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Abstract: In this paper, we proposed a novel 2-dimensional (2D) distribution model based on the maximum-entropy (ME) 

principle to predict the joint return period under ocean extremes. In detail, we first derive the joint probability distribution of 

the extreme wave heights and the extreme water-levels during a typhoon by using the maximum-entropy principle, and then we 

nest this distribution with the maximum-entropy distribution of discrete variables to form such a maximum-entropy 2-

dimensional (ME 2D) compound distribution model. To evaluate the performance of our model, we conduct experiments to 

predict the N-year joint return-periods of the extreme wave heights and the extreme water levels in two areas of the East China 

Sea. According to the experimental results, our model performs better in predicting in the highly unpredictable joint probability 

of extreme wave heights and water levels in typhoon affected sea areas, compared with the widely-used Poisson-Mixed-

Gumbel model in ocean engineering design. This ascribes to the fact that unlike other models whose corresponding parameters 

are arbitrarily assigned, our model utilizes both the new 2D distribution and the discrete distribution which are based on the 

ME principle. 

Keywords: Maximum Entropy Principle, 2D Compound Distribution Model, Extreme Wave Height, Extreme Water Level, 

Optimization, Climate Change 

 

1. Introduction 

Global warming causes both the occurrence-frequency and 

intensity of typhoon tend to increase [1]. Specifically, in 

coastal zones, typhoons cause disasters mainly in two forms 

[2]: (a) large waves that turn over ships and destroy marine 

structures and breakwaters, and (b) heavy rain and storm 

surge that cause anomalously high water-levels. These two 

forms are especially frequently observed in estuary and 

shallow bay areas, and hence low lands would be submerged. 

When extreme waves superpose on extreme waters levels, an 

extreme disaster would occur, which is one of the main 

mechanisms through which Hurricane Katrina (2005) caused 

serious disaster in New Orleans. Therefore, it is important for 

ocean-engineering designs and disaster preventions to 

rationally predict the joint return-period of extreme wave 

heights and extreme water levels. 

Motivated by these requirements, in this paper, the 

maximum-entropy principle is used to derive the joint 

probability distribution of the extreme wave heights and the 

extreme water-levels during a typhoon. Then, we nest this 

distribution with the maximum-entropy distribution of 

discrete variables, derived by Wang et al. [3] to describe the 

probability of annual typhoon frequency, to form a new 

compound distribution model. Theoretically, the compound 

distribution is better than the Poisson-Logistic model and the 

Poisson-Mixed-Gumbel model [4, 5, 12] when describing the 

highly-unpredictable joint probability of extreme wave 

heights and extreme water-levels in typhoon-affected sea 
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areas. This is because that our model is based on maximum-

entropy principle and it takes the effect of typhoon frequency 

into account. Furthermore, the proposed compound 

distribution used in our model also helps to address a major 

drawback of widely used Poisson-Logistic model and 

Poisson-Mixed-Gumbel model, i.e., extremely higher 

apriority during prediction which is caused by arbitrarily 

assigning the two-dimensional distribution [6-11].  

To evaluate the advantages of our compound model, we 

use both the proposed compound model and the Poisson-

Mixed-Gumbel model to predict the N-year joint return-

period of extreme wave heights and extreme water-levels in 

the Maidao and Chaoliandao sea areas of the East China Sea, 

and then compare their corresponding results. 

The rest of this paper is organized as follows: the 

derivation of the maximum-entropy two-dimensional joint 

distribution is presented in Section 2. Details of the new 

compound model is presented in Section 3. Evaluation of our 

model is presented in Section 4. Lastly, conclusions are 

summarized in Section 5. 

2. The Maximum-Entropy  

Two-Dimensional Joint Distribution 

2.1. Derivation 

Assume the wave in a typhoon affected sea area can be 

described by a two-dimensional (abbreviated as 2D 

hereinafter) random vector (X, Y), where extreme wave 

height is X, and the extreme water level is Y, and X and Y are 

neither independent nor synchronous, but correlated to a 

certain extent. 

The 2D joint information entropy (abbreviated as entropy 

hereinafter) can defined as: 

( ) ( , ) log ( , )
R R

H f f x y f x y dxdy= −∫ ∫             (1) 

where f(x, y) is the joint probability density function of X and 

Y. Let P denote a kind of probability density functions. If 

there exist such a 0p P∈ that for any f P∈  

0( ) max{ ( ) : }H p H f f P= ∈                     (2) 

then H (p0) is the maximum entropy of P, and p0 is called the 

maximum entropy probability density function (the term 

‘maximum entropy’ is abbreviated to ‘ME’ hereinafter). The 

ME principle [12-15] is applied to deriving ME 1D 

distributions to describe the probability of extreme wave 

heights, extreme water levels or others [16-25] and obtained 

relatively better results.  

