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Abstract: Malaria is a leading cause of morbidity and mortality in developing countries especially in rural areas where local 

resources are limited. Accurate disease forecasts can provide information to public and clinical health services to design 

targeted interventions for malaria control that make effective use of limited resources. Using verbal autopsy data, space-time 

model was used to forecast mortality due to malaria. The study used longitudinal data which were collected from Rufiji and 

Ifakara Health Demographic Surveillance System (HDSS) sites for the period of 1999 to 2011 and 2002 to 2012 respectively to 

assess models. The models included environmental factors and mosquito net ownership as predictor variables for mortality due 

to malaria. Deviance information criteria (DIC), logarithm score and root mean square error (RMSE) were used to assess the 

goodness of fit and forecasting accuracy of the models. The results indicate that the model included spatial and temporal 

random effect terms had small deviance information criteria, logarithm score and root mean square error. This model was the 

best model for forecasting and prediction of mortality due to malaria in both HDSS sites. In addition, mosquito net ownership 

and rainfall were significantly associated with mortality due to malaria. The model with spatial and temporal random effect 

terms is useful tool to provide reasonably reliable forecasts for mortality due to malaria. This might help to design appropriate 

strategies for targeting malaria control. On the other hand, including spatially and temporal varying random terms in the model 

is necessary and good strategy for modelling mortality due to malaria. 
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1. Introduction 

Resources allocation and malaria control interventions 

need to be spread in space and time to enhance effective 

malaria control [1]. Having a forecasting system in place may 

help to have a more focused approach with positive impact 

on the resource allocation for malaria control over space and 

time. However, there are fewer studies which have 

investigated on forecasting models for mortality due to 

malaria [2, 3]. The studies indicate the need for improved 

epidemic early warning by incorporating important predictors 

such as meteorological factors. 

Malaria incidence forecasting models have been developed 

in many endemic countries [5-9]. These models mostly used 

time series models and other use climate related predictors, 

such as rainfall, temperature and normalized difference 

vegetation index. However, these models did not include 

other important predictors for mortality related to malaria 

such as mosquito nets, availability of anti-malarial and drug 

resistance. In addition, these models did not include spatial 

effect which could capture heterogeneity in malaria 

transmission. The accuracy of forecasts may be weakened 

due to transmission-reducing predictors were not considered 

in the models [7]. 

Health and demographic surveillance system (HDSS) data, 

however, are becoming increasingly available with the 
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routinely collecting data and adopting the verbal autopsy 

approach [8]. Verbal autopsy (VA) approach is an indirect 

method of determining causes of death from information on 

symptoms, signs and circumstances preceding death, 

obtained from the deceased’s caretakers. VA has been widely 

used as a method for determining causes of death in the 

country where vital registration system is lacking and 

majority of deaths occur outside the formal health care 

system [9]. The VA is widely used to provide more 

information on deaths whose causes are unknown. Several 

studies have evaluated the validity [10, 11] and accuracy of 

VA in determining the causes of death and malaria specific 

cause of death [12, 13]. These studies concluded that VA is 

the reliable source of data that can be used to estimate 

specific causes mortality in all age group for public health 

[13]. 

This study assess space time models for forecasting 

mortality due to malaria for resource allocation and 

optimization of the effects of malaria control interventions 

over space and time. 

2. Methods 

2.1. Study Design and Study Area 

This was longitudinal study design using secondary data 

collected from Rufiji and Ifakara Rural Health and 

Demographic Surveillance System (HDSS) sites [14, 15] in 

Tanzania. Rufiji HDSS is located in Rufiji District, Coast 

Region while Ifakara HDSS is located in part of Kilombero 

and Ulanga District in Morogoro Region. These two HDSS 

sites were selected because they are among HDSS sites 

which continuously collect large amount of longitudinal data 

in well defined geographical areas over time in Tanzania. 

These HDSS sites are characterized by malaria transmission 

endemic after the long rain season. The description of the 

study area is detailed elsewhere [14, 15]. 

2.2. Data Source 

This study utilized secondary data which were 

prospectively collected from1999 to 2011 and 2002 to 2012 

for Rufiji and Ifakara HDSS sites respectively. The two 

HDSS sites consistently records pregnancy outcomes, deaths 

and migrations by visiting households once every four 

months since 1997 in Ifakara HDSS and 1998 in Rufiji 

HDSS. In additional, the HDSS sites collect information on 

social economic status including household ownership of 

mosquito net annually. The study period covers national 

scale up of ITNs that occurred in the country [16]. The 

mosquito nets in this study included both untreated and 

treated nets (ITNs). Yearly numbers of malaria deaths were 

extracted from the Rufiji and Ifakara HDSS database 

covering a period of 1999 to 2011 and 2002 to 2012 

respectively. The details on data collection, management and 

credibility in HDSS have been describe elsewhere [14, 15]. 

