

speed error, electric power, and/or a combination of these 

signals and the output signal of the stabilizer is applied to the 

generator excitation system. 

Today, Most of the generators available in power systems 

are equipped with Automatic Voltage Regulator (AVR) to 

automatically regulate the terminal voltage of generator [5]. 

In power systems study and control, power system stabilizers 

are used to generate the supplement control signal for the 

synchronous generator excitation system in order to damp 

low frequency oscillations. The design method of 

conventional power system stabilizers (CPSS) is based on the 

application of compensation theory and lead/lag 

compensators in the frequency domain. In this method, CPSS 

parameters are calculated based on the linearized model of 

power systems considering a system operating point, and 

then these parameters are assumed constant for all system 

operating points. In order to enable the conventional power 

system stabilizer to provide appropriate damping over a wide 

range of the system operating points, the stabilizer 

parameters are recalculated and then retuned with respect to 

the current system operating point. 

In order to improve the performance of power system 

stabilizers, various design methods has been presented for 

them, including varying structure PSSs, neural network based 

PSSs, and fuzzy logic based PSSs [6-12]. The application of 

fuzzy logic with Fuzzy C-Means clustering (FCM) [13] is of 

interest in this paper. The methods already presented for this 

purpose are more based on Multi Layer Perceptron (MLP) 

Neural Network, Radial Basis Function (RBF), and Fuzzy 

Logic Network which each of them has problems such as 

unavailability of the number of hidden layer neurons for MLP, 

long training time for RBF, and optimal retuning of fuzzy 

network parameters with computational intelligence methods 

for Fuzzy Logic Network. The method presented here uses 

fuzzy logic network with Fuzzy C-Means clustering (FCM) 

which leads to reduction of the number of data base rules and 

automatic training and specification of membership 

parameters at the minimum possible time, causing proper 

fitting of membership functions to input and output for a 

given class center [13]. Inputs/outputs has obtained by the 

design method of conventional lead/lag controllers and are 

used for training of FCM based fuzzy logic network [13]. 

In this paper, we have used a single machine system 

connected to an infinite bus (SMIB) and in order to damp the 

low frequency oscillations in this system, a PSS is exploited 

which its parameters tuned online with respect to each 

system operating point [20-23]. 

2. Single Machine System Connected to 

an Infinite Bus 

In this paper, we use a simplified dynamic model of a 

power system, i.e. a single machine system connected to an 

infinite bus (SMIB) as shown in figure (1) [20]. This system 

includes a synchronous generator with a fast acting excitation 

system which its rated parameters are given in [20-23]. This 

single machine system is connected to an infinite bus through 

an external reactance Xe and external resistance Re. 
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Fig 1. Single machine system connected to an infinite bus 

Considering typical representations, the dynamic equations 

governing this system are as: 
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Also ignoring the stator resistance of the synchronous 

machine, the algebraic equations governing stator can be 

written as: 

0=− dqq VIX                           (5) 

0=′−−′ ddqq IXVE                       (6) 

In addition, the equations governing this network can be 

written as: 

δsin∞−=− VVIXIR dqede             (7) 

δcos∞−=+ VVIRIX qqede             (8) 



 International Journal of Energy and Power Engineering 2014; 

Since small disturbances are considered in dynamic 

stability studies, the linearized system equations can be used.

In this paper, we assume that besides the

system operating point, the transmission line reactance X

also changes. Here the variation of Xe implies the

configuration and/or structure of the system. Since

measurable in practice, it cannot be used as an input to fuzzy 

logic networks. As we know, the variation in transmission 

line reactance actually makes the reactive power production 

of generator (Q) change so that Xa can be substituted by Q. 