According to the definition given above, the ME 2D 

probability density function f(x, y) is such a function as to 

maximize H(f) shown in Eq. (1). Obviously, how to solve 

such a f(x, y) from Eq. (1) is a 2D variation problem. Since 

solving a variation problem needs constraint conditions, for 

this problem, we can propose the following constraints: 

0 0
( , )d d 1f x y x y

+∞ +∞
=∫ ∫                                 (3) 

1
0 0

( , )(ln ln )d df x y x y x y c
+∞ +∞

+ = < +∞∫ ∫               (4) 

1
2

0 0
( , )d d

m
x f x y x y c

+∞ +∞
= < +∞∫ ∫                 (5) 

2
3

0 0
( , )d d

m
y f x y x y c

+∞ +∞
= < +∞∫ ∫                 (6) 

where m1 and m2 are two positive integers or positive 

fractions, and c1, c2 and c3 are three constants. In the above 

equations, the lower limits of integrals are taken to be zero, 

because both the extreme wave height and extreme water 

level are nonnegative. Notice that the above four constraints 

are in accordance with axioms and generally acknowledged 

truth rather than a priori. Constraint (3) is imperative for the 

regularity of probability density functions. Constraint (4) 

ensures that ( , ) 0f x y →  in the following conditions: 

x → ∞  and y → ∞ ; 0x →  and 0y → ; 0x →  and 

y=constant; and 0y →  and x=constant, which are in 

accordance with generally acknowledged fact. The 

constraints (5) and (6) ensure, on one hand, that ( , ) 0f x y →
when x → +∞  or y → +∞ . On the other hand, that any 

order moments of f(x, y) and any order moments of its 

marginal distributions exist (see Appendix for the proof). 

The ME 2D joint probability density function f(x, y) 

derived in this paper is to maximize H(f) shown in Eq. (1) 

under the constraints (3), (4), (5) and (6). However, finding 

such a f(x, y) is a generalized isoperimetric variation problem. 

According to the theorem of variation, such a f(x, y) should 

satisfy the Euler equation: 

( ) 0
,

L

f x y

∂ =
∂                                     (7) 

where 

1 2

( , ) ln ( , ) ( , ) ( , )(ln ln )

( , ) ( , )
m m

L f x y f x y tf x y bf x y x y

cx f x y dy f x y

= − + + +

− −
 

that is determined by the variation problem regarding the 

functional: 

1

2

0 0 0 0

1
0 0

2
0 0

3
0 0

( , ) ln ( , )d d ( ( , )d d 1)

[ ( , )(ln ln )d d ]

[ ( , )d d ]

[ ( , )d d ]

m

m

J f x y f x y x y t f x y x y

b f x y x y x y c

c x f x y x y c

d y f x y x y c

+∞ +∞ +∞ +∞

+∞ +∞

+∞ +∞

+∞ +∞

= − + −

      + + −

− −

      − −

∫ ∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫

 (8) 

where t, b, c and d are parameters. 

From Eq. (7) we also obtain: 
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1 2ln ( , ) 1 ln 0
m m

f x y t b xy cx dy− − + + − − =  

which follows: 

1 2ln1( , )
m mx dyb xyt cf x y e e e −− −=  

With α=e
t-1

, thus we have 

1 2

( )( , )
m mb x dyca xyf x y e −−=                       (9) 

To sum up, Eq. (9) is the ME 2D joint distribution derived 

in the paper which has many parameters. These parameters 

enable our model to fit the observed data more flexibly and 

precisely in comparison with other traditional distribution 

models. 

2.2. Determination of the Parameters 

In this subsection, we focus on to determine the six 

parameters from Eq. (9), i.e., m1, m2, α, b, c and d. According 

to the ME principle stated above, these parameters should 

make the distribution most suitable to fitting observed data. 

Thus, we claim that these parameters should be determined in 

the following manner: 

At first, a set of equations are derived from Eq. (9) to 

relate these parameters with the joint moments E( , )m nx y

defined as: 

1 2

0 0
E( , ) ( ) d d

m mm n m n b x dyc
x y x y xy x yeα

+∞ +∞ −−= ∫ ∫  

1 2

0 0
d d

m mm b n b x dyc
x y x yeα

+∞ +∞ + + −−= ∫ ∫                                                              (10) 

where m and n are integers, and then these moments are estimated from available data, and finally these parameters are 

numerically solved from these equations. 