The Verbal autopsy procedures and collect data used in this 

study are described in detailed elsewhere  [8, 17]. In the 

HDSS, deaths were captured during rounds of data updates. 

Then HDSS field interviewers visited the deceased’s home 

after a grieving period to administer a verbal autopsy 

questionnaire. A face to face interview was administered to 

relatives or caregivers who were closely associated with the 

deceased during the period leading to his or her death. The 

questionnaire was used to explore the identity of the 

deceased and established the sequence of events leading to 

death, including symptoms and signs of the illness before 

death. Verbal autopsy was carried out since 1998 in Rufiji 

HDSS and 2002 in Ifakara HDSS. The verbal autopsy forms 

are independently reviewed by two physicians according to a 

list of causes of death based on the 10
th

revision of the 

International Classification of Diseases (ICD-10). Causes of 

death (main, immediate, and/or contributing) are coded to be 

consistent with the ICD-10 [18]. Malaria deaths are coded as 

direct cause of death when malaria is the underlying cause of 

death or indirect cause of death when malaria is one of the 

several diseases leading to death but the death is attributed by 

a different cause) [19]. 

Climate data were obtained from Tanzania Meteorological 

Authority (TMA) head office in Dar es Salaam. These data 

includes monthly mean rainfall, and maximum and minimum 

temperature. TMA provides meteorological services, weather 

forecasts, climate services, and warnings including daily 

forecast information for each region in Tanzania. The climate 

data are collected through different gauges located in 

different stations in each district. In Ifakara HDSS, villages 

located in Kilombero district used climate data from 

Kilombero Agricultural Training and Research Institute 

(KATRIN) weather station. Other villages in Ifakara HDSS 

used Mahenge weather station data for villages located in 

Ulanga District. In Rufiji District, Utete and Kibiti are the 

two weather stations which records climate data. Kibiti 

weather station is located in Rufiji HDSS site which provided 

data used in this study. 

Remote sensing data were extracted from MODerate-

resolution Imaging Spectroradiometer (MODIS) on board 

NASA’s terra satellite. The remote sensing data includes 

Normalized Difference Vegetation Index (NDVI) and 

processed from MODIS (MOD13A3) using monthly 

composite images at a 1 km x 1 km resolution. Vegetation 

indices are used for global monitoring of vegetation 

conditions and are used in products displaying land cover and 

land cover changes. ERDAS Imagine software version 10.1 

was used for processing the satellite images, and ArcGIS 

version 10 was used for spatial analyses. Mean NDVI were 

calculated for each village in each year within the study area 

to link with mortality due to malaria and ownership of 

mosquito net for each village. 

2.3. Data Processing and Analysis 

Aggregated yearly numbers of malaria deaths were 

extracted from the HDSS database by each village for the 

period of 1999 to 2011 and 2002 to 2012 in Rufiji and 

Ifakara HDSS respectively. The data was aggregated yearly 

to reduce zero count in each village for appropriate 
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assumption used in Poisson model. Time at risk (person-

years) contributed by each person was calculated from 1
st
 

January until exit or 31
st
 December for each year. Exit from 

the study was due to migration (outside the HDSS area), 

death or end of the study. In a case where a person migrated 

to a different household location within the study area, time 

at risk was computed separately for new location and added 

to the total person time at risk. The outcome of interest was a 

total yearly death due to malaria for specific age groups. Age 

was categorized into two groups i.e. under five and five and 

above. 

The outcome variable was aggregated at village level to 

capture heterogeneity for mortality in the study area as 

reported in previous studies [20, 21]. Direct estimates of 

mortality due to malaria rates were calculated in order to 

highlight spatial-temporal trends of mortality related malaria 

in the study areas. The mortality due to malaria rates were 

calculated by dividing the number of malaria deaths by the 

person-years of observation and were expressed per 1,000 

person-years (py) for each village. Direct estimates of the 

mortality due to malaria rates were obtained as: 

��� =
���

���
                                  (1) 

Where ��� is the mortality due to malaria rate at j time in i 

village,Y
� is the number of malaria deaths at time j in village 

i. representsthe number of person-years in i village at time j 

and represent the exposure to risk. 

2.4. Space Time Model 

The model was intended to capture both temporal and 

spatial features of mortality due to malaria trends or along 

with spatial-temporal interactions. The developed space time 

model will be useful to explain the patterns of malaria 

mortality rates in terms of environmental factors and 

ownership of mosquito nets. Previous studies have proposed 

hierarchical Bayesian spatial-temporal modelling along with 

Poisson model [22–24]. 

