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Abstract: In this paper, we present a modeling approach of the power chain based on the trapezoidal control, including the 

losses of the power train of an electric car. This modeling approach is parameterized leading to a problem of optimization of the 

parameters influencing the losses which leads to an improvement in the autonomy. This model approach is implanted under the 

simulation environment Matlab-Simulink. Simulation results are encouraging and opening track search for work optimization 

and experimental validation of the developed model. 
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1. Introduction 

In this paper, we present a trapezoidal control strategy of a 

synchronous permanent magnet motor with axial flux, 

incorporating the losses of the power train of an electric car. 

The model developed is highly parameterized and poses a 

problem of parameters influencing losses optimization to 

improve the autonomy of the car. This control strategy is 

compatible to systemic design process of all motor-converter 

detailed in [1-5]. 

In this context the paper is organized in three parts to 

knowledge: 

� The first part concerns the modeling of the components 

of the power chain under the Matlab-Simulink 

environment. 

� The second part describes the different models coupling 

principle. 

� The third part illustrates and describes the main results of 

simulations. 

2. Principle of the Control Strategy 

The trapezoidal command allow to impose phase currents 

with the back electromotive forces (technique of back 

electromotive force compensation) leading to a reduction in 

consumption for a stationary required driving power by the 

vehicle. Indeed, four control loops for providing the shape and 

amplitude of the ideal supply voltages of the motor. A control 

loop providing the amplitude of the reference currents and 

three control current loop delivering the phase voltages 

supplying motor [1, 2]. 

3. Model of the Motor-Converter 

The engine is powered by a two-level voltage inverter with 

IGBT. Each phase of the motor is equivalent to a resistor in 

series with an inductance and a back electromotive force. The 

three phase’s voltage of the model is described by the 

following equations [1-5]: 

u� = R × i� + �L − M� ×

��


�
+ e1          (1) 

u� = R × i� + �L − M� ×

��


�
+ e2	          (2) 

u� = R × i� + �L −M� ×

��


�
+ e3          (3) 

Where R, L, M are respectively the resistance, inductance 

and mutual inductance of the motor, ii and ui are respectively 

the current and the voltage of the i phase. 

The electromagnetic torque is given by the following 

relationship [1-12]: 

T�� =
�

Ω
�e� × i� + e� × i� + e� × i��       (4) 

Where ei is the back electromotive force of the i phase. 

The model of the motor-converter is implanted under the 

Matlab-Simulink environment according to the following 

block diagram: 
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Figure 1. Simulink Model of the motor-converter. 

 

Figure 2. Simulinkmodelofthemotionequation. 

4. Equation of Movement 

The vehicle motion equation is derived from the 

fundamental relationship of dynamics [1-12]: 

( ) ( ) ( )
v r d em f mec r a c r

dv

M R r T T T F F F R

dt

× × = × − − − + + ×   (5) 

Where Fr is the rolling resistance force, Fa is the 

aerodynamic force, Fc is the force of gravity, rd is the 

amplification ratio, Tem is the electromagnetic torque, Tfis iron 

losses torque, Tmec is the mechanical losses torque, Rr is the 

radius of the wheel of the car, v is the speed of the car and Mv 

and the mass of the car. 

The equation of motion of the vehicle is implanted under 

the Matlab / Simulink environment according to the following 

figure: 
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5. Speed Regulator 

The speed regulator allows to adjust the amplitude of 

reference currents. Indeed, the reference speed is compared to 

the response speed of the electric car. The output of the 

comparator drives a proportional integral regulator type for 

providing the value of the reference currents amplitude 

minimizing the error between the reference speed and the 

response speed. 

The Simulink model the speed regulator is illustrated by the 

following figure: 

 

Figure 3. Speedregulator. 

 

Figure 4. Simulink model of currents regulators. 
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6. Current Regulators 

The reference current generator allows to generating three 

currents with trapezoidal shapes and phase shifted relative to 

each other by an angle equal to 120 ° electrical. This three 

phase currents are out in phase with back electromotive forces 

to minimize consumption and its amplitudes are controlled by 

the speed controller. Three control loops are used to convert 

currents to the three reference voltages of the motor.The 

model of the reference current generator is implanted under 

the Matlab / Simulink environment as shown in figure 4 [3]. 