Therefore, we assume that in this system,

production of generator (P), generator terminal voltage (V

and even transmission line reactance (Xe) are variable and 

other system parameters including the amplitude of infinite 

bus voltage are constant. Now ignoring the transmission line 

resistance (, i.e. Re=0), the following equation can be written 

from fig. 1 : 
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Using eq. (9) and considering the definition 

����, we get: 
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Separating real and imaginary parts of eq. (10) 

considering ��� � ���� � ��	� , gives two following equations:
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2
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Now with the knowledge of Vt (terminal voltage) and P 

(active power) as well as the infinite bus voltage and 

reactance Xe, we only have two unknown

(12) which are Q and Vtd. Eqs. (11) and (12) are nonlinear 

equations which their solution involves using a mathematical 

method for the calculation of Q and V

Broyden method [21] for solving above equations. The 

important feature of Broyden method is that it doesn't require 

Jacobian matrix. In fact, it can be said that with the variation 

in system operating points, i.e. P, Vt, and the transmission 

line reactance Xe, the active power production of genera

can be calculated from (11) and (12), and then P, Q and V

used as inputs to fuzzy logic network. The only remaining 

issue is that in eqs. (1) to (8), two variables, δ and θ, is 

needed which their computation is as follows.

Ignoring the stator resistance as well as the transmission 

line reactance, the active power production of generator is 

given by: 
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Solving the equation above, we get:

e

t

X
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Therefore, with the knowledge of

infinite bus voltage, the angle of generator terminal voltage θ 

can be simply obtained by using eq. (14). Moreover, the 

angle of synchronous machine internal voltage

calculated as follows: 

{ eVt∠=δ

Where � � �
������
���

. 

3. Conventional Power System 

Stabilizers Design 

Fig 2. Linearized model of a single machine system

As we know, currently the usage of 

system stabilizers (CPSS) is the most economic way for 

enhancing the power systems damping

frequency oscillations occurrence

creates a damping torque in phase with generator speed

variations. The CPSS input can be

generator from synchronous speed,

the system and/or accelerating torque

compensation method [20-23]. The block diagram of such a 

PSS along with the linearized equations of a single machine 

system connected to an infinite bus presented in the previous 

section is given in fig. (2) where 

The block diagram of a CPSS involving a two stages

lead/lag compensator block, a washout block and an 

amplification factor KSTAB is shown in fig. (3) .
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Solving the equation above, we get: 

θsin                                  (14) 

with the knowledge of P, Vt, Xe and also the 

infinite bus voltage, the angle of generator terminal voltage θ 

can be simply obtained by using eq. (14). Moreover, the 

angle of synchronous machine internal voltage δ can be 

}IjXq
j +θ

                        (15) 

Conventional Power System 

 

 

Linearized model of a single machine system 

As we know, currently the usage of conventional power 

system stabilizers (CPSS) is the most economic way for 

power systems damping due to the low 

occurrence. This stabilizer actually 

creates a damping torque in phase with generator speed 

CPSS input can be the speed deviation of a 

nerator from synchronous speed, frequency variations of 

the system and/or accelerating torque designed by  the phase 

]. The block diagram of such a 

linearized equations of a single machine 

system connected to an infinite bus presented in the previous 

is given in fig. (2) where � �
��

 . 

The block diagram of a CPSS involving a two stages 

lead/lag compensator block, a washout block and an 

is shown in fig. (3) . 
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Fig 3. Block diagram of a conventional power system stabilizer 

The aim of lead/lag blocks in the model of a CPSS is 

cancellation of lagging caused by blocks following PSS 

which have been shown in fig. (2) with dashed lines as the 

transfer function GEP(s). Also it can be shown that ignoring 

constant K4, the transfer function GEP(s) is calculated as 

follows [20-23]: 
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As mentioned before, the aim of lead/lag blocks in a CPSS 

is cancellation of lagging caused by the transfer function 

GEP(s) during the low frequency oscillations of a 

synchronous machine. Ignoring the inherent damping of 

synchronous machine which implies D=0 in the machine 

model, the frequency of these oscillations is [20-23]: 
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Now if we denote the created phase angle by a block 

GEP(s) of frequency s=jωn with β, then considering a 

lead/lag block with m similar stages and also assuming time 

constants T1 and T2 for these blocks, these constants are 

given by: 
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As said, here we have used a two stages lead/lag block 

(m=2) in a CPSS. Now assuming a value for the damping 

coefficient ξ, the stabilizer gain factor (KSTAB) can be 

calculated as follows [20-23]: 
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Where G1(s) is the transfer function of a m stages lead/lag 

block which can be represented by: 
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Also, we have assumed the value of ξ=0.7 for all system 

operating points. Finally, considering the CPSS block 

involving a gain KSTAB and a two stages lead/lag block 

corresponding to T1 and T2 time constants, the linearized 

equations of the system can be written as the following state 

equations from fig. (2) (because of papers limitation, we 

ignore the computational details): 