Let 1 2,
m m

u cx v dy= = . Eq. (10) can be rewritten as 

1 1 2 2

1 1 1 1
1 1

0 01 2

1 1
E( , ) d d

m b m b n b n b

m m m mm n u vx y c u e u d u e v
m m

α
+ + + + + + + +− − − −+∞ +∞− −= ⋅∫ ∫                                 (11) 

and completing the integrations we have 

( )
1 2

1 1
1 2

1 2

1 1
E , ( ) ( )

m n

m b n b

m m

m b n b
x y

m m
m m c d

α
+ + + +

+ + + += Γ Γ
  (12) 

where Г(.) is the Gamma function defined as 

1

0
( )

x
e x dx

λλ
+∞ − −Γ = ∫ . 

With Tm, n denoting E( , )m nx y , we have from Eq. (12) that 

2

2

2 2

2

1 2

1 1 2 2

2
2

1,0 1

0,0 2,0

1 1

2
0,1

0,0 0,2

2
1,1

2,0 0,2

2
( )

1 3
( ) ( )

2 2
( ) ( )

1 3 1 3
( ) ( ) ( ) ( )

2
( )

1 3
( ) ( )

b

m

b b

m m

b b

m m

b b b b

m m m m

b

T m

b bT T

m m

T

T T

T

T T

+
Γ

+ +
Γ Γ

+ +
Γ Γ

+ + + +
Γ Γ Γ Γ

+ Γ
 =

+ + Γ Γ


 =






=



         (13) 

and that 

1

1

1,0 1

0,0

1

2
( )

1
( )

m
c

b
T m

bT

m

−
+Γ

= +Γ
                        (14) 

2

1

2

2

0,1

0,0

2
( )

1
( )

m

b

m
d

b

m

T

T

−
+Γ

= +Γ
                         (15) 

Hence, we have: 

1

0,0

1

1,0

1

2
( )

1
( )

m

c

b
T

m

b
T

m

 
 
 
 
 
 

+Γ
= +Γ

                       (16) 

2

0,0
2

0,1
2

2
( )

1
( )

m

d

b
T

m

b
T

m

 
 
 
 
 
 

+Γ
= +Γ

                     (17) 

On the other hand, since 

( )0,0
0 0

, 1T f x y dxdy
+∞ +∞

= =∫ ∫
 substituting 1 for T0,0 in the equation 



120 Baiyu Chen et al:  Predicting Joint Return Period Under Ocean Extremes Based on a Maximum Entropy   

Compound Distribution Model 

( )
1 2

0 0
0,0 1 1

1 2

1 2

1 1
E , ( ) ( )

b b

m m

b b
x y T

m m
m m c d

α
+ +

+ += = Γ Γ

 we obtain 

1 2

1 1

1 2

1 2

1 1
( ) ( )

b b

m mm m c d

b b

m m

α

+ +

= + +Γ Γ
                               (18) 

Thus, from Eqs. (13), (16), (17) and (18) we can 

numerically solve the parameters m1, m2, b, c, d and α in the 

ME distribution shown in Eq. (9), as long as the moments Ti, j 

are determined. As usually done in practical statistics, the 

mixed moments Ti, j are estimated from observed data (xi, yj), 

i, j=1, 2,�, N by using the formula: 

, 1

, 2

N
m n

i j

i j

m n

x y

T
N

=≈
∑                                (19) 

The procedure of solving these parameters is as follows: 

First substitute Ti, j in Eq. (13) with the mixed moments 

estimated by Eq. (19), so that the parameters m1, m2 and b 

can be numerically solved; Next, substitute m1, b and m2, b 

into Eq. (16) and Eq. (17), respectively. Finally, we can 

obtain c and d and α from Eq. (18). 

3. The ME 2D Compound Distribution 

Model 

The concept of compound distribution has been widely 

applied to predicting the N-year return-period wave-height, 

water-level or others in typhoon-affected sea areas [1-3]. 

Recently, it was extended to multi-dimensional compound 

distribution to describe joint probabilities of several ocean 

random variables [13]. The explicit expression of 2D 

compound distribution is as [18-21]: 

1
0

1

( , ) ( ) ( , )
y x

i
i x

i

F x y P P i G u g u v dudv

∞
−

−∞ −∞
=

= + ⋅ ⋅∑ ∫ ∫      (20) 

where Pi is the probability of a discrete random variable, g 

(u, v) is the joint probability density function of the 2D 

random vector (X. Y), Gx (u) is the marginal distribution 

function of (X. Y) that is, ( ) ( , )xG u G u= +∞  (where G (u, v) 

is the distribution function corresponding to g (u, v)). 

