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Abstract: Kalman filter (KF) is composed of a set of recursion algorithms which can be used to estimate the optimal state of
the linear system, and widely used in the control system, signal processing and other fields. In the practical application of the KF,
it is an unavoidable problem that how faults or anomalies are infectious to the estimation value of state vectors in the linear
system, which must be paid much attention to and solved down. In this paper, the effect of sensor faults and control input
anomalies on the Kalman filtering values of state vectors is discussed, the transmission relationship is established to analyze the
estimation deviation of state vectors which comes from pulse or step faults/anomalies, and a sufficient condition is deduced for
the convergence of the estimation deviation of state vectors; Four different system models with 3-dimension state vector and
2-dimension observation vector are selected for simulation calculation and comparative analysis, simulation results show that
sensor faults and control input anomalies in linear systems may cause significant deviations in the estimation value of state
vectors for a long time, and there are distinct differences in the estimation value of state vectors. The research results provide a
certain theoretical reference for us to analyze system fault types and to identify fault.
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serious impact on the system function and even cause the
incalculable losses [9]. Many scholars have conducted a lot of
research on such issues deeply, and there are a larger number
of research results in the literature. Based on the KF, different
neural networks are used to diagnose sensor faults of
aerospace control systems [10-12]; Aretakis uses geometric
pattern recognition technology and KF algorithm to solve the
problem of slow drift in sensors [13]; a set of linear Kalman
filter are used to diagnose sensor faults after linearization at
operating point of the system [14]; a novel Kalman filter is
designed to diagnose multi-sensor faults when systems
existing colored noise [15]; in order to solve the non-Gaussian
distribution problem of wind speed and measured noise in
wind power generation systems, a novel filtering algorithm is
proposed to identify and isolate the sensor fault [16]; a set of
extended Kalman filter are used to diagnose attitude sensor
faults [17]. Aiming to the problem of actuator faults in control
systems, an improved multiple fading factor strong-tracking
nonlinear filter algorithm is proposed to diagnose stuck-at

1. Introduction

The Kalman filter (KF) is a time-domain filtering algorithm
which can achieve the optimal estimation value of state
vectors based on the state-space model of the linear system [1].
The KF is suitable for estimating the change of state vectors
online in multivariable time-varying systems, and is widely
used in process automation, dynamic system control,
spacecraft monitoring and control, mechanical and electrical
engineering, etc. [2-3], and has a foundational significance in
the modern control theory, real-time signal processing and
other fields [4].

During the actual running of the linear system, due to the
complex operating environment, working conditions and other
factors, it usually appears faults and anomalies, which will
affect the stability and reliability of systems. The common
faults in linear systems are sensor faults [5-7], actuator faults
[8] and so on. The occurrence of different faults will have a
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faults and swing faults of the actuator [18]; in order to solve
the problem of flywheel faults in satellite attitude control
systems, a two-stage EKF algorithm is designed [19]; the
actuator and sensor fault are regarded as system states, system
states are optimized through the optimal and robust
three-stage Kalman filter, and finally achieve the
reconstruction of system faults [20]. In practical application of
systems, it is often affected by external interference or random
noise; therefore, stochastic systems with unknown inputs have
gradually attracted much attention [21]. A two-level Kalman
filter with unknown inputs is proposed to decouple and
estimate states and unknown inputs [22]; the unbiased
minimum variance estimation of linear systems with unknown
disturbances is studied, and a unknown input Kalman filter
(UIKF) is designed [23]; based on the UIKF, the necessary and
sufficient condition are deduced for the stability and
convergence [24]; a second-order Kalman filter is designed,
and its order is used to estimate system states and unknown
inputs [25]; based on the UIKF method [23-24], a recursive
filter is designed to estimate system states and unknown inputs
at same time, and the two are interrelated [26].

Many of the above research methods concerning sensor or
actuator faults and control inputs are based on the Kalman
filtering algorithm for fault identification, isolation and
diagnosis, or decoupling and estimating the unknown input,
however, there is not deeply analyze and discuss the effect of
faults on the KF of state vectors in linear systems. In view of
this, this article selects a linear system as an object, taking
sensor measured faults and control input anomalies as
examples, theoretical analysis and simulation calculation
method are used to analyze and discuss the possible influence
of system faults on the KF of state vectors.

