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Abstract: Kalman filter (KF) is composed of a set of recursion algorithms which can be used to estimate the optimal state of 

the linear system, and widely used in the control system, signal processing and other fields. In the practical application of the KF, 

it is an unavoidable problem that how faults or anomalies are infectious to the estimation value of state vectors in the linear 

system, which must be paid much attention to and solved down. In this paper, the effect of sensor faults and control input 

anomalies on the Kalman filtering values of state vectors is discussed, the transmission relationship is established to analyze the 

estimation deviation of state vectors which comes from pulse or step faults/anomalies, and a sufficient condition is deduced for 

the convergence of the estimation deviation of state vectors; Four different system models with 3-dimension state vector and 

2-dimension observation vector are selected for simulation calculation and comparative analysis, simulation results show that 

sensor faults and control input anomalies in linear systems may cause significant deviations in the estimation value of state 

vectors for a long time, and there are distinct differences in the estimation value of state vectors. The research results provide a 

certain theoretical reference for us to analyze system fault types and to identify fault. 
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1. Introduction 

The Kalman filter (KF) is a time-domain filtering algorithm 

which can achieve the optimal estimation value of state 

vectors based on the state-space model of the linear system [1]. 

The KF is suitable for estimating the change of state vectors 

online in multivariable time-varying systems, and is widely 

used in process automation, dynamic system control, 

spacecraft monitoring and control, mechanical and electrical 

engineering, etc. [2-3], and has a foundational significance in 

the modern control theory, real-time signal processing and 

other fields [4]. 

During the actual running of the linear system, due to the 

complex operating environment, working conditions and other 

factors, it usually appears faults and anomalies, which will 

affect the stability and reliability of systems. The common 

faults in linear systems are sensor faults [5-7], actuator faults 

[8] and so on. The occurrence of different faults will have a 

serious impact on the system function and even cause the 

incalculable losses [9]. Many scholars have conducted a lot of 

research on such issues deeply, and there are a larger number 

of research results in the literature. Based on the KF, different 

neural networks are used to diagnose sensor faults of 

aerospace control systems [10-12]; Aretakis uses geometric 

pattern recognition technology and KF algorithm to solve the 

problem of slow drift in sensors [13]; a set of linear Kalman 

filter are used to diagnose sensor faults after linearization at 

operating point of the system [14]; a novel Kalman filter is 

designed to diagnose multi-sensor faults when systems 

existing colored noise [15]; in order to solve the non-Gaussian 

distribution problem of wind speed and measured noise in 

wind power generation systems, a novel filtering algorithm is 

proposed to identify and isolate the sensor fault [16]; a set of 

extended Kalman filter are used to diagnose attitude sensor 

faults [17]. Aiming to the problem of actuator faults in control 

systems, an improved multiple fading factor strong-tracking 

nonlinear filter algorithm is proposed to diagnose stuck-at 
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faults and swing faults of the actuator [18]; in order to solve 

the problem of flywheel faults in satellite attitude control 

systems, a two-stage EKF algorithm is designed [19]; the 

actuator and sensor fault are regarded as system states, system 

states are optimized through the optimal and robust 

three-stage Kalman filter, and finally achieve the 

reconstruction of system faults [20]. In practical application of 

systems, it is often affected by external interference or random 

noise; therefore, stochastic systems with unknown inputs have 

gradually attracted much attention [21]. A two-level Kalman 

filter with unknown inputs is proposed to decouple and 

estimate states and unknown inputs [22]; the unbiased 

minimum variance estimation of linear systems with unknown 

disturbances is studied, and a unknown input Kalman filter 

(UIKF) is designed [23]; based on the UIKF, the necessary and 

sufficient condition are deduced for the stability and 

convergence [24]; a second-order Kalman filter is designed, 

and its order is used to estimate system states and unknown 

inputs [25]; based on the UIKF method [23-24], a recursive 

filter is designed to estimate system states and unknown inputs 

at same time, and the two are interrelated [26]. 