Spatial-temporal modelling approach within a hierarchical 

Bayesian framework was adopted. The spatial aspect of the 

modelling approach allows for taking into account similarities 

between values observed at locations across space. Similarly, 

the temporal aspect of the modelling approach allows for 

inference concerning temporal trends of changes in malaria 

mortality/deaths. Finally, the proposed model allows for spatial 

and temporal trend analysis of the data as well as considering 

the effect of predictor variables [25]. 

The Bayesian models requires the data, process and 

parameters to be modeled  [26]. Using data extracted from 

HDSS database and other source, the covariate information 

included in this study for village i at year j were mosquito net 

ownership as exposure variable and Other variables were 

rainfall, temperature and NDVI. For this study i the number 

of village in the study, I = 33 for Rufiji and 25 for Ifakara 

HDSS and j for years, J = 13 for Rufiji HDSS and J = 11 for 

Ifakara HDSS. 

The general specification of the hierarchical space-time 

model can be represented by the following hierarchical 

structure, which simultaneously model the spatial effect, 

temporal effect and space time interaction as described in 

[27]: 

log����� = �� + ∑ ��
�
��� ���� + �� + �� + �� + ���     (2) 

Where ��� denotes the mortality due to malaria rate. 

Random terms 	��  and 	�� are spatial terms, 	�� is temporal 

random effect and ��� is space-time random effects. 

Covariates information for village i at year j are denoted by 

����with ��� being the corresponding regression coefficients 

of k variables varying over time. 

The random effects specifications for the spatial term 

includes unstructured noise that follows a normal distribution 

and structure term which modelled with the set of villages 

that adjacent to other villages by weight of neighbouring 

village. Weight is considered to be 1 when two villages share 

the same boundary and 0 otherwise. The prior distribution of 

the random effect term is a conditional autoregressive prior 

used to model the spatial dependence. 

The temporal effect can be specified in a number of ways, 

which will determine the prior distribution that was assumed 

for the term	��. In this study time effect as first order auto-

regression AR (1) given by the partial autocorrelation 

function. The distribution of the interaction term 	��� is 

characterized by a precision matrix obtained as the 

Kronecker product of the precisions of structure and 

unstructured noise terms [28]. 

From the general equation in (2), five sub-models were 

fitted considering different ways of entering with each of the 

random terms and covariates in the model. Five models 

considered with different combination of random effects and 

covariates as follows: 

��: log����� = �� + ∑ ��
�
��� ����               (3) 

�!: log����� = �� + ∑ ��
�
��� ���� + "� + ��         (4) 

�#:	log����� = �� + ∑ ��
�
��� ���� + �� + �� + ��       (5) 

�$:	log����� = �� + ∑ ��
�
��� ���� + �� + �� + ��� + �!�   (6) 

�%:	log����� = �� + ∑ ��
�
��� ���� + �� + �� + �� + ���    (7) 

Where �� represents a model with covariates only; �!) is 

a model with covariates, a spatial random term and a 

temporal term; �# ) is a model with covariates, spatial 

component terms and a temporal term;�$  is a model with 

covariates, spatial component terms, and two temporal terms 

(first and second order);�%is a model with covariates, spatial, 

temporal, and an interaction term. 

The analysis in this study used the Integrated Nested 

Laplace Approximation (INLA) R-package in R software 

available at http://www.r-inla.org to fit five models defined in 

equation 3 to 7.INLA is a recent computational approach 

used to perform approximate Bayesian inference based on an 

efficient combination of Laplace approximations and 
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numerical integration. The INLA is designed for latent 

Gaussian models; a very wide and flexible class of models 

ranging from generalized linear mixed to spatial and spatio-

temporal models. The package does not sample from the 

posterior distribution like Markov Chain Monte Carlo 

(MCMC) [29]. This approach provides approximates the 

posterior with a closed form expression and more precise 

estimates in seconds or minutes. Also, the INLA compute 

model comparison criteria and various predictive measures 

so that models can be compared without convergence and 

mixing problems. The method is best suited to Bayesian 

hierarchical models for which there are large number of 

unknown parameters following a Gaussian Markov random 

field and a small number of hyperparameters, with a specific 

form of prior covariance on the parameters. This analysis 

used data for 1999 to 2010 in Rufiji HDSS and 2002 to 2011 

in Ifakara HDSS. Data for 2011 and 2012 in Rufiji and 

Ifakara respectively were used for validation. 