2. Effect of Sensor Measured Faults on
the KF of State Vectors

A linear system is described by the following state-space
model [27]:

_ (1)
Y, =C X} +1,

{Xkﬂ =4 X +ByUps + &
Where, 4, OR™", B, OR™?, C, OR™"
Assuming that the {8 k} is Gaussian zero-mean with
covariance Q and the {/7k} is Gaussian zero-mean with
covariance R independent of {S k} , the optimal estimation

value of state vectors X and the error covariance matrix P
can be written as [27]:

A

Xpspns = A Xy + BienUspn

. (2)
+ Ky Ve = Crnt (Aka\k + BUpa ))
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And the filtering gain is
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Clearly, in the recursive process of the KF, the fault data in
sensor measurement outputs and the abnormal data in control
inputs can affect the estimation value of state vectors, and
different types of faults or anomalies may have different
effects on the filtering result. In this section, we will analyze
the effect of sensor faults on the estimation value of state
vectors in terms of pulse faults and step faults.

2.1. Effect of Pulse Faults on the KF of State Vectors
Assuming that the sensor appear pulse fault at time k&, and
the value of the fault is @, meanwhile, the measurement data

is given by ¥, k‘; =Y, kT a , and the present estimation value of

the state X ZO‘ k, canbe obtained by formula (2)

Q lfa —
kolky ~ Ako_leo‘l‘ko‘l + Bko Uko

. . (5)
+ Ko, Wky = Coe -1 X g1 + B, U, ))

The present estimation deviation of the state AX kolko is

given by

. e .
AXkU‘kU - Xku‘ku Xko‘ko
= A1 X gymie1 + B, Ui,

+ K/‘o Y"L(l: B C"u A/‘o_leu*I‘ko*I + BkuUku ))

. (6)
A"u_leo ’l‘ko -1 + B"o U/‘o
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Apparently, the pulse fault in sensors may result in the
estimation deviation of the state. If the fault disappears after
time k, in order to analyze the effect of pulse faults on the
estimation value of subsequent states, the estimation deviation

A

DX ik, + at time ky+1 is calculated

A _ca A
AXkDH\kOH - Xk0+1\k0+1 - Xk0+1\k0+1

a
= +
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k1 Uk +1
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= (Ak0 — Ky 41 Ck0+l Ak0 X /(:O‘ko -X kolko )
= (Ak0 Ky 01 Crn i, \Ky,a
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Introducing a symbol variance

M, = (Ako ~ K, +1Cry 114k, )

the formula (7) can be rewritten as

A

AXk0+1\k0+1 = Mko (Kko ﬁ)

similarly, we can calculate the estimation deviation

A

AX ko+2|ko+2

at time k,+2.

L O TRE R

= (Ak0+1 —Ky 120G din)
_Xk0+qk0+1 ®

:(Ak0+l =K 2G04 )Mko (Kkoa)

=M, M, \K,.d

And so forth, the estimation deviation AX ko+ilko+i At time
kyti is given by

A

AXkOﬂV(Oﬂ' = ko ko +i _Xk0+i‘k0+i
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The formula (9) gives the relationship between the pulse
fault and the estimation value of subsequent states, it can be

seen that the change of the coefficient matrix (I'Ii:l M k0+_/-1)
may directly affect the change of the estimation value of
subsequent states. In order to further analyze the change of the
estimation deviation AX, ky+ilky+i » and discuss its convergence,
we can make the following definitions.