The so-called ME distribution for a discrete random 

variable i taking only positive integral values, 

exp{ }, 0,1, 2,⋯ip i i iγ ξη β= − =              (21) 

was derived on the ME principle by [2, 3, 10] with the 

constraints 

0

0

0

1 ,  0

ln

i i

i

i

i

i

i

p p

i p

i p

ξ

∞

=
∞

=
∞

=


= ≥



 ⋅ < +∞


 ⋅ < +∞



∑

∑

∑

                            (22) 

where η, β, γ and ξ are parameters to be determined. The 

equations derived for determining these parameters are as 

follows: 

2
2
1

0 2

0 3

1 2

1

1

2
( )

1 3
( ) ( )

4 1
( ) ( )

2 3
( ) ( )

1
( )

[ ]
2

( )

ln[ ] 1
1

( )

ℓ

A

A A

A A

A A

A
ξ

γ
ξ

γ
ξ

γ γ
ξ ξ

γ γ
ξ ξ

γ γ
ξ ξ
γ

ξβ γ
ξ

β ξ
γ

ξ

−

+

+ Γ
 =

+ + Γ Γ



+ + Γ Γ


= + + Γ Γ



+ Γ


= + Γ




⋅ = +
 +Γ


               (23) 

where Ak (k=1, 2 and 3) is the k th-order moment, as, 

( )
0

E , 0,1, 2,⋯k k
k i

i

A i i p k

∞

=

= = =∑                (24) 

In practical, Ak is estimated based on the observed data by 

using the following equation: 

0

1
, 0,1, 2,⋯

N
k

k

i

A i k N
N =

= =∑                (25) 

With Ak in Eq. (24) substituted by kA , the parameters η, β, 

γ and ξ can be numerically solved from Eq. (23). 

The ME 2D compound distribution model proposed in this 

paper is formed in accordance with Eq. (20) by taking f(x, y) 

shown in Eq. (9) to be g(u, v) to describe the joint probability 

of extreme wave heights and extreme water levels, and ip

(Eq. (1)) is simply the probability of having i typhoons in a 

single year (i is referred to as annual occurrence frequency), 

and the resulting model is: 

1 1
0

1

( , ) exp{ } ( ) ( , )
y x

i
x

i

F x y P i i G u g u v dudvγ ξη β
∞

+ −

−∞ −∞
=

= + ⋅ ⋅ −∑ ∫ ∫                                                (26) 
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where 

1 2

( )( , )
m mcu vb duvg u v eα −−=  

1 2

0 0
( )( )

m mu
cx dy

x
b

dydxxyG u eα
+∞ −−= ∫ ∫  

and α, m1, m2, b, c, d, η, β, γ and ξ are parameters to be 

determined. 

4. Evaluation 

In this section, we evaluate the proposed model (as shown 

in Eq. (26)) to predict the joint return-period of extreme wave 

heights and water levels in Maidao and Chaoliandao sea 

areas near Qingdao. 

The data of annual extreme wave height and extreme water 

level are obtained from Maidao hydrometric station 

(36°03′N, 120°25′E) (1984-2001) and Chaoliandao 

hydrometric station (35°53′N, 120°52′E) (1965-1989). These 

data are used to determine the parameters α, m1, m2, b, c and 

din Eq. (26), that is, the parameters in the ME 2D joint 

distribution shown in Eq. (9). According to the procedure 

presented in Section2, these parameters are computed and 

listed in Table 1. 

Table 1. Derived parameters of the joint distribution of the extreme wave heights and extreme water levels during typhoons in two different locations. 

Para. α b c d m1 m2 

Maidao .14×105 2.80×10 6.22×10 9.38×10-7 3.06×10-1 2.28×10 

Chaoliandao 1.83×10-5 3.52 3.22×10-7 1.25×10-4 11 5.11 

The annual typhoon occurrence-frequencies of Maidao sea area (1984-2001) and Chaoliandao sea area (1965-1989) are 

listed in Table 2. From these data, the parameters η, β, γ and ξ in Eq. (26) numerically computed from Eq. (23) and Eq. (25) are 

listed in Table 3. 

