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Abstract: This paper presents the derivation techniques of block method for solving higher order initial value problems of
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1. Introduction

This work considers solving an ordinary differential
equation (ODE) of the w™ order (w = 2). There are currently
two well-known techniques for solving higher order ODEs.
The first is to reduce it to a system of first order ordinary
differential equations and then solve using predictor corrector
or Runge-Kutta method. The second technique is a block
method; it is formulated in terms of linear multistep methods.
It preserves the traditional advantage of one step methods, of
being self-starting and permitting easy change of step length
(Lambert, 1973). Their advantage over Runge-Kutta methods
lies in the fact that they are less expensive in terms of the
number of functions evaluation for a given order. The method
generates simultaneous solutions at all grid points as
suggested by many researchers such as Anake (2011),
Onumanyi and Okunuga (1985), Onumanyi and Yusuph
(2002), Onumanyi et al., (1993, 1994), Awoyemi (2001, 2005
and 1991), Areo et al. (2008), Fatunla (1991, 1995), Lambert
(1991), Awoyemi and Kayode (2005), Awari et al. (2014),
Okunuga and Ehigie (2009), Adesanya et al., (2009, 2008),
Serisina et al., (2004), Owolabi (2015), Yahaya and Badmus
(2009) and much recently by Warren and Zill (2013) and
Omar and Kuboye (2015). These methods solve higher order
initial value problems of ordinary differential equations

without going through the process of reduction.

This present method is aimed at developing a general
block method for the direct solution of higher order (w = 2)
initial value problems of ordinary differential equations, with
the block approach, the non-self-starting nature associated
with the predictor corrector method has been eliminated.
Unlike the approach in predictor corrector method where
additional equations were supplied from a different
formulation, all our additional equations are obtained from
the same continuous formulation.

2. Derivation of the k-Step Block Method

Consider solving an ordinary differential equation (ODE)
of the w™ order (w > 2)

V= L0,y ey
(1
(@) = 35, 7'(@) = 11, ¥"(@) = ¥y vy (@) = ¥y, x Ol a, b]
w

d
where y© = —.
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Consider an approximate solution of (1) given by the
shifted Legendre polynomials of the form;

¥(x) =Y CR() @)
=0

where C; € R, yeC®(a, b). The w™ derivative of (2) gives

m

y?=Y GRO) (3)

i=0
Substituting (3) into (1) gives
Y=Y GROM) = £y, (), (0,0 (0,9 () (4)
i=0

Evaluating (4) at Xx,.., 7 = 0(1)k and (2) at x,4,,7 =
0(1)k — 1 respectively; gives a system of nonlinear
equations of the form

AX =B )
where
B(0) R(0) P (0) BO e [y,
B(k=Dh) R(k=DR) Ak=DR) . . . BGk=Dh| ¢ | |,
P(0) B(0) PY(0) PO ¢, | | 7,
PY(h) P(h) PE(h) Pk | G| | fum
RP(2h) BP(2h) PP(2h) P22k || Ca |=| Sura
| ROkh)  BOkh)  PY(kh) POGkh)y  LCn ] Loei ]

Solving for C;'s,i = 0(1)2k — 1 in (5) using inverse of a
matrix method which are then substituted into (2) to produce
a continuous linear multistep method;

k-1 k
Y@ =Y @7 +hD B0 o (6)
J=1 j=1

where a;(x) and S;(x) are coefficients to be determined.
Evaluating a;(x) and f;(x) at x,, and its first derivatives

evaluated at the points x,,,,7 = 0(1)kand substituting in (6)
gives the discrete block method of the form

AOwg = T B@ g, + h° 3, DO F, (7
Where A, B® and D© are square matrices and
Ws = [Vnt1 Yntzs oo Yo BY o RV g o Y 17

qs = [y hy', 1"

Fs = U farrs oo frvzs oo fraiel”

which can be modified to obtain explicitly values for

Yn+1 Yn+2s =1 Ynsko Vet Yn2s Yn+3s - and Yy needed for
the implementation of an wth order initial value problem of

ordinary differential equation.

3. Numerical Example

Consider a specific case with k=5w =2 and
approximating the solution of (1) by the shifted Legendre
polynomials of the form (2).

