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Abstract: One of the main challenges in wave processes is the problem of eventuality correctness of different asymptotic 
representations of the same exact solution taken from different sides of the turning point. In this paper a universal solution 
method of this problem has been developed and the particular solutions of the wave equation have been expressed in terms 
of the solutions of Riccati’s equation for which the proper values in the turning points have been obtained. The paper 
demonstrates that, just those values will breed a correct phase and amplitude correlations in wave functions. Exact 
quantization conditions have been deduced and exact formulas for reflection and passage coefficients of quanta mechanical 
particles of potential barrier have been derived.  
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1. Preliminary General Correlations 

Let in the interval (a, b) defines some differentiable 
function of complex value w = w(x). 

Let u = u(x), v = v(x), are its real and imaginary parts 
respectively. Then 

w=u+ iv,                                      (1) 

u=� � ��
� , v= � � ��

��  .                       (2) 

We introduce the logarithmic derivatives of those 
functions 

q=� i �

� ,γ1= �


� ,γ2=




 .                   (3) 

Assuming that in a fixed point x0�(a,b) 
w(x0) = A0 e

i��, u(xo) = A1, v(x0) = A2, 
So the reverse equality to the equality (3) would be 

w = A0e���°�� �����
��  , u = A1 e �� �����

��  , 

v = A2e� �����
�°  ,                            (4) 

Where four constants A0,φ  , A1,A2 , are affiliated by 
conditions 

A1=A0cosφ , A2=A0sinφ0.              (5) 

Now we find the correlations associating q, γ! ,and γ� . 
Differentiating expressions (1), (2) and substituting them in 
(3) we obtain 

q=I
��"� #  

$ ��
!��#

$
 ,                                (6) 

γ! %  �i ����&�
&

!�&�
&

,                           (7) 

γ�=�i �� ��&�
&

!�&�
&

,                             (8) 

And as a consequence of the later two equalities, the 
following equality can be obtained 

q=i{�����
� +�����

�
��
� }                           (9) 

Assuming that, φ = argw,   ρ % │q │, θ = arg q, 
We device the relations (7),(8) to the following shape 

γ! =ρ )�* +��,-
./)� ,γ�=ρ ./) +��,-

)�*�           (10) 

Then 

ρ�=γ!2cos2φ+γ�2sin2φ                   (11) 
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Based on the later equality, it is not difficult to conclude, 
that the function ρ�(x) is always located between functions 
γ!2(x) and γ�2(x).It means that it always implements one of 
the inequalities, either 

γ!2 0 ρ� 0 γ� 2,     or   γ�2 0 ρ� 0 γ! 2 . 

Assume, that functions γ!+x-and γ�+x- are determined, 
such that in the point x0� (a,b) they satisfy the condition 

γ!(x0)=γ�(x0)=γ >0.                        (12) 

Hence, undoubtedly in this point results 

ρ(x0)=γ                                     (13) 

Putting (12), (13) in (10) we come to agreement, that the 
values of arguments φ0 = φ (x0), Θ0 = θ (x0) have to be connected as 

φ0+
��
� =3

4                                   (14) 

Emphasizing, once again this important result for the 
theory of wave equation: from condition (12) yields 
condition (14) and vice versa, if (14) is implemented, so 
(12) would implement too. 

2. Representation of Precise Solution 

Consider functions w(x), u(x), v(x) mentioned in the 
previous paragraph are certain particular solutions of wave 
equation of  

5″+6+7-
8� 5=0                             (15) 

With smooth real coefficient r(x), small positive 
parameter 9  and with one turning point of the first order   
(r(x0) = 0, but r′(x0) : 0). 

In this case the logarithmic derivative of (3) should be 
the solution of the corresponding Riccati equations. Thus  

;′=i<6+7-
8 � ;�=,                         (16) 

> ′=6+7-
8� +>!�                                (17) 

     >�′ =� 6+7-
8� � >��.                            (18) 

Recasting those equations in the form of 

iq=� ?′

�?+ @
� <; A 6+7-

8�  !
?=,            (19) 

�>!=� B�′
�B� � !

�{>!– 6+7-
8�

!
B�}         (20) 

>�=� B�′
�B�+!

� <>� � 6+7-
8�

!
B�=          (21) 

Expressing 

P=!
� <; A 6+7-

8�
!
?=,                   (22) 

D!=!
� <>! � 6+7-

8�  !
B�=,                      (23) 

D�=!
� <>� � 6+7-

8�
!