The best fitted model was used to predict malaria mortality 

for 2011 in Rufiji HDSS and 2012 for Ifakara HDSS for 

validation. Furthermore, the best fitted model was used to 

forecast malaria mortality for five years 2012 to 2016 in 

Rufiji HDSS and 2013 to 2017 for Ifakara HDSS. The 

forecasted mortality due to malaria was multiplied by person-

years to represent the number of malaria deaths. 

2.5. Model Selection 

The model goodness of fit and forecasting accuracy was 

assessed using commonly known methods for hierarchical 

Bayesian models called the deviance information criterion 

(DIC)  [30], root mean square error (RMSE) and logarithm 

score were used to select the best model. Based on the DIC 

criterion and RMSE, the model with relatively lower DIC 

values indicate a better fit to the data compared to models 

with higher DIC values. Similarly the model with small value 

of RMSE indicates a better model for prediction and 

forecasting. The logarithm score also used to assess the 

predictive quality of the model [27]. A smaller value of the 

logarithmic score indicates a better prediction quality of the 

model. 

2.6. Ethical Statement 

This study was approved by Institutional Review Board of 

Ifakara Health Institute (IHI/IRB/No: 31-2014). Also, 

Medical Research Coordinating Committee (MRCC) of the 

National Institute for Medical Research (NIMR) approved 

for the establishment of Rufiji and Ifakara Health and 

Demographic Surveillance System (HDSS) sites. For each 

household visit, informed verbal consent was obtained from 

head of the family or eligible adult among the family 

members aged 18 years and above who was able to provide 

with more information at household. 

3. Results 

Figure 1 and 2 presents the trend of mortality due to 

malaria in Rufiji and Ifakara HDSS. The results indicate that 

mortality due to malaria decreases from 11.2 per 1000 

person-years (py) in 1999 to 5.3 per 1000 py in 2011 for 

under fives children in Rufiji HDSS (Figure 1). In Ifakara 

HDSS, the mortality due to malaria decreases from 6.3 per 

1000py in 2006 to 4.0 per 100py in 2012 for under five 

children age (Figure 1). Furthermore, the mortality due to 

malaria for all ages decreases from 3.5 per 1000py in 1999 to 

2.2 per 1000py and 2.3 per 1000py to 1.2 in 2012 in Rufiji 

and Ifakara HDSS sites respectively. Table1 presents the 

percentage of households owned at least one mosquito net 

and environmental factors in Rufiji and Ifakara HDSS. The 

results show the increase of percentage of households owned 

at least one mosquito net in both HDSS site. 

 

Figure 1. Annual mortality due to malaria in Rufiji HDSS. 
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Figure 2. Annual mortality due to malaria in Ifakara HDSS. 

Figure 3 and 4 presents the annual mortality due to malaria for selected villages for under-five children age in Rufiji and 

Ifakara HDSS for the study period respectively. The results indicate that there was heterogeneity in mortality due to malaria 

across villages. Some villages reported low mortality due to malaria throughout the entire study period while others had high 

mortality due to malaria rate. Furthermore, the results show that all villages experienced an overall decreasing trend in annual 

mortality due to malaria in Rufiji HDSS site. 

 

Figure 3. Annual mortality due to malaria by village in Rufiji HDSS. 

 

Figure 4. Annual mortality due to malaria by village in Ifakara HDSS. 
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Table 1. Ownership of mosquito net and environmental factors in Rufiji and Ifakara HDSS. 

Rufiji HDSS  

Year % mosquito net ownership Annual mean Rainfall Annual mean Temperature Annuan mean NDVI 

1999 15.3 1032.2 312.1 0.58 

2000 21.3 1020.8 314.3 0.55 

2001 26.3 806.5 316.9 0.55 

2002 31.9 1210.0 319.0 0.54 

2003 37.3 664.8 328.4 0.46 

2004 42.3 1171.1 321.1 0.43 

2005 42.1 547.6 318.7 0.60 

2006 60.0 935.3 315.4 0.61 

2007 77.5 732.5 319.4 0.54 

2008 77.7 898.5 315.4 0.51 

2009 74.5 730.5 321.9 0.47 

2010 68.1 601.7 323.1 0.54 

2011 92.5 652.6 324.8 0.54 

Ifakara HDSS  
   

2002 82.6 2033.7 244.9 0.49 

2003 84.9 1194.4 256.0 0.47 

2004 84.2 1826.9 253.3 0.47 

2005 91.9 1378.1 258.1 0.58 

2006 92.2 1862.7 253.9 0.49 

2007 91.8 1580.1 256.2 0.56 

2008 90.2 1721.5 251.7 0.55 

2009 90.0 1519.5 258.7 0.52 

2010 92.8 1565.7 245.4 0.59 

2011 95.4 1842.8 256.6 0.58 

2012 95.6 1217.0 253.6 0.50 

 

3.1. Model Comparison 

Table 2. Variance inflation factors for covariates. 