Table 2. The observed annual typhoon occurrence-frequencies of Maidao and Chaoliandao. 

 Maidao (1984-2001) Chaoliandao (1965-1989) 

Annual occurrence-frequency 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

Occurrence number of year 2 3 3 5 5 0 1 1 4 6 6 7 2 1 0 1 

Total number of years 20 27 

Total occurrence-times 77 86 

Table 3. The computed parameters of the joint distribution of the extreme wave heights and extreme water levels during typhoons in two different locations. 

Maidao Chaoliandao 

η β γ ξ η β γ ξ 

7.92×10-2 1.94×10-2 1.17 2.54 2.09×10-1 4.87×10-1 2.03 1.30 

 
Figure 1 and Figure 2 show the ME joint distributions of 

extreme wave heights and extreme water levels in Maidao 

and Chaoliandao sea areas, respectively. 

 

Figure 1. ME joint distributions of extreme wave heights and extreme water 

levels in Maidao area. 

 

Figure 2. ME joint distributions of extreme wave heights and extreme water 

levels in Chaoliandao area. 

As shown in Eq. (26), the marginal distribution, i.e.,  

1 2

0 0
( )( )

m mu
b y

x
dcx dydxxyG u eα

+∞ −−= ∫ ∫  

is the ME distribution function of extreme wave heights, and 

the other marginal distribution, i.e.,  
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1 2

0 0
( )( )

m mv
cx dy

y
b

dxdyxyG v eα
+∞ −−= ∫ ∫  

is the ME distribution function of extreme water level. 

Figures 3 and 4 illustrate the comparison of the two 

distribution functions with observed data for Maidao sea 

area, and Figures 5 and 6 show the same comparison for 

Chaoliandao sea area. As can be seen from these figures, the 

proposed distribution curves can accurately fit the data. 

 

Figure 3. ME distribution of extreme heights (Maidao sea area). 

 

Figure 4. ME distribution of extreme water levels (Maidao sea area). 
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Figure 5. ME distribution of extreme heights (Chaoliandao sea area). 

 

Figure 6. ME distribution of extreme water levels (Chaoliandao sea area). 

Figures 7, 8 and Figures 9, 10 show the comparisons of the 

ME 2D distribution shown in Eq. (9) with the Logistic 2D 

distribution and Gumbel 2D distribution, respectively. The 

last two distributions have been widely used as the models to 

describe the joint probability of two extremes in marine 

studies. It is seen from the Figures 7 and 8 that overall, the 

ME 2D distribution fits the data obviously better than the 

Logistic distribution, especially for the middle values where 

the data are concentrated. 
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Figure 7. Comparison of the ME 2D distribution with the Logistic 2D 

distribution (Maidao sea area). 

 

Figure 8. Comparison of the ME 2D distribution with the Logistic 2D 

distribution (Chaoliandao sea area). 

 

Figure 9. Comparison of the ME 2D distribution with the Gumbel 2D 

distribution (Maidao sea area). 

 

Figure 10. Comparison of the ME 2D distribution with the Logistic 2D 

distribution (Chaoliandao sea area). 

In addition, Figures 9, 10 further show that the fitting 

results of ME 2D distribution and Gumbel 2D distribution 

are similar, but the former is a little better than the latter. 

With the joint 2D distribution function denoted by F(x, y) 

and its marginal distributions denoted by Fx(x) and Fy(y), 

respectively, the joint return period N (years) of the extreme 

wave height X and extreme water level Y is defined as, 

( ) ( ) ( ) ( )
1 1

, 1 ,x y

N
P X x Y y F x F y F x y

= =
> > − − +     (27) 

From the ME compound distribution model F (x, y) shown 

in Eq. (26), the isograms of N are computed for the Maidao 

and Chaoliandao sea areas and shown in Figure 11 and 

Figure 12, respectively. 

 

Figure 11. Isograms of joint return period of the extreme wave height and 

extreme water level (maidao sea area). 
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Figure 12. Isograms of joint return period of the extreme wave height and 

extreme water level (Chaoliandao sea area). 

As the model shown in Eq. (26) is of two-dimensional 

distribution, different combinations of extreme wave height 

and extreme water level can result in identical N. As usually 

conducted in ocean engineering, the design wave height and 

water level are predicted in the following manner: the wave 

height is regarded as a prior variable in the model and the 

ME 2D compound distribution corresponding to the model is 

used to predict the N-year return-period wave heights, and 

then to solve its corresponding water levels from the model 

(26) and Eq. (27). Additionally, the prediction results of 

Maidao and Chaoliandao sea areas by using the Poisson-

Mixed-Gumbel model and our proposed model are listed in 

Table 4. 