Many of the above research methods concerning sensor or 

actuator faults and control inputs are based on the Kalman 

filtering algorithm for fault identification, isolation and 

diagnosis, or decoupling and estimating the unknown input, 

however, there is not deeply analyze and discuss the effect of 

faults on the KF of state vectors in linear systems. In view of 

this, this article selects a linear system as an object, taking 

sensor measured faults and control input anomalies as 

examples, theoretical analysis and simulation calculation 

method are used to analyze and discuss the possible influence 

of system faults on the KF of state vectors. 

2. Effect of Sensor Measured Faults on 

the KF of State Vectors 

A linear system is described by the following state-space 

model [27]: 
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Assuming that the { }kε  is Gaussian zero-mean with 

covariance Q and the { }kη  is Gaussian zero-mean with 

covariance R independent of { }kε , the optimal estimation 

value of state vectors X̂  and the error covariance matrix P 

can be written as [27]: 
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And the filtering gain is 
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Clearly, in the recursive process of the KF, the fault data in 

sensor measurement outputs and the abnormal data in control 

inputs can affect the estimation value of state vectors, and 

different types of faults or anomalies may have different 

effects on the filtering result. In this section, we will analyze 

the effect of sensor faults on the estimation value of state 

vectors in terms of pulse faults and step faults. 

2.1. Effect of Pulse Faults on the KF of State Vectors 

Assuming that the sensor appear pulse fault at time k0, and 

the value of the fault is a
�

, meanwhile, the measurement data 

is given by aYY k
a

k

�

+=
00

, and the present estimation value of 

the state 
a

kkX
00

ˆ  can be obtained by formula (2)  
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The present estimation deviation of the state 
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ˆ
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given by 
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Apparently, the pulse fault in sensors may result in the 

estimation deviation of the state. If the fault disappears after 

time k0, in order to analyze the effect of pulse faults on the 

estimation value of subsequent states, the estimation deviation

11 00

ˆ
++∆ kkX  at time k0+1 is calculated 
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Introducing a symbol variance  
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the formula (7) can be rewritten as  
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similarly, we can calculate the estimation deviation  
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at time k0+2. 

( )

( ) ( )
( )aKMM

aKMACKA

X

X
ACKA

XXX

kkk

kkkkkk

kk

a
kk

kkkk

kk
a

kkkk

�

�

000

000000

00

00

0000

000000

1

1221

11

11

1221

222222

ˆ

ˆ

ˆ-ˆˆ

+

++++

++

++
++++

++++++

=

−=

















−
−=

=∆

  (8) 

And so forth, the estimation deviation ikikX ++∆
00

ˆ  at time 

k0+i is given by 
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The formula (9) gives the relationship between the pulse 

fault and the estimation value of subsequent states, it can be 

seen that the change of the coefficient matrix ( )∏ = −+
i
j jkM1 10

 

may directly affect the change of the estimation value of 

subsequent states. In order to further analyze the change of the 

estimation deviation ikikX ++∆
00

ˆ , and discuss its convergence, 

we can make the following definitions. 

Definition 1: M is an n-order square matrix, and its 

eigenvalues are ( )nii ,,2,1 ⋯=λ , defining the maximum 

absolute value of eigenvalues as the spectral radius of M, and 

it is marked as [28]  
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Definition 2: nmCM ×∈ , M  is called the matrix norm 

of M if it meets following four conditions [28]: 
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Theorem 1: for the linear system (1), the sufficient 

condition for the convergence of the state filtering difference 
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Therefore, theorem 1 holds. 

Based on the above analysis, we can see that under a certain 

condition, the estimation value of state vectors can ignore the 

effect of the estimation deviation caused by pulse faults of 

sensors after a sufficiently long time in the future. 
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2.2. Effect of Step Faults on the KF of State Vectors 

If the sensor appears a step fault, how will it affect the KF of 

state vectors? Assuming that the sensor appears a step fault 

with a duration of (k0, k0+i), and the value of the fault is a
�

, 

based on the formula (6), the estimation deviation 11 00

ˆ
++∆ kkX  

at time k0+1 is calculated 
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Similarly, we can calculate the estimation deviation 
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++∆ kkX  at time k0+2. 
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And so forth, the state filtering difference ikikX ++∆
00

ˆ  at 

time k0+i can be given by 
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The effect of step faults in sensors on the KF of state vectors 

may result in the additive estimation deviation during the fault 

time. If the step fault disappears after time k0+i, in order to 

analyze the effect of step faults on the estimation value of 

subsequent states, we can calculate the estimation deviation 

11 00
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++++∆ ikikX  at time k0+i+1. 
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Similarly, we can calculate the estimation deviation 
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And so forth, the estimation deviation jikjikX ++++∆
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ˆ  at time 

k0+i +j can be given by 
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The relationship between the step fault in sensors and the 

estimation value of subsequent states is given by (15), i.e., the 

product of the coefficient matrix 
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after a sufficiently long time in the future. 