Definition 1: M is an n-order square matrix, and its
cigenvalues are A, (i =1,2,---,n) defining the maximum

absolute value of eigenvalues as the spectral radius of M, and
it is marked as [28]

o) = maxf aof - 4, }

Definition 2: pQOC™", ||M || is called the matrix norm
of M if it meets following four conditions [28]:
(1)  |M|20 with equality if and only if M =0;

@ [am]=lalgm]  (@DC):
@ vy voer):
@ pav|spagy] - vocr).
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Lemma 1: p7 OC™", for any positive number ¢, there is

a matrix norm ||[n]M that makes [28]

[, < plaa)+
Theorem 1: for the linear system (1), the sufficient

condition for the convergence of the state filtering difference
caused by pulse faults of sensors is that the spectral radius of

factor matrices M +i-1 contained in the coefficient matrix

(HQ:IMkm—l) is PM i) <16 =12,0-1).
Proof: as a known condition
PM i )< 1 =12,

for a positive number
1
$= 5[1 - p(Mkoﬂ'—l )] >0
there is a matrix norm ”[an that makes

”Mkoﬂ'—l“M < P(Mkoﬂ—l)"'{:% [1 +AMk0+i—l)] <1

according to the condition (3) in definition 2, it can be
obtained as

i cee
(AL N LR I

M
because of
HMkO"'[_IHM <l
)
ili‘i}om”?ﬂM e, ) =0

thus

Tim (1) M) =0
and so

ili{go(l'li-:l My iq XBkZ’) =0
immediately
.hm A‘Xk+i\k+i =0
1 — +oo

Therefore, theorem 1 holds.

Based on the above analysis, we can see that under a certain
condition, the estimation value of state vectors can ignore the
effect of the estimation deviation caused by pulse faults of
sensors after a sufficiently long time in the future.
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2.2. Effect of Step Faults on the KF of State Vectors

If the sensor appears a step fault, how will it affect the KF of
state vectors? Assuming that the sensor appears a step fault
with a duration of (k,, k,+i), and the value of the fault is a,

based on the formula (6), the estimation deviation AX, o+l +1

at time k,+1 is calculated

- a
AXkOH\kDﬂ =X k0+1\/c0+1 - Xk0+1\k0+1

Ak[, kg\k B U

A X
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+ By U n

A Xily * B Ui +

B A f(k k
Kk0+1 Y/q,+1 _C/cgﬂ ol
+ By mUpn

=(Ak0 =K, 1G4y, XX/(:O‘/(O _Xk[,\k[, +
Kk0+l (Yklj,ﬂ _Yko+l)

=\, ~ K1 Cryndy, )(Kkoﬁ)"’(Kkoﬂa)
=M, \Ky a)+\K ma

=(Mk0Kk0 +Kkﬂ+l i

(10)

Similarly, we can calculate the estimation deviation

A

AX ky2lkpr2 At time kg2,

Aw%e _j/koJ’ZUfo"z

(Aifo‘fl Kko+2cko+2Ako+l)( k0+ K+ Xw%u)
+Kk0+2(Y1g+2 ‘Zfoﬁ)

=i Gl K, +K5 k) 1D
4K, i

=M, 4 (Ml@ K, "'Kko+1)a +(Kko+2a)

=Wy uMy Ky + My Ky + K o)a

DX g =

A

And so forth, the state filtering difference AX, kytilko+i At

time ky+i can be given by
AXvko+4k0+i :XZO+4/(O+[ _Xk0+4k0+[
_ My iy My Ky ++-)
_Mko+i—1 a
M/q)+i—2Kk0+[—2 +Kk0+i—l
+K, d
Mk0+i—1Mk0+[—2“Mk0Kk0 teet)
= a
Mko+[—1Kk0+i—l +Kk0+i

=(§1F|§;q,Mk0+b—1Kl(0+c—1 +Kk0+ij5

(12)

The effect of step faults in sensors on the KF of state vectors
may result in the additive estimation deviation during the fault
time. If the step fault disappears after time k,+i, in order to
analyze the effect of step faults on the estimation value of
subsequent states, we can calculate the estimation deviation

DX sisipywin at time kgtit].