Variables VIF Tolerance 

Rufiji HDSS 
  

Annual rainfall 1.56 0.64 

Average temperature 1.84 0.55 

Mean NDVI 1.38 0.73 

Ifakara HDSS 
  

Annual rainfall 1.08 0.92 

Average temperature 1.08 0.92 

Mean NDVI 1.00 1.00 

Mortality due to malaria rate in 33 villages and 25 villages 

for Rufiji and Ifakara HDSS respectively were incorporated 

in the model fitting. Furthermore, annual mean rainfall, 

average temperature, mean NDVI and annual percentage of 

ownership of mosquito net in each village were included in 

the model fitting as covariates. Table 2 shows the results on 

the variance inflation factors values and indicates less that 10 

between covariates (rainfall=1.56, temperature =1.84 and 

NDVI=1.38) in Rufiji HDSS. Also, the variance inflation 

factors were less that 10 (rainfall=1.08, temperature=1.08 

and NDVI=1.00) in Ifakara HDSS (Table 2). This indicates 

that there was no evidence for collinearity between covariates 

in the regression model. 

Table 3 presents a summary forthe deviance information 

criteria, logarithm score, mean square error and root mean 

square error for five models. Based on DIC values, Model 

�! with covariates, spatial and temporal terms gave a better 

fit than other models in both HDSS for all age and under five 

children. Model	�$ had the worst performance with highest 

DIC value in Rufiji HDSS followed by model 	��. In Ifakara 

HDSS, model �! performed better than other models while 

model 	�� was having highest DIC value followed by model 

	�$. Based on these results, it is clear that including spatially 

and temporal random terms in the model is necessary. 

Table 3. Deviance information criterion and mean square error for the five models. 

 
&' &( &) &* &+ 

Rufiji HDSS  
    

All age 
     

DIC 1794.61 1744.07 1766.24 1799.04 1766.07 

MSE 9.09 6.56 6.70 8.26 6.67 

RMSE 3.01 2.56 2.59 2.87 2.58 

Log score 2.27 2.21 2.58 2.61 2.58 

Under five  
    

DIC 1390.95 1375.87 1399.16 1399.17 1399.17 

MSE 3.40 3.09 3.10 3.10 3.09 

RMSE 1.84 1.76 1.76 1.76 1.76 

Log score 1.72 1.69 2.08 2.08 2.09 

Ifakara HDSS  
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&' &( &) &* &+ 

All age 
     

DIC 1187.76 1111.59 1126.07 1142.55 1126.10 

MSE 8.35 5.20 5.31 6.19 5.30 

RMSE 2.89 2.28 2.30 2.49 2.30 

Log scire 2.38 2.23 2.26 2.31 2.26 

under five  
    

DIC 969.04 953.93 968.2711 968.5318 968.3714 

MSE 3.58 3.23 3.29 3.28 3.27 

RMSE 1.89 1.80 1.81 1.81 1.81 

Log score 1.93 1.91 1.94 1.94 1.94 

Note:�� a model with covariates only, �! a model with covariates, a spatial random term and a temporal term, �# a model with covariates, spatial component 

terms and a temporal term,	�$ a model with covariates, spatial component terms, and two temporal terms (first and second order)	�% a model with covariates, 
spatial, temporal, and an interaction term. 

3.2. Prediction and Forecasting 

Furthermore, Table 3 indicates that model �! had small 

value for logarithm score compared to other models for 

Rufiji and Ifakara HDSS respectively. The results also show 

that model �!had small value for RMSE compared to other 

models for both Rufiji and Ifakara HDSS based on one year 

validation. According to the DIC, logarithm score and RMSE 

values, model �!  was considered as the best model for 

goodness of fit, prediction and forecasting. 

Table 4 shows coefficients for the covariates incorporated 

in the selected best model and the results show that mosquito 

net ownership and rainfall were statistically significant 

associated with mortality due to malaria in both HDSS sites. 

In the other hand, mosquito nets ownership was negatively 

associated with mortality due to malaria while rainfall was 

positively associated with mortality due to malaria in the 

study areas. Temperature and NDVI were not statistically 

associated with mortality due to malaria. The results also 

showed that there was a precision for temporal and spatial 

effect terms (Table 4). Furthermore, the results show a 

significant difference in temporal and spatial effect for 

mortality due to malaria for all age in Rufiji and Ifakara 

HDSS respectively. There was no spatial difference with 

respect to mortality due to malaria for under-five children in 

Rufiji HDSS as compared to Ifakara HDSS. 