3. Effect of Control Input Anomalies on 

the KF of State Vectors 

For a linear system, due to internal interference, not only 

unpredictable faults occur in the sensor, but also the control 

input will have an abnormal phenomenon. Therefore, in this 

section, we will analyze the effect of control input anomalies 

on the KF of state vectors in terms of pulse abnormal inputs 
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Clearly, the pulse abnormal inputs may result in the 

estimation deviation of state vectors. If the pulse abnormal 

input disappears after time k0, in order to analyze the effect of 

pulse abnormal inputs on the estimation value of subsequent 

states, we can calculate the estimation deviation 11 00

ˆ
++∆ kkX  

at time k0+1 (present state aBAXX kkk
a
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Similarly, we can calculate the estimation deviation 

22 00
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++∆ kkX  at time k0+2 (present state 
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And so forth, the estimation deviation ikik
X ++∆

00

ˆ  at time 

k0+i can be given by 
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The formula (20) gives the relationship between the pulse 

abnormal input and the estimation value of subsequent states, 

it can be seen that the change of the coefficient matrix 

( )∏ = −+
i
j jkA1 10

 may directly affect the estimation value change 

of subsequent states, and different from formal (9), the effect 

of pulse abnormal inputs on the estimation value of state 

vectors is only related to model parameters {Ak, Bk}. 

According to the analysis of formula (9), we can see that under 

a certain condition, the estimation value of state vectors can 

ignore the effect of the estimation deviation caused by pulse 

abnormal inputs after a sufficiently long time in the future. 

3.2. Effect of Step Abnormal Inputs on the KF of State 

Vectors 

Supposing the control input appears a step abnormal input 

with a duration of (k0, k0+i), and its value is a
�

, based on 
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formula (17), we can calculate the estimation deviation 
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Similarly, we can calculate the estimation deviation 
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And so forth, the estimation deviation ikikX ++∆
00

ˆ  at time 

k0+i can be given by 
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The effect of step abnormal inputs on the estimation value 

of state vectors may result in the superposition estimation 

deviation during the fault time. If the step abnormal input 

disappears after time k0+i, in order to analyze the effect of step 

abnormal inputs on the estimation value of subsequent states, 

we can calculate the estimation deviation 11 00

ˆ
++++∆ ikikX  at 

time k0+i+1. 
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 (24) 

Similarly, we can calculate the estimation deviation 

220

ˆ
++++∆ ikikX  at time k0+i+2. 
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And so forth, the estimation deviation jikjikX ++++∆
00

ˆ  at 

time k0+i +j can be given by 
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Formula (26) gives the relationship between the step 

abnormal input and the estimation value of subsequent states, 

i.e., the product of the coefficient matrix 

( )( )⋯⋯ ,2,1;,,2,11 10
==∏ +

+= −+ jNiAji
is sk  and the superposition 

estimation deviation aBBA ik

i

c

i
cb ckbk

�







 + +

=
= −+−+∑ ∏

000
1

11 , and it is 

only related to model parameters {Ak, Bk}. Based on the 

analysis of formula (15), we can see that under a certain 

condition, the estimation value of state vectors can ignore the 

effect of the superposition estimation deviation caused by step 

abnormal inputs after a sufficiently long time in the future. 
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4. Simulation Calculation and Result 

Analysis 

Taking the linear dynamic system (1) as an object, selecting 

four different state-space models with 3-dimension state 

vector and 2-dimension observation vector, Monte Carlo 

method is used to simulate and analyze the effect of system 

faults on the KF of state vectors. 
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(b) Model B (controllability and unobservability systems)  
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(c) Model C (uncontrollability and observability systems)  
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(d) Model D (uncontrollability and unobservability systems)  
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Where,  