A A A

— a
AXk(,+i+1\kO +i+l T XkO +iHl|kg i+l T Xk0+i+1\k0+i+1

— va
+i ko +ilky+i +i+l +i+l

_Ako XO , +Bk0 Uk(, +

Y, ko+i+l —

oa

Ky +int A i X b i+
ko ti+l
ko +i+1U kg il

Ak0+iXkU+[‘k0+i + Bk0+i+1Uk0+i+1 +

Yk0+i+1 -

(13)

Kk0+i+1 Ak0+iXk0+i\k0+i +
ko i+l

ko +i+1U g i1

= (Ak0 i = Kpwin Ck0+i+1Ak0+i ) 0
5 5

(Xko +ilkg +i an +ilky +i

Zl'lb M o1 Kaet |
—Mk 4| = =1 a

+ Ky i

Similarly, we can calculate the estimation deviation
AX,

o2 g +i+2 at time k0+i+2.

ko +it2|ky+i+2 ~ Xk0+;+2\k0+z+2 Xk0+i+2\k0+i+2

= Ak0+i+1 _Kko+i+zck0+i+2Ak +i+1)D

B N
( ko +i+] kg +itl Xk0+i+1\k0+i+1§

=My viaM e U

(14)

i .
( ZIHZ=ch0+b—1Kko+c—1 + Ky 4 ja
=

And so forth, the estimation deviation AX Koti+jllgri+y At time
kyti +j can be given by

A A A

—_ a
- Xk0+i+j\k0+i+j - Xko+i+j\k0+i+j
.Mko"'i D

ko it jlko+i+ )
= Mk0+i+j—l ..

((E Mh=e M k61K gy 1 Kk0+ija

i+j
M Mk0+s*1
s=i+l

( Zlﬂi_choﬂz 1K kvt + K ja
=

(15)

The relationship between the step fault in sensors and the
estimation value of subsequent states is given by (15), i.e., the
product of the coefficient matrix

(ﬂ;{HM Ky sl Xi =12,--,N;j =1,2,-) and the additive estimation
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. . i i — . . .
deviation [le'l’b:CM ko +h-1K g remt T K )a , in essence, similar to
P

formula (9), therefore, we can see that under a certain condition,
the estimation value of state vectors can ignore the effect of the
additive estimation deviation caused by step faults of sensors
after a sufficiently long time in the future.

3. Effect of Control Input Anomalies on
the KF of State Vectors

For a linear system, due to internal interference, not only
unpredictable faults occur in the sensor, but also the control
input will have an abnormal phenomenon. Therefore, in this
section, we will analyze the effect of control input anomalies
on the KF of state vectors in terms of pulse abnormal inputs
and step abnormal inputs.

3.1. Effect of Pulse Abnormal Inputs on the KF of State
Vectors

Supposing the control input {U,} appear a pulse abnormal
variance d attime kg, and it can be marked as U ,fo =Uy, + a,

at the same time, from formula (1), we can calculate the

present state X =X, +B,d and measurement data

Yg =Y, +C, By a, so, the present estimation value of the state
va ..
X kolky 1S given by formula (2)

A

a % a
AX = X +
kol Ako—l ko=1lko-1 BkOU ko

. . L) a6
+ K, Wiy = Co Vi1 X -1l T B, U, ))

The present estimation deviation AX, |, can be given by

A,

— va O
ko = Xhglko X kolko

— v a
= Ako_leo_l‘ko'l +Bk0 Uko +
a _ % a
Kko Yko Cko Ako -1 Xko =l|ko=1 + Bko Uko ))
A1 X g B Ui, *

5 17
Ky Wy, =, Vi1 X g =i, 81, U, )) a7

(8., ~K,,C., 3, Joi, -u, J+
Ky, (Yk{:,+1 _Yk0+1)
= (Bk() _Kk() CkUBkO )5+K/{U Ck() Bkofl
=\By,a
Clearly, the pulse abnormal inputs may result in the
estimation deviation of state vectors. If the pulse abnormal

input disappears after time k, in order to analyze the effect of
pulse abnormal inputs on the estimation value of subsequent

states, we can calculate the estimation deviation AX ko H[ky +1

at time kyt1 (present state X, 1?0+1 =X 4 +AkOBkOZi and
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measurement data Yy vy =Y o +Cy 4y By @)

N s N
AXk(,ﬁ-l\kl,ﬁ-l - Xk[,+l\k[,+l T kg kg +1

— > a
= Ak, Xkl T BryntUkyer +
a v a
Kk0+1(Yk“+l _Ck“+1 AkUXk“\k“ +Bk0+1Uk0+l))
Ay X gy ¥ Brgr1Uign +