B�=.                      (24) 

In a region, where r(x) >0 at 9  E  0, we arrive to 
asymptotic equalities  

q=F6+7-
8 +(1+o(9--,p=F6+7-

8 ((1+o(9�)).          (25) 

In an area, where r(x) < 0 at 9 E 0 we obtain 

>!=F�6+7-
8 +1 A H+9--,D!=F�6+7-

8 +1 A H+9� --,    (26) 

>�=F�6+7-
8 (1+O(9--,D�=F�6+7-

8 (1+O(9�--.           (27) 

Assume, that in the turning point x = I  the solutions of 
equations (16) – (18) will have these values 

q(I )=> JKL�,>! +7�-=>�+7�-=> ,          (28) 

That is to say, satisfy conditions (12), (13). Furthermore 
integrating the left and right hand sides of the equations  

(19) – (21), we obtain 

i� ;MI7
7� =!

�ln B�
? +iL�

� +i� NMI7
7� ,                (29) 

� � >!
7

7� dx=!
�lnB�

B� � � D! 
7

7� dx,                  (30) 

� >�
7

7� dx=!
�ln B�

B�+� D�
7

7� dx.                       (31) 

Inserting those presented integrals of precise solution of 
Riccati equation into the three exact particular solutions of 
the wave equation, which is mentioned in (4). 
In formula (4) taking the conditions (5) and (14) into 
account and assigning the multiplication 

F>  A0  as a new arbitrary constant C0. We obtain 

w=O�
√? J@<Q 

R �� ST7U
U� =,                         (32) 

u=O�VWXY�
√? J� � Z�[UU

U�                       (33) 

v=O� X@\Y�
√B� J� Z�T7U

U� .                      (34) 

Now, we determine the argument ] , on the basic of the 
well-known semi classical amplitude correlations for main 
members of standard asymptotic expansions solution of 
wave equation. 

By moving from turning point in the region of positive 
values of the coefficient r(x), the main member of 
asymptotic notation of precise solution (32) can be written 
as 

_̂= O�
√6R J@<Q

R��
`  � √6U

U� T7 =.                  (35) 

 Hence, the main members of asymptotic real precise 
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solutions (33), (34) are obtained from the main member of 
(35), and according to the initial definition of the functions 
u and v as the real and imaginary parts of the function w. 
Therefore, 

ab= O�
√6R cde <f 

4 A !  
8 � √g MI7

7� =,                   (36) 

hb= O�
√6R eij <f

4 A !
8 � √g MI7

7� =.                    (37) 

When moving from turning point in the region of 
negative values of the coefficient r(x), the main members of 
asymptotic notations precise solutions (33), (34) will be as 
follows 

ab=O�VWXY�
√�6R J� �

`  � √�6T7U
U� ,                    (38) 

hb=O� X@\Y�
√�6R J �

`   � √�6 T7U
U� .                    (39) 

Further, follows that we have to distinguish two cases, 
when in the turning point  

g′+I  ) <0, and when g′+I - >0. 
1. Let the turning point g′(I ) <0. Then according to 

the semi classic functions, the expressions (36) and (38) 
would be the main members of the asymptotic 
representation of the one and the same precise solution of 
the wave equation, only if their amplitudes satisfy the 
condition 

O�
� =k  cos] .                                (40) 

Hence, we obtain the value of the argument ] , 

] =f
l                                         (41) 

And from condition (14) we find that, in the turning 
point, in which g′+I  - < 0 the argument value of precise 
solution of Riccati equation (16) should be certainly as 
follows 

m =� f
n!                                   (42) 

Substituting the value (41) in (39), we obtain the main 
member of asymptotic expansion of the precise growing 
exponential solution which cannot be obtained using 
traditional phase integral method. 

2. Let in the turning point g′(x0) > 0. Then functions 
(37) and (39) will be semi classical approximate of the one 
and the same precise solution of the wave equation, only if  
their amplitudes satisfy a condition 

O�
� =k sin]                                     (43) 

Hence, we obtain the value of argument ]   

] =f
n                                             (44) 

And from condition (14) we find that, in the turning 
point, in which g′(I ) > 0 the argument value of precise 

solution of Riccati equation (16) should be necessarily as 
follows 

m =f
n!                                          (45) 

Substituting (44) in (38), we obtain the main member of 
asymptotic expansion of the precise growing exponential 
solution of wave equation. 

So, in this point a new important result has been obtained, 
opening an easy approach for the problem solution of wave 
propagation with turning point in a heterogeneous 
medium .This method is absolutely analogous with a 
standard method based on the sewing solution on the 
medium parts’ boundaries with different wave parameters. 
Now we are in a position to summarize the result.  