( )QNk ,0~ε
 

( )RNk ,0~η
 

]6.01.05.0[ 222diagQ =  

]1.001.0[ 22diagR =  

Under the above four different state-space models, sensor 

faults and control input anomalies are simulated respectively, 

compared with the normal estimation value of state vectors, 

the estimation deviation are obtained, and draw three 

component change curves to analyze and discuss simulation 

results. When the system is controllable and observable, pulse 

faults in sensors can lead to appear pulse-type deviations at the 

fault time, and will still affect the estimation value of 

subsequent states. The component X1 becomes larger and 

larger as the time goes, the component X2 and X3 may start to 

convergence at some time, but they may not converge to the 

zero value. Step faults in sensors can lead to appear 

superposition estimation deviations, and will still affect the 

estimation value of subsequent states. Similarly, the 

component X1 becomes larger and larger as the time goes, the 

component X2 and X3 may start to convergence at some time, 

but they may not converge to the zero value. 

When the system is controllable and not observable, pulse 

faults in sensors can lead to appear pulse-type estimation 

deviations at the fault time, and will still affect the estimation 

value of subsequent states. The component X1 and X2 become 

larger and larger as the time goes and the component X1 is greater, 

the component X3 may converge to a certain value after a long 

time. Step faults in sensors can lead to appear superposition 

estimation deviations, and will still affect the estimation value of 

subsequent states. The component X1 becomes larger and larger 

as the time goes, the component X2 and X3 may start to 

convergence after a long time, but the former may converge to a 

certain value, the latter may converge to the zero value. 

 
Figure 1. The estimation deviation of state vectors in sensor faults under model A. 
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Figure 2. The estimation deviation of state vectors in sensor faults under model B. 

When the system is not controllable and observable, pulse 

faults in sensors can lead to appear pulse-type estimation 

deviations at the fault time, and will still affect the estimation 

value of subsequent states. The component X1 becomes larger 

and larger as the time goes, the component X2 and X3 may 

converge to a certain value after a long time. Step faults in 

sensors can lead to appear superposition estimation deviations, 

and will still affect the estimation value of subsequent states. 

The component X1 becomes larger and larger as the time goes, 

the component X2 and X3 may start to convergence after a long 

time, but the former may converge to a certain value, the latter 

may converge to the zero value. 

When the system is not controllable and not observable, 

pulse faults in sensors can lead to appear pulse-type estimation 

deviations at the fault time, and will still affect the estimation 

value of subsequent states. The component X1, X2 and X3 may 

start to convergence after a long time, but component X1 and 

X3 may converge to a certain value, component X2 may 

converge to the zero value. Step faults in sensors can lead to 

component X2 appear superposition estimation deviations, and 

the component X2 will start to converge to the zero value after 

a long time, the component X1 and X3 may converge to the zero 

value quickly after a step change. 

 
Figure 3. The estimation deviation of state vectors in sensor faults under model C. 

Comprehensive analysis of Figures 1 to 4 show that sensor 

faults can result in pulse or superposition estimation 

deviations of state vectors, and will continue to affect the 

filtering result for a long time. Whether the convergence of the 

estimation deviation is occur or not, which is not necessarily 

related to the controllability and observability of linear 

systems, even if convergence occurs, it may converge to a 

certain value, and not necessarily converge to the zero value. 
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Figure 4. The estimation deviation of state vectors in sensor faults under model D. 

When the system is controllable and observable, pulse 

abnormal inputs can result in the estimation deviation of state 

vectors, and will still affect the estimation value of subsequent 

states. The component X1 becomes larger and larger as the 

time goes and finally divergence, component X2 may start to 

converge to a certain value after a long time, and component 

X3 may tend to smoothly converge to a certain value after 

anomalies disappear. Step abnormal inputs can lead to the 

component X3 appear superposition estimation deviations, and 

will start to converge to the zero value after a long time, the 

component X1 becomes larger and larger as the time goes, and 

finally divergence, the component X2 may converge to a 

certain value after a period of changes. 

 
Figure 5. The estimation deviation of state vectors in control input anomalies under model A. 

