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Abstract: Regression analysis is a widely used statistical technique in investigating relationships between the response variable 

and outcome variable. The logistic regression examines the relationship between variables when the response variable has a 

dichotomous output i.e., has two possible levels and outcome variable which could be categorical or continuous. Logistic 

regression using maximum likelihood estimation has gained wide use in determining the parameter estimate but, in the case, 

where the covariates are correlated, there is an inflation in the variance, standard error of the estimator and high coefficient of 

determination for the regression model, leading to the problem of multicollinearity in the regression model, thereby resulting to an 

incorrect conclusion about the relationship among these variables, hence the traditional method of estimating the parameters fails 

and becomes unstable. To attempt addressing the presence of multicollinearity in the regression model, various methods have 

been proposed which includes Ridge estimator, Stein estimator, Bayesian estimator and Liu estimators. We therefore propose a 

modified estimator for estimating the parameter of the logit model in the presence of multicollinearity by modifying the existing 

Liu logistic estimator. The modified estimator is applied to real life data. Results showed that the Modified Liu Logistic estimator 

outperformed the existing estimators considered in this study, in terms of smaller variance, bias and the MSE of the estimator. 
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1. Introduction 

The regression analysis is concerned with describing the 

dependence and relationship between a response variable and 

one or more explanatory variables, with a view of estimating 

and or predicting the (population) mean value [20]. When the 

response variable is binary or dichotomous taking in two 

possible values, the Logistic regression model then suits the 

standard method of analysis. 

In recent years, logistic regression has been applied 

extensively in numerous disciplines. There is a wide range of 

application of regression in areas such as engineering, the 

physical and chemical sciences, economics, management and 

the social sciences [15]. The logistic regression describes the 

relationship between categorical response variable and a set of 

explanatory variables [8]. It is one of the many cases of 

generalized linear models [23] characterized by three 

components: a random component, which identifies the 

probability distribution of the response variable; a systematic 

component, which specifies a linear function of the explanatory 

variables that is used as a predictor; a link function describing 

the functional relationship between the systematic component 

and the expected value of the random component [14]. 

In logistic regression, the response (outcome) variable is 

usually dichotomous, but it may be polytomous, that is, 

having more than two response levels. These multiple-level 

responses can be nominal or ordinal scaled [6] resulting to a 

multinomial logistic regression or ordinal logistic regression 

which is a simple extension of binary logistic that allows for 

more than two categories of the dependent or outcome 

variable, where nominal responses are not ordered and 

ordinal responses are ordered. The logistic regression uses 

maximum likelihood estimation to evaluate the probability of 

categorical membership [27]. 

In most cases, some explanatory variables are seen to 

relate with each other introducing multicollinearity into the 

models. Fisher, R. A. is known to be the earliest researcher 

on multicollinearity [3]. Multicollinearity occurs when there 
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is interdependence, among the explanatory (independent) 

variables in the regression analysis that is, when a set of data 

can be expressed exactly or nearly as a linear combination of 

the other in the set of explanatory variables. When 

multicollinearity occurs, parameter estimates are incorrect 

and this renders the model unreliable. There is also variance 

inflation of the maximum likelihood estimates in the logistic 

regression which may not result to an efficient, more reliable 

estimate of the parameter estimate thereby affecting both 

prediction and inferential conclusion in the logistic 

regression model. When there is exact collinearity among the 

explanatory variables, the information matrix assumes 

singularity and the iterative weighted least squares method 

fails [16]. Severe multicollinearity can lead to instability of 

the regression coefficients. Multicollinearity has several 

manifestations, including small change in the data which can 

produce wide swings in the parameter estimates. Parameter 

coefficients can have high standard errors, high coefficient of 

determination (R
2
) for the regression model and coefficients 

may have the wrong sign [5]. Consequently, the resulting 

model is not reliable and will result in incorrect conclusions 

about the relationship among the variables [18]. 

The presence of multicollinearity in the logistic regression 

may indicate that some explanatory variables are linear 

combination of the other variables. This does not improve 

explanatory power of a model and could be dropped from the 

model. Since the problem of collinearity was first revealed, 

researchers have tried to develop statistical remedies to 

combat the problem introduced into the model as a result of 

the presence of multicollinearity. To address the 

multicollinearity in logistic regression, several approaches 

have been proposed. For linear regression with continuous 

dependent variables, there are multiple options, including 

shrinkage methods such as ridge regression [11], Liu-type 

regression [11], Least Absolute Shrinkage and Selection 

Operator [22] and Elastic Net [28]; Dimension reduction 

methods such as Principal Component Analysis [13]. Pure 

Bayesian regression [28, 9] and Bridge regression which is 

ridge or lasso regression with Bayesian prior [4]. For 

dichotomous and polytomous outcomes, the properties of 

logistic regression make it less flexible in addressing 

multicollinearity. The commonly used statistical methods for 

overcoming multicollinearity for a logistic regression are 

Ridge Logistic Estimator (RLE) [21], Liu Logistic Estimator 

(LLE) [10, 23, 12], Partial Least Squares Multinomial 

Logistic Regression (PLSMLR) [26], Principal Component 

Logistic Estimator (PCLE) [1], Modified Logistic Ridge 

Estimator (MLRE) [17]. 