Kyt Weyr1 = Cgon iy X i i, +Bkn+1Ukn+l)) (18)
= (AkU =K +1Cry 414, )(Xi!n\ku - )2/(0\1{0 +
Kk[,+l(Yk‘:,+l =Y
=\, — Ky 1 Cryr14y, )Bkn‘; +
Kyon1Cron Ay, By d
= 4y, By d

Similarly, we can calculate the estimation deviation

AX, k42 at  time kot2 (present state
X ,fo+2 =X, K2t Ak0+1Ak0 Bkoc_i and measurement data
Yo =Y 0+ Cpaady Ay, Bid)
AXk0+2\k0+2 = X/?0+2\kn+2 - X pwafig+2
_ ( X 1?0+1\k0+1
= Ak0+1 - Kk0+2Ck0+2Ak0+1 A +
-X ko+ljkg+1
19
Kk0+2(Ykl;+2 _Yk0+2) (19)
= (Ak0+1 = Ky +2Croer Apn )Ako By a+
K 02Cru2 Ap Ay By a
= Ay oy By a
And so forth, the estimation deviation AX ky+lk+i At time

kyti can be given by

A

AX h ‘XkU +ilky +i

= XI?U +ilkg +i
= Ay vin Apricy - A Ay By a (20)
= (I'IS:1 A jm1 )(Bko a )

ko+ilky+i

The formula (20) gives the relationship between the pulse
abnormal input and the estimation value of subsequent states,
it can be seen that the change of the coefficient matrix

(I'Ii:l Ak0+_,_1) may directly affect the estimation value change

of subsequent states, and different from formal (9), the effect
of pulse abnormal inputs on the estimation value of state
vectors is only related to model parameters {A4;, B}.
According to the analysis of formula (9), we can see that under
a certain condition, the estimation value of state vectors can
ignore the effect of the estimation deviation caused by pulse
abnormal inputs after a sufficiently long time in the future.

3.2. Effect of Step Abnormal Inputs on the KF of State
Vectors

Supposing the control input appears a step abnormal input
with a duration of (k,, k,+i), and its value is a, based on
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formula (17), we can calculate the estimation deviation

AX ko +ilko+1 at time kot (present state

X =Xpu + (AkOBkU + Bk0+1)6
and measurement data

a _ —
=Ty + Cion 44,1, + By
Y, 753! Y, 0% CkU +1 Ako BkU BkU +1

AXk Xk Xkoﬂ\koﬂ

a
+B wUiw t

okt T 0+1‘k0+1

- Ako ko\ko
a _ oa a

Ky 1\ +1 = Cryi AkﬂXkﬂ\kﬂ +Bk0+lUk0+l))

AkﬂX"o‘kn

KkOH(YkOH _Ckoﬂ(Akﬂf(kO\kﬂ +Bk0+lUk0+l))
= (Ako =K 1Cry 14y, Xj{:ﬂ\ko _)?ko\kg +
(Bk0+l _Kk0+lck0+lBk0+1XUI?0+l “Upn )t
Kk“+1(Ykl;+l _Yk0+1

=\, — Ky 11Cry 114y, JBra +

(Bk0+l Ky 11Cry 1 Bry i i+
Kk(,HCkQHZAkOBk(, + By nja

=\4 By, + By, jd

B U t

@n

Similarly, we can calculate the estimation deviation

AX, ky+2lko2 At kyt2 (present state

« ~
Xir2 =X * (1"11%+11‘1k03k0 +t A B t Bk0+2)a
and measurement data
. _ -
Y2 = Yi 02 T Cp a2 (AkU+IAkU By, + A 1By t Bku+2)‘1

AX =x¢ -X

ko+2lko+2 T ko +2ko+2 T
= - + )& +
Ak0+l Kkn+2ckn+2Ak0+lXAk,,Bk0 Bk0+1
Bk0+2 _Kk0+2Ck0+ZBkO+Z