When the system is controllable and not observable, pulse 

abnormal inputs can result in the estimation deviation of state 

vectors, and will still affect the estimation value of states for a 

long time. The component X1 becomes larger and larger as the 

time goes and finally divergence, component X2 and X3 may 

tend to converge to a certain value after increasing for a long 

time. Step abnormal inputs can result in the superposition 

estimation deviation of state vectors, and will still affect the 

filtering result. The component X1 becomes larger and larger 

as the time goes and finally divergence, component X2 and X3 

may converge to a certain value after increasing for a long 

time. 
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Figure 6. The estimation deviation of state vectors in control input anomalies under model B. 

When the system is not controllable and observable, pulse 

abnormal inputs can result in the estimation deviation of state 

vectors, and will still affect the filtering result for a long time. 

The component X1 and X2 finally converge to different values 

after long time changes, and component X3 may converge to 

the zero value after long time changes. Step abnormal inputs 

can result in the superposition estimation deviation of state 

vectors. The component X1 starts to decrease after increasing 

for a long time and does not necessarily converge to a certain 

value, the component X2 and X3 may converge to the zero 

value after increasing for a long time, and the convergence rate 

of the difference component X2 is much slower than the 

difference component X3. 

When the system is not controllable and not observable, 

pulse abnormal inputs can result in the estimation deviation of 

state vectors, and will still affect the filtering result for a long 

time. The component X1, X2 and X3 start to convergence after a 

long time, the component X1 and X3 may converge to the zero 

value, and component X2 may converge to a certain value. 

Step abnormal inputs can result in the superposition 

estimation deviation of state vectors. The component X2 starts 

to decrease after increasing for a long time and finally may 

divergence, component X1 and X3 may converge to different 

values after long time changes. 

 
Figure 7. The estimation deviation of state vectors in control input anomalies under model C. 

From Figures 5 to 8, we can see that control input anomalies 

may result in superposition estimation deviations of state 

vectors, and will continue to affect the filtering result for a 

long time. Whether the convergence of the estimation 

deviation is occur or not, which is not necessarily related to 

the controllability and observability of linear systems, it may 

finally divergence, even if convergence occurs, it may not 

necessarily converge to the zero value. 

Comparative analysis of Figure 1 to Figure 8 show that the 

effect of sensor faults and control input anomalies on the KF 

of state vectors will be distinct different. Sensor faults can 

result in distinct pulse spikes or damped oscillations 
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estimation deviation of state vectors, as well as persistent step 

estimation deviations, meanwhile, it can be seen that the 

convergence speed and time of the estimation deviation 

caused by sensor faults may be faster and shorter. 

 
Figure 8. The estimation deviation of state vectors in control input anomalies under model D. 

5. Conclusions 

In this paper, the analysis method of theoretical derivation 

and model simulation calculation is combined to analyze and 

discuss the effect of faults or anomalies on the KF of state 

vectors in linear systems. In theory, taking sensor faults and 

control input anomalies as examples, the influence 

relationship between pulse and step faults (anomalies) and 

the estimation value of state vectors are deduced and 

established respectively, and the sufficient conditions for the 

convergence of the filtering result in the presence of faults or 

anomalies are given; in simulation, selecting a linear system 

state-space model with three-dimension state vector and 

two-dimension observation vector as an object, four different 

structure models are used to simulate and analyze the effect 

of sensor faults and control input anomalies on the KF, 

simulation results show that faults and anomalies in linear 

systems can result in distinct estimation deviations of state 

vectors for a long time in future, and whether the estimation 

deviation is convergence or not, which is not necessarily 

related to the controllability and observability of linear 

systems, even if convergence occurs, it may converge to a 

certain value, and does not necessarily converge to the zero 

value. In term of a same structure system, there are obvious 

differences in the effect of sensor faults and control input 

anomalies on the KF of state vectors, relatively speaking, the 

effect of sensor faults on the KF of state vectors is more 

obvious, which will result in pulse-type, superposition or 

step-type estimation deviations of state vectors, and the 

convergence speed and time of the estimation deviation may 

be faster and shorter. 

The research results in this paper have a certain practical 

reference value for us to apply the KF algorithm and analyze 

the stability of the filtering result in the presence of system 

faults or anomalies, and also provide a theoretical reference 

for us to use the analysis of the filtering result to achieve 

fault detection, identification and diagnosis in linear 

systems. 
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