 

 

 

7. Model of the Back Electromotive 

Forces 

Thethreebackelectromotiveforcesareestimatedfromthefollo

wingthreeequations: 

                (6) 

          (7) 

          (8) 

 

Figure 5. Simulinkmodelofthebackelectromotiveforces. 
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The models of the back electromotive forces (e1, e2, e3) are 

estimated from the following algorithm [3]: 

{Begin 

if 

a>1/2; 

a1=1/2.Ke.Ω: 

else 

a1=0; 

if 

a<-1/2; 

a2=-1/2.Ke.Ω; 

else 

a2=0; 

e1=a1+a2; 

if 

b>1/2; 

b1=1/2.Ke.Ω: 

else 

b1=0; 

if 

b<-1/2; 

b2=-1/2Ke.Ω; 

else 

b2=0; 

e2=b1+b2; 

if 

c>1/2; 

c1=1/2.Ke.Ω: 

else 

c1=0; 

if 

c<-1/2; 

c2=-1/2.Ke.Ω; 

else 

c2=0; 

e3=c1+c2; 

end}. 

With Ke is the back electromotive constant and Ω is the 

motor angular speed. 

The Simulink model of the back electromotive forces is 

illustrated by the figure 5. 

 

Figure 6. Simulinkmodelofcontrolsignalsgenerator. 
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8. Generator of the Control Signals 

The control signal generator compares the three reference 

voltages to a triangular signal with frequency significantly 

higher than the frequency of the voltages provided by the 

currents regulators. The output of each comparator attacks an 

hysteresis variant between 0 and 1 for outputting the signals 

for controlling the IGBTs S1, S3 and S5. The speed controller 

and current controller adjusts the pulse width of the control 

signals so as to impose currents in phase with the back 

electromotive forces and minimize the error between the 

reference speed and the speed of response. Signals for 

controlling the IGBTs S2, S4 and S6 are respectively 

complementary to the signals S1, S3 and S5. To prevent short 

circuits, control pulses S2, S4 and S6 are shortened to avoid 

duplication between two signals control arm. The Simulink 

model of the generator control signals is shown in figure 6. 

9. Global Model of the Power Chain 

The coupling of different models of the power train of the 

electric car leads to the overall model implanted under the 

Matlab / Simulink environment according to the figure 7. 

 

Figure 7. Global model of the power chain. 

10. Simulation Results 

The speed of response for a given travels is illustrated by 

the figure 8: 

 

Figure 8. Responsespeed. 

Figure 8 shows that the response speed follows with great 

accuracy the reference speed, which shows the effectiveness 

of the chosen control technology. 

Figure 9 shows the evolution of the motor phase current. 

 

Figure 9. Phasecurrent. 
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Figure 9 shows that the starting current is greatly reduced, 

leading to reduced energy consumption. This characteristic 

valid the performance of the selected control technology. 

Figure 10 shows the evolution of the electromagnetic torque 

of the engine: 

 

Figure 10. Electromagnetictorque. 

The electromagnetic torque (Figure 10) has negative values 

since during generator operation phases, the engine torque is 

reversed. 

Figure 11 shows the curves of the phase voltage and phase 

current. 

 

Figure 11. Paces of the phase voltage and phase current. 

 

Figure 12. Paces of the back electromotive force and the phase current. 

The shape of the phase current is close to a trapezoidal 

shape, which shows the effectiveness of the chosen control 

technology. 

Figure 12 illustrates the evolution of the back electromotive 

force and the phase current. 

Figure 12 shows that there is a slight phase, reflecting the 

importance of the electric constant of the motor and low 

switching frequency. 

Figure 13 illustrates the evolution of copper losses [12]. 

 

Figure 13. Copper Losses. 
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copper losses is small view that the control technology 
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leading to a reduction current for a fixed power need. 

Figure 14 illustrates the evolution of the losses in the 

inverter [12]. 

 

Figure 14. Inverter losses. 
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current for a fixed power need. 

Figure 15 shows the evolution of the iron losses dissipated 

in the motor [12]: 

 

Figure 15. Iron losses. 

Figure 15 shows that the pace of the iron losses follows the 

curve of the speed since the iron losses are proportional to the 

frequency. These losses are small since the speed of the drive 

shaft is low (addition of a gear speed amplifier to reach the 

maximum speed). 

Figure 16 Illustrates the evolution of mechanical losses in 

the engine [12]. 

 

Figure 16. Mechanical losses. 

The mechanical losses in the motor evolve in a shape close 

to the shape of the car's speed cycle since they are proportional 

to the speed. 

11. Conclusion 

A power chain modeling approach was presented based on 

the trapezoidal control, including the losses of the power train 

of an electric car. This modeling approach is parameterized, 

leading to a problem of optimization of the parameters 

influencing the losses which leads to an improvement in the 

autonomy. This model approach is implanted under the 

simulation environment Matlab-Simulink. Simulation results 

are encouraging and open track search for work optimization 

and experimental validation of the developed model. 
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