The solution of the wave equation (15) with the turning 
point should be constructed in a form of linear combination 
of particular solutions where, in region r(x) > 0 is in a form 
of linear combination of function types 

J@ � ?T7 ,J� � ?�T7 , 

And in a region of r(X) < 0 is in a form of linear 
combination of function types 

J� � B�T7 ,J� B�T7. 

Where sub-integral functions q, >!  >�  should be 
considered as the precise or approximated solutions of 
Riccati’s Equations (16), (17), and (17) respectively, and 
necessarily with the following conditions in the turning 
points:  

If in any turning point x = a, g′+o- < 0  

Then q(a)=pq  J�@Q
r ,>!(a)=>�(a)=pq,       (46a) 

If in any turning point x = b,  g′+s- > 0,  

Then  q(b)=ptJ@Q
r ,>!+s-=>�+s-=pt        (46b) 

Where the modulus pq , pt can have arbitrary values. 
It is interesting to note that, all approximated solutions 

obtained in [4] would satisfy the conditions enumerated 
here. 

3. Quantization Condition 

If the wave equation (15) is considered as Schrödinger’s 
one-dimensional equation, namely, as an equation related to 
the wave function, which describes the movement of  the 
elementary quantum-mechanical particles in a field of force, 
then it is necessary to insert a quantum-mechanical 
significance  in the coefficient r(x) and parameter 9  so, 

R(x) = E – U(x), 9 = u
√�v . 

Let the potential energy u(x) have a form of the one 
represented in figure 1.  
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Fig 1. Potential Well, the dependence between potential energy of 

elementary particles to the distance x  

In the turning points: g
+o-  = �a
+o-  > 0, g
+s- %
 �a
+s- w 0 . In regions x < a and  x>b  the wave function 
must decay to infinity. In regions between the turning 
points a < x < b the wave function has oscillatory character. 
That corresponds to the following notations: 

In region of   x < a. 5 % yh, 5
= A>�v, 
In region of a<x<b, 5=A1w+A25


,  5

= A1iqw�y�i;�^�,  

In region of x > b. 5 = Bu, 5
 = �z>!a . 
Here A, A1, A2, B – are arbitrary constants; w, u, v- 

inserted in the previous point as the precise particular 
solutions of wave equation. 

The requirement of smooth transition of wave function 
across the turning point leads to an algebraic system of 
equations with respect to the arbitrary constants. 

A1w(a) + A2^�+o- = Av(a), 

A1iq(a)w(a)�A2i;�(a)^�(a) = A>�(a)v(a), 
A1w(b) + A2^�(b) = Bw(b), 
A1iq(b)w(b)�A2i;�(b)^�(b) = �B>!(b)u(b). 
The condition of quantization is to reduce the 

determinant of the system to zero. We have 

>!(b)>�(a)Im(w(a)^�(b))�>�(a)Re(w(a);�(b)^�(b))�>!(b)
Re(q(a)w(a)^�(b))�Im(q(a)w(a);�(b)^�(b))=0      (47) 

In correspondence with the results of the previous point 
we introduce the following values: 

W(x) = J@ � ?T7U
{  

q (a) = pqJ@Q
r  ,  q(b) = ptJ�@Q

r , >!(b) = pt , >�(a) =pq. 

Then by further simplification we can reduce the 
condition (47) to the following: 

Re|JINi <� ;MI � f
n

t
q =}=0.                (48) 

Emphasizing once again that here by q we mean the 
precise solution of Riccati’s complex equation (16) with 
boundary conditions in the turning points: arg q(a) = ~ 6⁄  , 
arg q(b) =� ~ 6⁄  that’s why the integral of q should be 
transformed to:  

� ;MIt
q  =� |!

� <; A 6+7-
8�

!
?= A @

�
?�
? } MIt

q  = !
� � <; A  6+7-

8�
!
?=t

q dx + @
� �j ��

�{ + fn . 

Now, the equality (48) could be written in the following 
form: 

Re|JIN @ 
� � <; A 6+7-

8�
!
?= MIt

q } =0. 

Hence, we obtain the final form of the precise 
quantization condition 

!
� �J � <; A  6+7-

8�
!
?=t

q MI=~ <j A !
�=,n=1,2,      (49) 

The advantage of the composed record is namely, just 
from this shape results different approximation forms of 
quantization condition. In fact if Q is some asymptotic 
solution of Riccati’s equation, i.e. if    q = Q + 0(9

), 

It is easy to be convinced, that 

!
� <; A 6+7-

8�
!
?= = !� <� A  6+7-

8�
!
�= + O(9\�!) ! 