Cxy

TBVBAxx Mref

=

∆+∆+= 21ɺ

                     (21) 

where 

[ ] t
PSSfdq VVEEx

 
1                      ∆∆∆′∆= νδ  

[ ] t
et PVy            ∆∆∆= ν  

in the expressions above, V1 and VPSS are two additional state 

variables which created by the CPSS block in the system and 

have been shown in fig. (3). Also A, B1, B2 and C are as: 
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Here we initially want to show which shape does the root 

locus of the system take with and without PSS. 
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Fig 4. Root locus of the system without stabilizer 

 

Fig 5. Root locus of the system with stabilizer 

4. Fuzzy Logic Network, Data Base Rules 

and the Usage Method 

4.1. Fuzzy Logic Controller Structure 

The conventional stabilizer is tuned for one operating point, 

but using fuzzy logic network and training with clustering 

method, it can be used for a wide range of the system 

operating points. Fuzzy systems are nonlinear and based on 

human knowledge. The core of these systems is a rules base 

which composes of fuzzy IF-THEN rules. A fuzzy IF-THEN 

rule is an if-then expression which some of its words specify 

by means of the fuzzy membership functions. As said, 

utilizing human experience in the form of formula is difficult. 

Fuzzy logic provides a simple means for such an application. 

As shown in fig. (6), the basic structure of a fuzzy logic 

controller includes three following parts [19]. 

� Fuzzifiers- The inputs are read or measured and then 

we change the measured values to the form 

corresponding to the linguistic variable (the values 

proportional to membership function values). 

� Fuzzy inference engine- includes rules that relate the 

input membership functions to the output ones. 

� defuzzifiers- includes functions which transform the 

fuzzy output in the form of membership functions to 

a specified and acceptable point for the general 

output of the system [1,4,7,18]. 

 

Fig 6. General form of a fuzzy system 

There are three kinds of fuzzy systems: 

1. Pure fuzzy system 

2. Takagi-Sugeno-Kang fuzzy systems 

3. Systems with fuzzifiers and defuzzifiers 

The basic structure of fuzzy inference systems is a model 

which maps input properties to input membership functions, 

input membership functions to rules, rules to a set of output 

properties, output properties to output membership functions 

and ultimately output membership functions to a unique 

output value and/or a decision. Fuzzy inference is only used 

for modeling systems which their related rules were already 

determined by your interpretation of application. Fig. (6) 

represents the simple model of a fuzzy system. Sometimes in 

system modeling you cannot specify membership function by 

means of data investigation. Although the parameters 

associated with membership function can be arbitrarily 

determined, it is to be noted that the appropriate selection of 

these parameters would have a substantial effect on the 

system performance. In such cases, the design techniques of 

fuzzy systems  can be used which one of them is the 

clustering method where an optimal tuning of the 

membership functions' parameters is achieved by finding the 

class center and designating the membership functions 

appropriate to the class center [ 1,4,7]. 

Types of fuzzy system design methods are: 

� First order estimator 

� Second order estimator 

� Look-up table 

� Gradient Descent 

� Clustering method 

� Fuzzy C-means clustering analysis 

Explanation of the final method, i.e. FCM clustering 

analysis, is the aim of this paper [13,14,18]. 

4.2. Fuzzy C-Means (FCM) Clustering Analysis 
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Fig 7. Clustering and centers mean 

There isn't a systematic procedure for specifying the 

number of fuzzy system rules in the previous methods. In the 

gradient descent method, the number of rules was fixed 

before training. In the table and estimator methods, the 

number of fuzzy sets is determined and then this number 

initially specifies the number of rules. 

Clustering method includes an algorithm for selecting the 

number of rules [5]. The input/output data sets divides into 

some clusters and a rule is expressed for each cluster. 

First, a proper algorithm is selected for the limited number 

of input/output pairs, and then the nearest neighbour method 

is applied for clusters selection, and finally the optimum 

fuzzy system is designed for data fitting [13]. 

Assume an input/output pair ���� , ����, 1 < ! < " where N 

is small.Our task is developing a fuzzy system that is able to 

match all N input/output pairs with an arbitrary given 

accuracy. This requires that #$���% � � ��& # < ', ∀) > 0. 