Table 4. Posterior mean, standard deviation and 95% credible interval (CI) for the best model (�!)	for forecasting malaria mortality and death. 

 
Rufiji HDSS Ifakara HDSS 

Parameter Mean SD 95%CI Mean SD 95%CI 

All age 
      

Intercept -8.86 3.76 -16.66 -1.67 -3.90 2.25 -7.99-0.87 

Mosquito net -0.05 0.02 -0.09- -0.02 -0.13 0.04 -0.22--0.04 

Rainfall 0.07 0.02 0.03-0.10 0.01 0.01 0.00-0.03 

Average Temp 0.01 0.01 -0.01-0.03 -0.01 0.01 -0.03-0.01 

Mean NDVI 0.05 0.04 -0.03-0.14 0.03 0.03 -0.03-0.09 

Precision for temporal 74.97 64.55 10.98-245.06 25.69 18.03 5.30-72.40 

Rho for temporal 0.63 0.24 0.05-0.94 0.66 0.20 0.16-0.93 

Precision for spatial 21.10 12.82 6.74-54.64 87.45 101.04 11.69-347.50 

Under five 
      

Intercept -0.97 5.67 -12.58- 9.95 -4.59 2.32 -8.98-0.19 

Mosquito net -0.06 0.02 -0.10-0.014 -0.11 0.05 -0.20--0.01 

Rainfall 0.07 0.03 0.02-0.13 0.01 0.01 0.00-0.04 

Average Temp -0.01 0.02 -0.05-0.02 -0.00 0.01 -0.02-0.02 

Mean NDVI 0.04 0.05 -0.07-0.14 0.03 0.04 -0.05-0.10 

Precision for temporal 29.21 21.00 5.84-83.97 74.97 64.55 10.98-245.06 

Rho for temporal 0.59 0.24 0.01-0.93 0.63 0.24 0.05-0.94 

Precision forspatial 28570.50 23350.8 3457.69-89189.08 21.10 12.82 6.74- 54.64 

 

Table 4 and 5 presents forecasted mortality due to malaria 

for selected villages using best model �!	  for Rufiji and 

Ifakara HDSS respectively. Table 4 shows the selected 

villages with forecasted mortality due to malaria using 

identified best model 	�! . The forecasted mortality due to 

malaria for Nyamwimbe village in Rufiji HDSS was higher 

in 2012 to 2016 (2.62 per 1000 person-years and 3.01 per 

1000 person-years respectively) as compared to Kibiti A 

village (2.54 per 1000 person-year and 2.39 per 1000 person-

years) respectively. The lowest mortality due to malaria 

forecasted was 1.54 and 1.42 per 1000 person years in 

Kinyanya village for2012 and 2016 respectively (Table 4). 
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Table 5. Selected Villages with high and low forecasted malaria mortality using best model 	(�!) for 2012-2016 in Rufiji HDSS. 