+ Ky +2Crv2\ iy 11 Ak, B, + Ak 11Brye1t + Byyva

ko+2|ko+2
(22)
=y, 14k, Bi, + Ay By t Biys2

And so forth, the estimation deviation AX) Hilkyi At time
0 0

kyti can be given by

AXk0+i\k0+i =X +z\k0+1 - k0+i\k0+i

Ay wimt - A A B, too )
i
Aku+1 lBkU+l -1 Bku+i (23)

i . —
( ZII'IL:C Ap 1By w1 T By j“
=

The effect of step abnormal inputs on the estimation value
of state vectors may result in the superposition estimation
deviation during the fault time. If the step abnormal input
disappears after time k,+i, in order to analyze the effect of step
abnormal inputs on the estimation value of subsequent states,

we can calculate the estimation deviation AX, ky+i+lkg i+l AL

time kyti+1.

ko+i+lko+itl ~ XkO +iH kg i+l Xk‘, +itl[ ko +it]

= Ak0+iXk‘, +il kg +i + By iniUpgvin *

va
X e -C Ak0+iXk0+[\k0+i +
ko +i+l| Lhy+i+l ko i+l
ko+i+1Uko+i+1

Ak0+iXk‘, +ilko+i +Bk0 +i+lUk0+i+l +

Ak0+iXk‘, +ilkg +i +

24
Kk‘,+i+l Yk0+i+l _Ck‘,+i+l[ ( )

k0+[+1Uk0+[+1
ca B
( XkO +il ko +i

- Ak0+[ _Kk0+i+lcko+i+1Ak0+[ A

ko +ilko+i
a —
Kk0+[+1 (qu, +itl Yk0 +itl

i ~
= Ak0+i[ ZIHZ:C A +b-1Bry+em1 T By, +i)‘l
=

Similarly, we can calculate the estimation deviation

AY,

0+i+2‘k+i+2 at time k0+i+2.

- a
AXkO +i+2 kg +i+2 T Xko +it2lkg+i+2 T Xko +i+2|ky +i+2

=y sivt ~ K ina Crpriva Ag win J0
54 A
Xko +i+]| kg +it+l Xk(,+i+1\k0 +i+13

a
+ Kko +i+2 (Yk0+i+2 - Yko +i+2 )

(25)

y y Zlﬂb e Ary+o-1Bry et
g +it1 Ay +i| €7

ko+i

And so forth, the estimation deviation AX ko ti+jlkgiej At
time ky+i +j can be given by

— a
AX _Xk0+i+j‘k0+i+j 'Xk0+i+j‘k0+i+j

Ako +i g

it kg it

= Ak0+i+j—1

i .
SN Ay v B .y +B -)ﬁ
(Czlﬂb_c ko+b=1Bky+e-1 T Dy +i 26)

ﬂ Ak0+s l)D

s=i+]

P _
1
( 2 Mh=c A rp-1Bryre-1 T By )a
o=

Formula (26) gives the relationship between the step
abnormal input and the estimation value of subsequent states,
ie., the product of the coefficient matrix

(M9 Ay, oo Ji =120,

i . - .
estimation deviation ( Zl Mp=c Aky+p-1Bryre-1 T B+ ja ,and it is
=

N;j=12,-) and the superposition

only related to model parameters {4,, B,}. Based on the
analysis of formula (15), we can see that under a certain
condition, the estimation value of state vectors can ignore the
effect of the superposition estimation deviation caused by step
abnormal inputs after a sufficiently long time in the future.
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4. Simulation Calculation and Result
Analysis

Taking the linear dynamic system (1) as an object, selecting
four different state-space models with 3-dimension state
vector and 2-dimension observation vector, Monte Carlo
method is used to simulate and analyze the effect of system
faults on the KF of state vectors.