To summarize, the training steps are given in the appendix. 

And now we assume that the trained fuzzy logic network of 

interest is ready to use. 

The shape of input membership functions after training are 

shown in fig. (8): 

 

 

 

Fig 8. Trained membership functions with Fuzzy C-Means clustering method 
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Fig 9. Decision-making borders 

5. Simulation Results 

In order to obtain the training data for fuzzy logic network, 

we assumed that the active power production of generator (P) 

is 0.5 to 1.1 times the rated active power production of 

generator. We also assumed that the amplitude of generator 

voltage is 0.95 to 1.05 times the nominal terminal voltage. 

The transmission line reactance was assumed constant. To 

produce training vectors, each time a random number with 

uniform distribution is independently selected for P and Vt in 

the range of associated variations and then solving eqs. (11) 

and (12) presented in section 2. gives the amount of reactive 

power production of generator (Q). Finally, we calculate the 

optimum values of stabilizer gain (KSTAB) and time constants 

T1 and T2 with the phase compensation method. Here we 
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have used a stabilizer with a two stages lead/lag block for the 

random operating points. Therefore, a training pattern (vector) 

for fuzzy logic network actually includes P, Xe=cte, and V as 

inputs and KSTAB, T1 and T2 as outputs. 

Using the method explained above, we generated 2000 

training patterns and trained the fuzzy logic network with 

FCM clustering method. After  some simulations and training, 

we investigated the network performance considering a 

neighboring radius of 0.5 for Gaussian membership functions. 

Test results show that Root Mean-squared Error (RMSE) for 

3 desirable outputs, KSTAB, T1 and T2 and the values obtained 

by trained fuzzy logic network is 0.7278,0.0138, and 0.0053, 

respectively which implies the ability of trained fuzzy logic 

network in good estimation of  the PSS parameters. 

Estimations of the fuzzy logic network for 50 test data are 

shown in fig. 10. 

 

 

 

Fig 10. Estimations of fuzzy logic network for 50 test datas 

 

As said earlier, one of the main problems with conventional 

power system stabilizers is that they are only tuned for only 

one system operating point. The optimum performance of 

these stabilizers requires retuning of these parameters as the 

system operating points change. To investigate this and also 

the advantages of online tuning of CPSS parameters using 

fuzzy logic network, we studied the performance of a single 

machine system connected to an infinite bus with applying two 

types of disturbance to the system. For the first disturbance, 

the variations in the generator terminal voltages (Vt) are 

plotted for a 0.1 p.u. step change in the generator reference 

excitation voltage (Vref). For the second disturbance, the 

variations in generator speed (ω) for a 0.5 p.u. step change in 

the machine input mechanical power is plotted. This is done 

for two operating points and we considered these three 

situations: 

a) Single machine system without PSS 

b) Single machine system with constant parameters PSS 

c) Single machine system with PSS whose parameters 

retuned online for each operating point of the trained 

fuzzy logic network 

The comparison for the first operating point is done among 

all 3 situations and for the second one, it is only done 

between (b) and (c). In the case of constant parameters PSS, 

the values of PSS parameters for both operating points were 

obtained considering the nominal values of the single 

machine system parameters and then the obtained values 

assumed constant for all system operating points. For the first 

operating point, the diagrams of the generator terminal 

voltage variations and generator speed variations are shown 

in figs.(11) And (12), respectively. For the second operating 

point, these diagrams are shown in figs. (13) and (14), 

respectively. These diagrams are associated with a random 

system operating point which is much different from the 

nominal operating point. As can be seen from these two 

figures, PSS with parameters tuned by FCM practically 

achieved damping of created oscillations, and also the system 

without PSS was unsuccessful in damping these oscillations 

and hence the system has become unstable. 

Operating points are as: 

� Operating point-1: 

Active Power (P) = 0.6; 

 

Fig 11. Diagram of generator terminal voltage variations 
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Fig 12. Diagram of generator speed variations 

� Operating point-2: with 0.4 p.u. change in the 

transmitted power and increasing it to 1 p.u. 