Evaluating (4) at x,,,,7 = (1)k and (2) at x,, and x4
respectively; gives a system of nonlinear equations of the
form

AX =B (8)
where

(2@ pO O pO O p©O pO ]
Po(4h)  pi(4h) py(4h) ps(4h) py(4h) ps(4h) ps(4h)
p  ph)  ph)  pyh) pyh)  psh)  pe(h)
A= py@h) p2h)  py(h)  py(2h) p,2h) ps(2h) pg(2h)
nGh pGh  po() Gl pGh) psGh) p(3h)
poh) pi(4h)  po(h)  py(4h) py(4h) ps(4h)  pe(4h)
Pl pi(Sh) po(Sh) py(Sh)  py(Sh)  ps(Sh)  pe(Sh) |

_COT i Yn ]

q YVn+a

(&) Just

X=lc [,B=| fyr

Cq Juws

Cs fn+4

_C6J _fn+5 i

Solving for C;'s,i = 0(1)6 in (8) using inverse of a matrix
method and then substituting into (6) to give a continuous
linear multistep method;

5

4
y(x) =D 0, (%) vy B B (%) s ©
=0

J=0
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0’0 (X):l_zt
a, (x)=1——t

1 137 5. 5 4 17 1 1, 9%
By (x)==¢* - £+ - t £ - -~ ht
(%) 2 360h 3242 48043 2400* 50404 315
55 77 4. 71 s T 1, 356
Bilx)=—1t- "+ r - t th-—
(%) 6h  144h° 450%° 360h* 10084° 315
(10)
B)= 3 5 s 10T 4 S L g M, 59
: 360n* 144k 6h  504K° 315 315K
55 13 4. 49 1 1 5 152
x)=—1t - + r- £+ -——
A (%) 9h  24i° 240n3  360h* 50441 315
61 4, 4 5 5 1 1, 41
Bilx)= — t - t - t
(%) 28847 63 24h  3720h*  1008h° 48041
1 5 4 1 T s
Bi(x)z——{ ———nm+—7 O +——1
s (%) 50404° 144K 315 30h  3360R%  4804°

Evaluating (10) at t = —1,—2,—3 and 5 with its first derivative evaluated att = 0,—1,—2,—3,—4 and 5 with t = (x,, —
x) and the results substituted in (9), to give the following discrete schemes needed for the implementation of the main scheme

Y+l :%y" _%hz.fnﬂ _%hzfmz _%hzfn*d _jlohzfnw _ﬁhszs +i)’n+4 _%hzfn
Vusr 23y = 2 s T ey =55 s+ s =35,
Buss T et W s I e =2 B i I s # B g 42 by =SB
Buss = D I f 4T f 4R s = fy # I s # 4y, 42T,
Buss =g B F o B e ¥ B e+ L ey # H  +I fs +2y B,
(11)
Vet = Tlhynw _Tlhyn + +%hfn - 1101)0830 By — 2333) L _%hf;ﬁ3 _%}Ufnw +&}Ufn+s
Viva =g Fuss =g Tt B+ = =W = e
Viss S Vs g e e Ao+ 2L # SR S e
Viva =g Dusa = Tt + B+ 2t D 4 R
Viss = et = Y F T, I 4 SO e+ N+ 2O
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4. Analysis of the Block Method
4.1. Order and Error Constants

Expanding the block solution of (11) in Taylor’s series and
collecting like terms in powers of h, the following result is
obtained;

Co=C, =+ =Cs = (0,0,0,0,0,0,0,0,0,0)7,
é—(ooooooo 29 8 275 )T
7T 92407 945”7 12096

Cs
_ ( 199 19 141 8 1375 863 37 )T
24192° 945’ 4480° 189’ 24192° 60480° 3780/ °

Hence the block method has varying order of p = 5 and 6

. . < 29 8 275 \T
with varying error constants of ¢, = (— _— =, = )
2240 945 12096
~ 199 19 141 8 1375 863 37 T
and Cg={~ 24192’ 945’ 2480° 189’ 24192’ 60480° 3780/ °
Consistency

Following Lambert (1973, 1991), the block method is
consistent since it has orders p = 5,6 > 1

Zero stability

The block solution of the block method (11) is said to be
zero stable if the roots z.; r =1,..,n of the first
characteristic polynomial p(z), defined by

p(2) = det|zQ —T|

satisfies |z,]| <1 and every root with |z.|]=1 has
multiplicity not exceeding two in the limitas h = 0
From the block method (11), we have

S O OO = O O o O O
S O O~ O O O o o O
S O = O O O O o o O
S = O O O O o o o O
_0 O O O O o o o o

