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Abstract: Fingerprint classification is a significant process by which identification procedure can be accelerated. Feature 

extraction might be afflicted with rotation. Thus, all images get through an introduced criterion to rectify rotated images. The 

core point of fingerprints is utilized widely in both classification and recognition process. In some cases, however, inaccurate 

location of it might contribute to incorrect categorization. Therefore, the common point is initiated for the purpose of better 

performance. Features are extracted according to the way ridges’ angles are distributed across images. Plus, kernel smoothing 

technique is used to enhance the process. Generalized regression neural network (GRNN) and Probabilistic neural network 

(PNN) are employed to classify fingerprints in four categories. Fingerprint verification competition (FVC) database is used to 

evaluate and train the networks. The simulation is performed by MATLAB and 97.4% accuracy is achieved for both GRNN 

and PNN. 
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1. Introduction 

Henry system classified fingerprints in five categories 

called whorl, right loop, left loop, arch, and tented arch [1]. 

Given the considerable similarity between arch and tended 

arch, fingerprints can be categorized into four categories, 

demonstrated in figure 1. 

 Fingerprint classification systems carried out contain of 

different steps, including pre-processing, image enhancement, 

feature extraction, and classifiers. One of the most common 

elements in pre-processing is Gabor filter [2]. The 

frequencies of ridges can be emphasized via Gabor filter 

which is beneficial for both enhancement and feature 

extraction. In addition, core point detection is another 

common process [3-4]. By this approach, a point which is a 

decisive factor for feature extraction can be obtained. Plus, 

Singularities comprising of both core and delta points are 

useful points to classify fingerprints [5-7]. 

 A common problem to commence the process is 

fingerprint rotation and an approach is brought up to solve 

this problem [8]. 

 

Figure 1. Fingerprints categories: (a) whorl, (b) right loop, (c) left loop, (d) 

arch. 
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Plus, a model is introduced according to the probability 

distribution of ridge directions and the main focus is on 

fingerprints which are incomplete or noisy [9]. Orientation of 

ridges is one the most common method used in the feature 

extraction procedure [10]. 

With respect to classifiers, many methods have been used. 

Fuzzy system is used in both classification and feature 

extraction [11-13]. Artificial Neural Network (ANN) is 

another popular method used for classification [14-15]. The 

combination of Markov models and decision trees is used for 

classification [16]. In this paper, an approach for rectifying 

the rotation of images is introduced. Next, a new point called 

common point is defined and compared to core point. Plus, 

two classifiers including Generalized Regression Neural 

Network (GRNN) and Probabilistic Neural Network 

(PNN) are designed to categorize fingerprints in four classes. 

2. Rotation Rectification 

In the pre-processing stage, the rotation rectification 

criterion should be fulfilled in order to adjust the rotated 

images. Morphological processing is carried out to define the 

coordinates of centroid, (xc, yc), left-top, (xl, yl), and right-

top, (xr, yr), depicted in figure 2. An image is considered 

without rotation provided that 1θ and 2θ are equal.  

Once the coordinates of the centroid are achieved, the 

coordinates of the highest pixel of the image which is still on 

or 1 are obtained, designated (xc,yw). In fact, owing to 

crossing through the centroid, the first coordinate is always 

xc which is the same with the centroid. In order to calculate 

the rotation, 3θ and 4θ are calculated by: 
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Knowing that the aggregate of any triangle’s angles is 180 

degrees, θ1 and θ2 given by: 
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The rotation given by: 
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If θ1 and θ2 are equal, ROTATION is zero. 

 

Figure 2. Rotated image with extrema. 

3. The Common Point 

The core point is a beneficial fact which has been used to 

facilitate the identification process. The error in locating the 

point might exacerbate the process considerably. In fact, even 

in pictures belonging to one person the core point algorithm 

might lead up to a different location, demonstrated in figure 3. 

 

 

Figure 3. Different locations in the same fingerprints. 
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Owing to the fact that in many works fingerprints have 

been categorized according to blocks cropped around the 

core point, the aforementioned difference might bring about 

wrong classification. Therefore, a new point called the 

common point is introduced. Two steps should be executed at 

the first part, containing enhancement, and orientation angles 

extraction, depicted in figure 4 [17]. 

 

Figure 4. Enhancement and Orientation angles extraction [17]. 

It is observed that all fingerprints consist of ridges with 

four types of angles, called acute angles, obtuse angles, right 

angles, and straight angles, shown in figure 5. 