 

Fig 13. Diagram of generator terminal voltage variations 

 

Fig 14. Diagram of generator speed variations 

6. Conclusion 

In this paper, an effective method has been presented for 

the online tuning of parameters of conventional power 

system stabilizers (CPSS) using fuzzy logic network (Fuzzy 

C-Means Clustering). The inputs are quantities like the active 

power production which are directly measurable, and hence 

after training network, the optimum stabilizer values 

corresponding to the current system operating point can be 

obtained. The required equations for designing CPSS with 

the phase compensation method has been completely 

explained. Considering some disturbances, the performance 

of the dynamic system equipped with PSS with parameters 

tuned by fuzzy logic network (Fuzzy C-means) was studied. 

The simulation results verified good performance of the 

designed PSS. Also FCM based PSS is able to create good 

damping over a wide range of the system operating points. 

More damping means the generator can be utilized stably at 

its maximum capacity, leading to economic saving of cost. 

Table 1 shows a comparison of stabilizers based on three 

networks , i.e. MLP, RBF and Fuzzy C-means. 

Table 1. The comparison of stabilizers for T2 

RMSE Type 

0.0053 Fuzzy C-Means 

0.5168 MLP 

0.7183 RBF 

It is clear from table 1 that the neural network estimation 

has more error. Moreover, training time with clustering 

method was very low within 1 to 2 s, but training neural 

network has done in 39 iterations in a very large time. 

Appendix: 

Case Study of the System: 

XE=0.5, V=1, Tw=2, f=60, Tdo=9.6, xd=2.5, xpd=0.39, 

xq=2.1, H=3.2,  

KA=400, TA=0.2, Ra=0, Re=0, Eb=1.05 

The steps of Fuzzy C-Means network training are as 

follows. 

Step 1: starting from input/output 1 1

0 0
( , )yχ , we create a 

cluster with the center 1

c
χ  at 1

0
χ  and we put: 

1 1 1

0(1) (1) 1A y B= =  

Now we select a value for the radius, r. 

Step 2: introducing the kth input/output pair
0 0( , )
k k

yχ , we 

have M clusters with centers 1 ............. m

c cχ χ . we calculate 

the distance of 
0

kχ  from the center of these M clusters as: 

0 1k l

c l Mχ χ− < <  

and we take the lowest distance, i.e. 
0

klk

cχ χ− . 

a) if 
0

klk

c rχ χ− > , then 
0

kχ  is a new class center and 

1

0

m k

c
χ χ+ = .We put: 

1

0
( )m kA k y+ =    ,   1( ) 1mB k+ =  

( ) ( 1) ( ) ( 1)l l l lA k A k B k B k= − = −
 

b) if 0
klk

c
rχ χ− ≤ , then 
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0( ) ( 1)k kl l k
A k A k y= − +  

( ) ( 1) 1k kl l
B k B k= − +  

( ) ( 1)l lA k A k= −  

( ) ( 1)l lB k B k= −  

c) If 
0

kχ  doesn't create a new cluster, then according to 

k input/output pairs 
0 0

( , )i iyχ , we get: 

2

1

2

1

( )exp( ( ) )

( )

( )exp( ( ) )

l
m l i i

l

l
m l i i

l

X
A k

f x
X

B k

χ
σ

χ
σ

=

=

−−
=

−−

∑

∑
 

and if 
0

kχ  is a new cluster, M is substituted by M+1 in the 

new formula. 

Step 3: step 2 with k=k+1 

In the above relations, ( )lB k  is the number of input/output 

pairs in the lth cluster and ( )lA k  is the sum of output values 

of its input/output pairs. The radius r determines the degree 

of complexity of the designed fuzzy system. 

Since ( )lA k  and ( )lB k are calculated using recursive 

equations, a forgetfulness factor can be simply used which is 

useful for modeling systems with variable structures. Using 

this factor, we get: 

0 1

1 1
( ) ( 1)k kl l kA k A k y b

τ
τ τ
−= − +  

2

1 1
( ) ( 1)k kl lB k B k b

τ
τ τ
−= − +  

3

1
( ) ( 1)k kl l

A k A k b
τ

τ
−= −  

4

1
( ) ( 1)k kl lB k B k b

τ
τ
−= −  

where τ is time constant of the decreasing exponential 

function. In practice, ( )lB k  must have a threshold so that 

this cluster eliminates if ( )lB k  goes below this threshold. 
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