  
Under five All age 

Village Year MMR/1000py Malaria Deaths 95%CI MMR/1000py Malaria Deaths 95%CI 

KibitiA 2012 4.59 3 2-5 2.54 12 8-16 

Nyamwimbe 2012 2.32 1 0-2 2.62 3 1-4 

Kinyanya 2012 4.70 2 1-3 1.54 4 2-6 

KibitiA 2013 4.88 3 2-5 2.61 12 8-17 

Nyamwimbe 2013 3.88 2 2-6 2.61 4 2-6 

Kinyanya 2013 4.95 2 1-3 1.57 4 2-6 

Machipi 2014 4.12 2 1-4 2.47 7 3-12 

Mang’wi 2014 4.09 3 2-4 2.47 7 4-12 

Nyamwimbe 2014 4.02 3 1-4 2.75 7 4-12 

Mlanzi 2014 4.48 3 2-4 1.31 4 2-6 

Mang’wi 2015 4.01 2 0-3 2.83 7 4-12 

Nyamwimbe 2015 4.21 2 1-3 3.15 8 4-14 

Kinyanya 2015 5.11 2 1-3 1.47 4 2-6 

Nyamwimbe 2016 0.00 3 1-4 3.05 8 4-13 

Machipi 2016 4.78 2 1-3 2.74 7 3-13 

Mang’wi 2016 4.14 3 1-4 2.74 7 4-12 

Kinyanya 2016 4.83 2 1-3 1.42 4 2-6 

MMR= malaria mortality rate 

In Ifakara HDSS, Lukolongo (1.49 per 1000person-years), 

Ikule (1.59 per 1000person-years) and Mpofu (1.95 per 

1000person-years) villages with highest mortality due to 

malaria in Kilombero district for 2013 2014 and 2017 

respectively (Table 6). The results also show that Idete village 

in Kilombero has lowest forecasted mortality due to malaria 

throughout the forecasted years. In Ulanga district, Kidungalo 

and Igumbiro were forecasted with highest mortality due to 

malaria compared to other villages in 2013. Igumbiro village 

appeared to have high mortality due to malaria in all forecasted 

years. On the other hand Milola village was having with 

lowest malaria mortality forecasted in 2013 and Idunda in 

2014. Iragua village appeared to have lowest forecasted 

mortality due to malaria in 2015, 2016 and 2017. 

Table 6. Selected Villages with high and low forecasted malaria mortality using best model 	(�!) for 2013-2017in Ifakara HDSS. 

  
Under five all age 

Village Year MMR/1000py Malaria Deaths 95%CI MMR/1000py Malaria Deaths 95%CI 

Kilombero District 
      

Idete 2013 4.44 4 2-5 0.93 6 4-10 

Ikule 2013 3.05 2 1-3 1.49 7 4-10 

Lukolongo 2013 3.85 2 1-3 1.49 9 5-13 

Idete 2014 6.72 3 1-4 0.94 7 3-11 

Ikule 2014 5.46 3 2-4 1.59 7 4-12 

Lukolongo 2014 5.01 3 2-4 1.59 10 6-15 

Idete 2015 4.22 3 2-5 0.87 6 4-9 

Ikule 2015 4.24 3 2-4 1.79 6 4-9 

Lukolongo 2015 4.25 3 1-3 1.55 11 7-15 

Idete 2016 4.53 4 2-5 0.84 6 3-9 

Ikule 2016 4.59 3 2-5 1.81 6 4-10 

Mpofu 2016 4.18 2 1-3 1.99 8 5-13 

Idete 2017 4.41 4 2-5 0.86 6 3-10 

Mpofu 2017 4.07 2 1-3 1.95 8 4-13 

Ulanga District 
      

Igumbiro 2013 4.79 3 2-5 1.43 5 2-7 

Kidungalo 2013 4.84 3 2-5 1.43 10 6-15 

Milola 2013 4.56 3 2-4 1.11 3 1-5 

Igumbiro 2014 5.46 3 2-4 1.51 5 3-8 

Idunda 2014 6.52 3 2-4 1.17 4 2-6 

Igumbiro 2015 4.28 3 2-4 1.71 6 4-9 

Iragua 2015 4.28 3 2-4 1.16 9 6-13 

Igumbiro 2016 4.58 3 2-5 1.66 7 4-10 

Iragua 2016 4.59 3 2-5 1.13 8 5-12 

Igumbiro 2017 4.44 3 2-5 1.70 7 4-11 

Iragua 2017 4.45 3 2-5 1.15 8 5-13 

MMR= malaria mortality rate 
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4. Discussion 

In this study, different models were compared for 

forecasting mortality due to malaria from historical malaria 

deaths data in the study areas. The findings indicate that 

model with spatial and temporal random terms was the best 

model for goodness of fit, prediction and forecasting malaria 

mortality. The finding is consistent with previous studies  

[31–34] which found potential use of spatial and temporal 

terms in the model. 

Some studies which used Bayesian hierarchical framework 

for diseases mapping and ecological studies of health 

environment association [22, 33, 35, 36] found that spatial 

and temporal terms in the model are necessary if data are 

collected over space and time. The possible explanation for 

this could be due to the complex dependence patterns over 

space and over time of the occurrence of malaria deaths, and 

the inherent large stochastic variability due to rare events. In 

other hand, it may be due to inclusion of spatial and temporal 

random terms in the model to account other unmeasured 

confounding variables. 

Estimating separately time trends in each area will not be 

efficient because it will be difficult to establish a baseline 

pattern separately for each area. In Bayesian approach, the 

study used the power of hierarchical modelling to borrow 

information over space and time in order to estimate typical 

predictable patterns for each area. Some previous studies also 

have indicated that the statistically advanced techniques 

using time series models may produce very good fit to the 

data but in post-sample forecast, they would not be robust 

enough to handle a possible change in behaviour of the series 

[37, 38]. 