 

Figure 5. Distribution of different types of angles. 

In order to define the common point, some definitions 

should be introduced, illustrated in figure 6.  

1- Straight angles create an object called straight object. 

2- Acute angles constitute an object called acute object. 

3- Obtuse angles compose an object called obtuse object. 

4- Right angles create an object called right object. 

 

Figure 6. Different objects according to types of angles. 

The common point is the point with a minimum distance 

from these four objects, demonstrated in figure 7. However, 

unlike the core point, the common point might not exist in 

some fingerprints, especially in arch. In fact, the common 

point does not exist in images in which the straight object is 

distributed all over the height of images and right object does 

not exist. 

 

Figure 7. The common point. 
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4. Feature Extraction 

Once the ridges’ angles are extracted, the following 

observation can be mentioned from figure 8. 

1-Obtuse angles dominate right-loop. 

2-Acute angles have a noticeable majority over others in 

the left-loop. 

3-Right angles do not exist or have the minority in an arch. 

4-Unlike right-loop, left-loop, and arch, whorl has the 

distribution of right angles, acute angles, and obtuse angles 

across its width. 

5-unlike others, the arch has the distribution of straight 

angles all across its height. 

 

Figure 8. the trend of divergent types of angles in each class. 

Aforementioned observations can be utilized to obtain 

three parts of ultimate features. If the width of an image is 

considered as 100%, the width across which each type of 

angle is distributed is one part of final features. Indeed, these 

are probabilities by which different types of angles might 

occur through the width of images. For instance, the features 

are compared in table 1. 

The second sets of features are achieved via kernel 

smoothing technique applied to ridges’ angles from the block 

cropped around the common point. 

Table 1. Comparison between different types of angles across divergent types 

of fingerprints. 

Type of fingerprint Acute-angles Obtuse angles Right angles 

whorl 0.91 0.93 1 

Right-loop 0.6 0.33 0.89 

Left-loop 0.98 0.52 0.49 

arch 0.61 0 0.43 

Once the common point is obtained, a 30×60 block is 

cropped from the common point. The histogram of ridges’ 

angles is extracted and kernel smoothing technique is applied 

with the intention of obtaining nineteen parts of the final 

features, demonstrated in figure 9. The kernel smoothing 

technique is given by: 
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In which K is the kernel smoothing function, h is 

bandwidth, and n is the sample size. 

 

Figure 9. Kernel distribution of whorl, right-loop, and left-loop. 

5. GRNN and PNN 

GRNN and PNN are both kinds of radial basis networks 

with differences in the second layer. It is suggested that 

GRNN and PNN be used to approximate or classify data or 

functions [18-19]. The output of the kernel is considered as a 

function which should be approximated by GRNN or PNN. 

The spread parameter is a decisive factor in both networks. It 

affects the performance of both networks significantly. The 

designed networks are illustrated in figure 10. 

 

Figure 10. PNN and GRNN. 
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The second layer of PNN is a competitive layer in 

comparison with GRNN which is a linear layer. Two hundred 

images in the database are used in the training phase. Each 

image includes twenty two figures. Plus, the spread is 0.1 and 

3 for GRNN and PNN respectively. The performances of 

both networks are similar with mentioned spreads. However, 

the performance of PNN is afflicted with smaller spreads 

around one or lower. The accuracy of the results is shown 

and compared in table 2. 

Table 2. Comparison of accuracy. 

Method Accuracy (%) 

Ensemble [20] 98.69 

Peralta [21] 90.73 

Wu [22] 95.84 

Awasthi [23] 91.37 

Cao et al. [24] 97.2 

Li [25] 95 

Mehran and Gheysari [26] 99.02 

Yao [27] 89.3 

Yao [28] 90 

Jain and Minut [29] 91.3 

The method+PNN 97.4 

The method+GRNN 97.4 

6. Conclusion 

A fingerprint classification method is introduced in this paper. 

Ridges’ angles, the common point, and the way by which ridges’ 

angles are distributed in images play a significant role in feature 

extraction phase. A criterion by which all images are modified 

against rotation is mentioned. FVC2004 DB1_A database is 

used to train and test both networks [30]. Five hundred of 

images are used to test the networks. All rotated images are used 

to assess the performance of the system against rotation. Owing 

to the rotation rectification process and the common point, all 

features are rotation invariant and movement invariant. In big 

databases, classifiers should be fast and accurate. Thus, GRNN 

and PNN, which are both fast and accurate, are picked out. 
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