So if we put q ~ F6+7-
8  in (49) we immediately obtain the 

well-known Bohr-Sommarfeld’s semiclassic condition for 
quantization. 

It should be noted that the traditional WKB- method also 
gives precise quantization condition [see [4]] which is 
called Wentzel’s quantization condition. But this condition 
includes within itself the whole asymptotic series, 
consequently the coefficient r(x) is assumed to be able to be 
analyzed. The merit of condition (49) is that, it doesn’t 
require from r(x) more than the solvability of Riccati’s 
Equation. It should be noted also, that the condition (49) is 

brought here for the first time (as far as the authors of this 
paper know). 

Let us now see how the eigenfunctions appear. 
Considering quantum condition (49) and boundary values, 
it is easy to obtain the following correlations between the 
arbitrary constants: 

A1 =AJ�Q
�, A2 = y!�   =AJ@Q

�  ,  

B = +�1-\A��{
�� JIN |��� � <; A 6+7-

8�
!
?= MIt

q }. 
Respectively, after simple transformations we obtain the 

expression of the wave function. 

5= A1w+A2^�= 2AFpq�J !
√? JINi |!

� � <; A 6+7-
8�

!
?= MI �7

q
f
4}, or 

5 = 2AFpq�� !
√? JIN i |! 

� � <; A 6+7-
8�

!
?= MI A f

4
7

q } . 

4. Overcoming the Quantum 

Mechanical Particles of Potential 

Barrier 

The geometric interpretation of the problem is illustrated 
in figure 2. In the turning points:   

g′(a) = ��′(a) < 0, g′(b) = ��′(b) > 0. 



 International Journal of Energy and Power Engineering 2014; 3(1): 15-20 19 
 

It is assumed that, at the left side of the potential barrier, 
the wave function is represented as the superposition of the 
ingoing and reflecting waves, whereas at the right side of 
the barrier only one wave passes. Now it is required to 
derive the formulas for calculating the coefficients of 
reflection and passage. 

 
Fig 2. The potential barrier , dependence between potential energy to 

distance x. 

Thus, for the three space regions, divided by two turning 
points, the wave function and its derivative can be written 
as follows 

In the region of x<a,5= A1w+A2^�
 

5 ′=A1iqw� A2i;� ^�, 

In the region of   a < x < b, 5 = B1u + B2v,  

5 ′ = � B1>!u +B2>�v, 

In the region of x > b, 5 = C ^��, 5 ′= �C i ;��^�� . 
Here, as mentioned before, A1, A2, B1, B2, C – arbitrary 

constants; w, u, v, ^� �  particular solution of wave 
equation. 

In the turning point, the wave function, and its derivative 
must be continuous. Therefore 

In the point  x = a 

A1w(a)+A2^�(a)=B1u(a) + B2v(a) 

A1iq(a)w(a)–A2i;�(a)^�(a)=�B1>!(a)u(a)+B2>�(a)v(a)  (50) 

In the point  x = b 

B1u(b)+B2v(b)=C^��(b)                      (51) 

� B1>! + B2>�(b)v(b) = � C i;��(b)^�� (b). 

We introduce the following matrices 

K =   � ^+o- ^�+o-
i;+o-^+o- � � +o-^�+o-�, 

L =   � a+o- h+o-
�>!+o-a+o- >�+o-h+o-� , 

R =  � a+s- h+s-
�>!+s-a+s- >�+s-h+s-�. 

Now, the systems (50),(51) could be written as follows 

K  �y!y�� = L �z!z��, 

R   �z!z�� = � 1
�i;��  +s-� C ^��+s-. 

By excluding from these equalities, the constants B1, B2, we 
obtain the following matrix relation 

�y!y��  = M � 1
�i;�� +s-� C ^�� +s-, 

Where,        M = ��!L ��!. 
We calculate the elements of matrix M, and inserting the 

previously adopted values of 

w (x) =J@ � ?T7U
{ , u(x) = J� � B�T7U

{ , v(x) = J� B�U
{ MI, 

q(a) = pq  J�@Q
r  ,  ;�+s- =ptJ@Q

r , 

>!+o-=>�+o-=pq,>!(b)=>� +s-=pt,     (53) 

^�+I- = J@ � ?�T7U
�  . 

    As a result, after further algebraic operations, the 
piecewise notation of matrix equality (52) will be in the 
form of 

A1 = � !
�@ <√3J� B�T7 �

{ � !
√l  J� � B�[U�

{ =C , 

A2 = !
�@  <√3 J� B�[U�

{  A  !
√l J� � B�[U�

{ = J@Q
�  C . 