(a) Model A (controllability and observability systems)

099 0.1 0 0
X =| 0 099 —0.1|X, +|0[U,,, +&
0 0 0.9 1

oo 0o -09
Y, =
0 005 0

(27)
Xy +1;

(b) Model B (controllability and unobservability systems)

099 01 0 0
X =| 0 099 —0.1|X, +|0[U,, +&
0 0 099 1 (28)

0 0 0],
“710 005 o kT

(c) Model C (uncontrollability and observability systems)
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(d) Model D (uncontrollability and unobservability systems)
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Where,
& ~N(0.0) 7 ~N(O.R)
0 =diag[0.5> 0.1 0.67]
R =diag[0.01> 0.1%]

Under the above four different state-space models, sensor
faults and control input anomalies are simulated respectively,
compared with the normal estimation value of state vectors,
the estimation deviation are obtained, and draw three
component change curves to analyze and discuss simulation
results. When the system is controllable and observable, pulse
faults in sensors can lead to appear pulse-type deviations at the
fault time, and will still affect the estimation value of
subsequent states. The component X; becomes larger and
larger as the time goes, the component X, and X; may start to
convergence at some time, but they may not converge to the
zero value. Step faults in sensors can lead to appear
superposition estimation deviations, and will still affect the
estimation value of subsequent states. Similarly, the
component X; becomes larger and larger as the time goes, the
component X, and X; may start to convergence at some time,
but they may not converge to the zero value.

When the system is controllable and not observable, pulse
faults in sensors can lead to appear pulse-type estimation
deviations at the fault time, and will still affect the estimation
value of subsequent states. The component X; and X, become
larger and larger as the time goes and the component X is greater,
the component X; may converge to a certain value after a long
time. Step faults in sensors can lead to appear superposition
estimation deviations, and will still affect the estimation value of
subsequent states. The component X; becomes larger and larger
as the time goes, the component X, and X; may start to
convergence after a long time, but the former may converge to a
certain value, the latter may converge to the zero value.
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Figure 1. The estimation deviation of state vectors in sensor faults under model A.
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Figure 2. The estimation deviation of state vectors in sensor faults under model B.

When the system is not controllable and observable, pulse
faults in sensors can lead to appear pulse-type estimation
deviations at the fault time, and will still affect the estimation
value of subsequent states. The component X; becomes larger
and larger as the time goes, the component X, and X; may
converge to a certain value after a long time. Step faults in
sensors can lead to appear superposition estimation deviations,
and will still affect the estimation value of subsequent states.
The component X; becomes larger and larger as the time goes,
the component X, and X; may start to convergence after a long
time, but the former may converge to a certain value, the latter
may converge to the zero value.
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When the system is not controllable and not observable,
pulse faults in sensors can lead to appear pulse-type estimation
deviations at the fault time, and will still affect the estimation
value of subsequent states. The component X}, X, and X; may
start to convergence after a long time, but component X; and
X; may converge to a certain value, component X, may
converge to the zero value. Step faults in sensors can lead to
component X, appear superposition estimation deviations, and
the component X, will start to converge to the zero value after
a long time, the component X; and X3 may converge to the zero
value quickly after a step change.
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Figure 3. The estimation deviation of state vectors in sensor faults under model C.

Comprehensive analysis of Figures 1 to 4 show that sensor
faults can result in pulse or superposition estimation
deviations of state vectors, and will continue to affect the
filtering result for a long time. Whether the convergence of the

estimation deviation is occur or not, which is not necessarily
related to the controllability and observability of linear
systems, even if convergence occurs, it may converge to a
certain value, and not necessarily converge to the zero value.
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Figure 4. The estimation deviation of state vectors in sensor faults under model D.

When the system is controllable and observable, pulse
abnormal inputs can result in the estimation deviation of state
vectors, and will still affect the estimation value of subsequent
states. The component X; becomes larger and larger as the
time goes and finally divergence, component X, may start to
converge to a certain value after a long time, and component
X; may tend to smoothly converge to a certain value after
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anomalies disappear. Step abnormal inputs can lead to the
component X; appear superposition estimation deviations, and
will start to converge to the zero value after a long time, the
component X; becomes larger and larger as the time goes, and
finally divergence, the component X, may converge to a
certain value after a period of changes.

1000

-1000

-2000 +

-3000

-4000

-3000

delta X1 delta X2 delta X3 I
6000 L " L L L L L i i i i L L
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Time/s

(b) Effect of step abnormal inputs

Figure 5. The estimation deviation of state vectors in control input anomalies under model A.