This study included covariates information in the model 

for forecasting mortality due to malaria. The covariates 

information may have contributed significantly to variations 

in mortality due to malaria. In this study, the models included 

covariates information such as rainfall, temperature and 

NDVI which are important factors for malaria transmission  

[42], and mosquito net which is reduces malaria 

transmission. The inclusion of these covariates in the model 

may be not weaken the accuracy of forecasts because malaria 

transmission-reducing interventions are considered in the 

models [7]. Rainfall and ownership of mosquito net were 

independently associated with mortality due to malaria in the 

study areas. The result is in agreement with previous studies  

[39, 40] which found an association between malaria 

epidemics with changes in meteorological factors The 

possible explanation for this may be due to the fact that 

rainfall provides breeding sites for mosquitoes and increases 

the humidity which enhances their survival and therefore, 

increases the spread of the disease [41]. 

In the other hand, better forecasts were obtained for shorter 

term forecasts indicating that there was some contribution of 

the inherent pattern in the historical mortality data that may 

be considered in multivariate models. The best fitted model 

performed quite well in hind casting for a single previously 

removed one to two year or forecasting for one to two years 

in advance using INLA. However, as more years are 

removed, the space time model using INLA tends to predict 

closer and closer to the mean of the remaining data [33]. 

Forecasting five to ten years depends on the pattern of 

historical data. For example, when five or more years are 

removed in observed data for validation, the model only has 

8 years for Rufiji and 6 years for Ifakara HDSS of data left to 

build from and the prediction became very close to the mean 

of the malaria mortality for remaining years than when you 

have long time period. 

The Abuja Declaration noted the importance of accurate 

disease prediction for targeting and evaluating control 

measures [42]. For forecasting models to be useful for 

malaria control interventions and public health decision-

making, models must produce accurate forecasts. The study 

examined various predictors and models across two different 

settings in rural Tanzania and consistently found that in both 

sites, models with spatial and temporal random term effect 

were necessary to achieve the highest possible forecasting 

accuracy. This is the first study, to the best of our knowledge, 

which incorporate mosquito nets predictor in combination 

with environmental predictors for forecasting malaria 

mortality in space and time. 

Furthermore, the study focused on forecasting in space and 

over time. Fitting such complicated models could potentially 

be quite difficult and we used INLA, a relatively new method 

for Bayesian analysis. TheINLA method is a new approach 

for Bayesian inference which was introduced by Rue and 

Martino [43, 44]. INLA provides a faster computation 

compared to Markov Chain Monte Carlo (MCMC) method. 

The method has been applied in different disease modelling 

and forecasting in which it performed quite well in 

forecasting for one to two years in advance [33, 45]. 

Strengths and limitations 

This study usedlarge datasets from Health and 

Demographic Surveillance System sites which are 

continuously registered vital demographic events in a 

geographical defined area. This has provided better estimates 

with high precision to allow generalization of the findings to 

a large population. The findings from Health and 

Demographic Surveillance Systems data provide information 

to policy makers and program managers which can be 

translated into policy and practice for planning. 

This study used VA data collected in HDSS sites; Verbal 

autopsy has great potential for countries like Tanzania where 

more people die outside of health facility care where no 

records are available. Also, VA has been shown to provide 

the best results to obtain the specific causes of death in most 

of SSA [46] and widely used [12]. 

This study has some limitations that need to be 

considered in interpreting the findings. First, ownership of 

mosquito net was considered as a proxy for use of bed nets 

in the house, as information about use of bed nets in 

households and use were not collected during the study. 

Secondly, there was a possibility of misclassification bias 
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with regard to the causes of death when the sensitivity and 

specificity of the VA technique is relatively low for 

assessing cause of death. However, if this happened in this 

study it may lead to underestimate or overestimation of the 

reported malaria deaths. Hence, the direction of bias may be 

non-differentia misclassification. Thirdly, there are other 

possible factors associated with malaria deaths that were 

not assessed in this study because are not captured in HDSS 

database, such as anti-malaria availability. The effect of 

these variables in mortality due to malaria estimates 

remains not quantified. 

5. Conclusion 

This study used Bayesian framework approach for 

developing space time model for forecasting malaria 

mortality. Although the model is reasonably reliable, 

especially with regard to the magnitude of forecasting one to 

five years, the model needs further evaluation to determine 

its accuracy. The INLA method performed quite well in hind 

casting for a single previously removed year or forecasting 

for one to two years in advance. 

The model with spatial and temporal random effect terms 

predicted mortality due to malaria with combination of 

environmental factors and mosquito net which improved the 

forecasting accuracy. This model may be a useful tool for 

producing reasonably reliable forecasts of the malaria 

mortality for targeted intervention strategies. Moreover, 

including spatially and temporal varying random terms in the 

model may be necessary and good strategy for modelling 

malaria counts. 
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