(= = == e e =R ]
S O OO O O o = O O
S O O O O O~ O O O
S O OO O = O O O O
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andT =

S O O O O O O o o O
S O O O O O O o o O
S O O O O O O o o O
S O O O O O O o o o
e e =R R R e R )
[ e ==
S O O O O O O o o o
S O O O O O O O o o
S O O O O OO o o O
S O O O O OO o o O

Substituting, we get
710 —7z8 =0

z = (0,0,0,0,0,0,0,0, —1,1)

This shows that the block method is zero stable, since all
roots with modulus one do not have multiplicity exceeding
the order of the differential equation in the limit as h — 0.

Convergence

According to Lambert (1991), the block method is
convergent since it is both consistent and zero stable.

Region of absolute stability

Reformulating (11) as a General Linear Multistep Method
(GLMM) containing a partition of matrices A, B, C and DI
where

1
1 0 0 -= 0 3
7 0 0 0 0 T
1 1
0 1 0O -— 0 O 0 0 0 —
2 2
A4=10 0o 1 32 o] B0 00 0 L
4 4
0 0 0 1 0 00 0 0 1
0 0 0 _i 1 0O 0 0 O —%
L 4 L .
[ 1403 3497 149 _ 571 61
10080 5040 1008 10080 10080
191 1 103 1 1
630 63 315 315 630
C = 481 2887 1159 683 61
2016 5040 5040 10080 10080
92 124 296 118 _
315 315 315 315 315
1733 3671 1943 2753 3197
L10080 5040 5040 2016 10080 |
[ 337 53 71 1 1]
480 120 240 240 480
S8 138 1
15 15 15 30
pr=|_ 127 _20 _161 _ 1 1
480 60 240 15 480
1424 176 608 _& 16
315 315 315 63 15
23 13 1L 15 7
96 24 16 1 96
Substituting  these  matrices into the  stability

polynomial 7(A — Cz — DIz?) — B, the stability matrix
whose determinant and it first derivative are respectively
obtained as
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123 23, 3398363r322+97283r3 3+226567r 4+9021191r3 5+1199267 3,6 4,5 25,4
70 453600 16200 43200 3628800 604800
3 - 17 5 9 1 510 _ 7303 5 7 175993 P 73 .5 +12664 ;5,2 - 1427 5,3
450 126 12600 1134000 210 4725 113400
+ 91279 PPN 590657 2525 4 1091239 1546 _ 2837197 J4.T 1976459 o428 2651 LS4
34020 1134000 10206000 8164800 2721600 1008
480973 ,4.2 46535353 L4 34704703 J44 29705461 S4.5 890205719 4,6
37800 5103000 2721600 3628800 163296000

and

123 3, 3398363 3, 97283 3 5, 226567 3 3, 9021191 3 4 1199267 3.5 s

70 226800 5400

-2t —irsz8 _3

10800

5.9 _ 7303 5.6 175993 /5.7 73

725760 100800

5, 25328 P 1427 /5,2

50 63 1800

141750

210

4725 37800

. 91279 5234 590657 LS54, 1091239 /5.5 2837197 S46 1976459 L4T 2651 4

8505 226800 1701000

1166400 340200 1008

_ 480973 Sh 46535353 S42 34704703 S4.3 29705461 SAo4 890205719 4.5

18900 1701000 680400

The region of absolute stability is shown in Figure 1

05

04}

(| NS S S—

i i i i i ! i
06 05 04 03 02 01 0 01

Regz)
Figure 1. The Region of Absolute Stability of the Block Method (11).

5. Conclusion

In this paper, it has been shown that continuous collocation
methods for solving ordinary differential equations can
equally be derived through the approach in this study. In this
study, a new block method approach which is capable of
solving higher order initial value problems of ordinary
differential equations is presented, with the block approach;
the non self starting nature associated with the predictor

725760 27216000

corrector method and the Runge Kutta method has been
eliminated. Unlike the approach in predictor corrector
method where additional equations were supplied from a
different formulation, all the required additional equations
are obtained from the same continuous formulation. The
basic property of the method was investigated and was found
to be zero stable, consistent and convergent. The absolute
stability region of the block method was also investigated
and revelations showed that the newly constructed method is
not A-stable as revealed by Figure 1. This method is very
simple and effective for a wide-range of ordinary differential
equations.
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