When the system is controllable and not observable, pulse
abnormal inputs can result in the estimation deviation of state
vectors, and will still affect the estimation value of states for a
long time. The component X; becomes larger and larger as the
time goes and finally divergence, component X, and X; may
tend to converge to a certain value after increasing for a long

time. Step abnormal inputs can result in the superposition
estimation deviation of state vectors, and will still affect the
filtering result. The component X; becomes larger and larger
as the time goes and finally divergence, component X, and X3
may converge to a certain value after increasing for a long
time.
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Figure 6. The estimation deviation of state vectors in control input anomalies under model B.

When the system is not controllable and observable, pulse
abnormal inputs can result in the estimation deviation of state
vectors, and will still affect the filtering result for a long time.
The component X; and X, finally converge to different values
after long time changes, and component X; may converge to
the zero value after long time changes. Step abnormal inputs
can result in the superposition estimation deviation of state
vectors. The component X; starts to decrease after increasing
for a long time and does not necessarily converge to a certain
value, the component X, and X; may converge to the zero
value after increasing for a long time, and the convergence rate
of the difference component X, is much slower than the
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difference component Xj.
When the system is not controllable and not observable,
pulse abnormal inputs can result in the estimation deviation of
state vectors, and will still affect the filtering result for a long
time. The component X7, X, and Xj start to convergence after a
long time, the component X; and X3 may converge to the zero
value, and component X, may converge to a certain value.
Step abnormal inputs can result in the superposition
estimation deviation of state vectors. The component .X; starts
to decrease after increasing for a long time and finally may
divergence, component X; and X; may converge to different
values after long time changes.
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Figure 7. The estimation deviation of state vectors in control input anomalies under model C.

From Figures 5 to 8, we can see that control input anomalies
may result in superposition estimation deviations of state
vectors, and will continue to affect the filtering result for a
long time. Whether the convergence of the estimation
deviation is occur or not, which is not necessarily related to
the controllability and observability of linear systems, it may

finally divergence, even if convergence occurs, it may not
necessarily converge to the zero value.

Comparative analysis of Figure 1 to Figure 8 show that the
effect of sensor faults and control input anomalies on the KF
of state vectors will be distinct different. Sensor faults can
result in distinct pulse spikes or damped oscillations
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estimation deviation of state vectors, as well as persistent step
estimation deviations, meanwhile, it can be seen that the
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convergence speed and time of the estimation deviation
caused by sensor faults may be faster and shorter.
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Figure 8. The estimation deviation of state vectors in control input anomalies under model D.

5. Conclusions

In this paper, the analysis method of theoretical derivation
and model simulation calculation is combined to analyze and
discuss the effect of faults or anomalies on the KF of state
vectors in linear systems. In theory, taking sensor faults and
control input anomalies as examples, the influence
relationship between pulse and step faults (anomalies) and
the estimation value of state vectors are deduced and
established respectively, and the sufficient conditions for the
convergence of the filtering result in the presence of faults or
anomalies are given; in simulation, selecting a linear system
state-space model with three-dimension state vector and
two-dimension observation vector as an object, four different
structure models are used to simulate and analyze the effect
of sensor faults and control input anomalies on the KF,
simulation results show that faults and anomalies in linear
systems can result in distinct estimation deviations of state
vectors for a long time in future, and whether the estimation
deviation is convergence or not, which is not necessarily
related to the controllability and observability of linear
systems, even if convergence occurs, it may converge to a
certain value, and does not necessarily converge to the zero
value. In term of a same structure system, there are obvious
differences in the effect of sensor faults and control input
anomalies on the KF of state vectors, relatively speaking, the
effect of sensor faults on the KF of state vectors is more
obvious, which will result in pulse-type, superposition or
step-type estimation deviations of state vectors, and the
convergence speed and time of the estimation deviation may
be faster and shorter.

The research results in this paper have a certain practical
reference value for us to apply the KF algorithm and analyze
the stability of the filtering result in the presence of system
faults or anomalies, and also provide a theoretical reference

for us to use the analysis of the filtering result to achieve
fault detection, identification and diagnosis in linear
systems.
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