Here, as we know,>!,>� denote the single pair of precise 
solution of Riccati equation (17),(18) with boundary 
conditions (53) . In order to have the right for substituting 
them with some approximate solutions, it is necessary to 
represent their integrals in the form of 

� >!MIt
q  = @

� �j ��
�{ + !� � <>! � 6+7-

8�
!

B�= MIt
q , 

� >�MIt
q  = � !

�  �j ��
�{ + !� � <>� � 6+7-

8�  !
B�= MIt

q  . 

Temporarily, interpreting 

�! = !� � <>! �  6+7-
8�

!
B�= MIt

q , 

�� = !� � <>� – 6+7-
8�

!
B�=t

q MI, 

  And demonstrating that, indeed in our case the equality 
is established as 

�! = �� = � ! 

 It is now a simple matter to conclude identities from 
Riccati’s equations (17), (18). 

>! � >� = ��j+>! A >�-�′ , 

� 6+7-
8� < !

B�  � !
B�= =<�j � !

B� A !
B��=′

, 

Therefore 

�! � �� = !� � |+>! � >�- � 6+7-
8�  < !

B�  � !
B�=}t

q MI = 

= !�  �j+>! � >�- |qt  + !�  �j < !
B� A !

B�= |qt  = 0. 
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Here, of course the boundary conditions (53) have been 
considered. 

Now the amplitude correlations (54),(55) can be 
presented as follows 

A1=� !
�@ ���

�{ �√3J�  � !
√l J��� k,            (56) 

A2=
!
�@ ���

�{ �√3J� A  !
√l J��� J@f l⁄  k.         (57) 

It is interesting to write down in explicit form the main 
members of asymptotic expansion of wave function from 
the left side and the right side of potential barrier. We have 
for  9 E 0 from the left side of the barrier (x < a )  

5=A1w+A2^�~ ���
√�  J@ � �T7U

{ +� �
√� J@ � �T7U

{ ,      (58) 

From the right side of the barrier ( x > b ) 

5=C @̂�~ O¡
√� J�@ � �T7U

� ,                   (59) 

Where,     k(x) = F6+7-
8  =  √�v

u F¢ � �+I- . 

y¡!=F;+o-A1,y¡�=F;�+o-A2,k¡=F;�   � +s-C.     (60) 

The first term in asymptote (58) represents the wave 
reflected from the barrier, while the second term represents 
the ingoing wave on the barrier. The asymptote (59) is the 
essence of the wave penetrated through the barrier.  

The ratio be the amplitude of the reflection and passing 
through waves to the amplitude of the ingoing wave i.e. 

Г=� �
� �,T= O¡

� �,                              (61) 

are called the coefficients of reflection and the 
coefficient of penetration respectively. 

The correlations (56), (57), (60) give those coefficients 
the following precise formulas 

Г=i √l £¤� � 
√�£"¤

√l£¤� �
√�    £"¤,                      (62) 

T= �
√l £¤� �

√�£"¤.                           (63) 

We see that, the coefficients Г and T are related to each 
other by an equality 

|Г|�+|¥|�=1                        (64) 

  This includes within itself an important physical property 
of wave flux density conservation: The density of the ingoi
ng flux on the potential barrier equals to the sum of the den
sities of the reflecting flux from the barrier and that of passi

ng through it. 

If for  �, we use its main asymptotic approximation 

� ~ � ¦+I-MI %  √�v
u

t
q  � F�+I- �  ¢t

q MI,  

So for Г  and T we obtain the following asymptotic 
formulas: 

Г~i !��
�£"� � U[U�{

!� ��£"� � U[U�{
,                       (65) 

T ~ �
√l  £" � U[U�{

!� ��£"� � U[U�{
.                   (66) 

In case when the turning points are sufficiently far away 
from each other, i.e. when the height of the potential barrier 
considerably exceeds its own kinetic energy of attacking on 
the barrier particle we can use the following 
approximations: 

Г ~  i <1 � �
l J�� � 7T7�

{ =, 

T ~ �
√l J� � 7T7�

{  , 
|Г|� ~ 1�|¥|� . 

5 Conclusions 

In the present work the following new results have been 
obtained: 
1. Special conditions (46a), (46b) covering the solution 

of Riccati’s equation in turning points have been 
deduced.  

2. Precise condition of quantization (49) for obtaining 
the own energy values of Schrödinger‘s operator has 
been derived. 

3. The precise (62), (63) and the approximated (65), (66) 
formulas for the reflected and the passage coefficients 
of potential barrier’s quanta-mechanical particles have 
been deduced.  
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