In detail, the wave-height values listed in Table 4 are 

predicted by regarding the wave height as a prior variable 

and using the ME 1D compound distribution model, 

respectively, as a result, these values are of the N-year return-

period extreme wave height. The water level values listed in 

Table 4 are predicted by using the ME two-dimensional 

compound distribution model shown in Eq. (26) and 

assuming these wave-height values. For example, the first 

wave-height value 7.38m in the table is the 10-year return-

period extreme wave height in Maidao sea area, while its 

corresponding water-level value 5.51m is the 10-year return-

period extreme water level. 

Table 4. N-year joint return-period wave heights and water levels calculated using Poisson-Mixed-Gumbel Model and Present Model at two different 

locations. 

 Poisson-Mixed-Gumbel model Present model 

Joint return period (N years) 10a 20a 50a 100a 10a 20a 50a 100a 

Maidao 
Wave height (m) 7.38 8.07 8.98 9.73 7.38 8.07 8.98 9.73 

Water level (m) 5.51 5.57 5.63 5.67 5.41 5.46 5.49 5.52 

Chaoliandao 
Wave height (m) 4.42 4.63 4.88 5.04 4.42 4.63 4.88 5.04 

Water level (m) 7.78 8.34 9.04 9.54 6.80 7.09 7.49 7.74 

 
As can be seen from Table 4, the water-level values of 

Maidao sea area predicted by the present model are close to 

those predicted by the Poisson-Mixed-Gumbel model, while 

for Chaoliandao sea area, the water-level values predicted by 

Poisson-Mixed-Gumbel model are so high that the 20-year 

joint return-period water level reaches 8.34m. As 

Chaoliandao is an islet and located in open sea, the extreme 

water levels occurring in its surrounding sea area should be 

lower than those occurring in river mouth and bayou sea 

areas. In fact, the highest water level observed in the past 25 

years (from 1965 to 1989) is merely 6.90m. Obviously, such 

high water level are over estimated. Additionally, for both 

Maidao and Chaoliandao sea areas, the water-level values 

predicted by the present model are relatively reasonable, 

which validates the advantage of the present model. 

5. Conclusions 

In this paper, we developed a 2D distribution model for the 

joint return period under ocean extremes prediction problem. 

Our model is based on the maximum-entropy (ME) principle. 

Specifically, we first derive the joint probability distribution 

of the extreme wave heights and the extreme water-levels 

during a typhoon by using the maximum-entropy principle, 

and then we nest this distribution with the maximum-entropy 

distribution of discrete variables to form such a maximum-

entropy 2-dimensional (ME 2D) compound distribution 

model. To further evaluate the performance of our model, we 

conduct experiments to predict the N-year joint return-

periods of the extreme wave heights and the extreme water 

levels in two areas of the East China Sea. Our experimental 

results show that our model performs better in predicting in 

the highly unpredictable joint probability of extreme wave 

heights and water levels in typhoon affected sea areas, 

compared with the widely-used Poisson-Mixed-Gumbel 

model in ocean engineering design.  
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Appendix 

Proof:  

1 1 1

0 0 0 0 0
( , )d d ( ( , )d )d ( )d

m m m
xx f x y x y x f x y y x x f x x

+∞ +∞ +∞ +∞ +∞
= =∫ ∫ ∫ ∫ ∫  
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2 2 2

0 0 0 0 0
( , )d d ( ( , )d )d ( )d

m m m
yy f x y x y y f x y x y y f y y

+∞ +∞ +∞ +∞ +∞
= =∫ ∫ ∫ ∫ ∫  

where ( )xf x  and ( )yf y  are the marginal distributions 

corresponding to ( , )f x y . Further, according to constraints 

(6) and (7), we have 

1 2
2 3

0 0
( ) ( , )d d

m m
x y f x y x y c c

+∞ +∞
+ = + < +∞∫ ∫  

Because 2 2 2a b ab+ ≥ , it follows that 

1 2 1 2

1 2 2 22 2 2 2( ) ( ) 2

m m m m

m m
x y x y x y+ = + ≥  

then 

1 2

2 2

0 0
( ) ( , )d d

m m

x y f x y x y
+∞ +∞

< +∞∫ ∫  

It is thus concluded that the constraints (5) and (6) ensure 

the existence of any order mixed moments of ( , )f x y  and 

any order moments of the marginal distributions. 
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