2. Materials and Methods of Research 

2.1. Binary Logistic Model 

The binary logistic regression model: 

�� =	�� + ��                                  (1) 

where ���	 = 1,2, … , ��	 are disturbance assumed to be 

distributed with mean 0 and variance �� =	���1 − ���. �� is 

the expectation of ��  when 	��  value of the dependent 

variable is distributed as Bernoulli ������ such that 

�� = ���	������
��	���	������

                            (2) 

where �  is a � + 1� 	× 	1	vector of coefficients, "�  is the 

row of X which is an �	 × � + 1� matrix. 

Let the relationship between the dependent variable y and 

the independent variable "�, "#, … , "$	be as follows [8, 2]. 

�� = %�$&'(∑ &*(+�*,
*-.

��%�$&'(∑ &*(+�*,
*-. 	

+	��                 (3) 

Where, 	 = 1,2, … , �; 	n	 = 	sample	size; 
p = 	number	of	the	explanatory	�independent�	variables; 

"�E = 	the	measurment	of	the	F�� 	explanatory	variable	for	the		��	observation	�	i = 1, 2, … , n; j = 1,2, … , p�; 
�E =	 F�� 	H�IH�JJ	K�	 LHLM�N�HJ; 

�� = O	JNPHQL�R�	�HL�OKM	�HHKH�	N�HM	SKH	Nℎ�		��	KQJ�HULN	K�.  
W1		��	KQJ�HULN	K�	P�O�H	RK�J	O�HLN	K�0	YNℎ�HZ	J�	  

The fitted binary logistic model is therefore as follows: 

[KI \]̂.���]̂'���_ = �` + ∑ �E + "�E$
Ea�                 (4) 

where �` = the constant; 

�E = the regression coefficient parameter. 

2.2. Maximum Likelihood Estimator 

The most common method of estimating the parameters of 

the model in a logistic regression is to apply the maximum 

likelihood method. The resulting log-likelihood equation of 

model (2) above is given by 

[��� = 	∑ ��[KI���� +	∑ �1 − ���[KI�1 − ���b�a�b�a�   (5) 

where ��  is the 	��  element of the vector �� , 		 = 1,2, … , � . 

Solving the above equation (5) by taking the first derivative 

and equals the expression to zero, the maximum likelihood 

estimation are obtained. 

cd
c�' =	∑ ��� − ��� = 0b�a�   

cd
c�* =	∑ ��� − ���"� = 0b�a�   
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Since the above equations are nonlinear in �, the iterative 

weighted least squares (IWLS) algorithm is applied. 

Therefore, maximum likelihood estimator (MLE) of � can be 

obtained using the iterative weighted least squares (IWLS) 

which is given as follows: 

�efgh = �ijkli�m�ijklne .                (6) 

where kl = O	LIo���1 − ���p	and ne is a column vector with 

elements q� = [KI���� +	 �r�m]��]���m]��  which is an unbiased 

estimator of �.  The variance-covariance matrix of �efgh  is 

given by 

sLHt�efghu = vKUt�efghu = 	 tijklium�            (7) 

wijO	LIo���1 − ��pixm� 

The MSE of the asymptotically unbiased �efgh is 

yz{ = {t�efgh − �ujt�efgh − �u                (8) 

NH|sLHt�efghu} = ∑ �
~�

�Ea�                       (9) 

For a long time, the MLE has being treated as the best 

estimator. However, the variance of the MLE becomes 

inflated in the presence of multicollinearity. To address the 

effect of the presence of multicollinearity, several biased 

estimators have been developed. 

2.3. Ridge Logistic Estimator 

Horel and Kennard [7] proposed the Ridge estimator in 

other to control the inflation and general variability 

associated with the Maximum Likelihood Estimator. 

Scheafer et al., extended the estimator to the Logit model 

[21]. The idea behind the ridge regression is that by adding a 

positive constant k > 0 to the diagonal of the information 

matrix �ijkli� , by so doing, one can obtain a smaller 

condition number and the variance is decreased [25]. 

Ridge Estimator is given as follows: 

�e�h = �ijkli + ���m�i′kln                (10) 

where � = 	 �
�l���� �l���

 the biasing constant 

Let v� = ijkli + �� , v = ijkli  and 

� =  " 	�O��N	N�	yLNH	". 
The bias, variance and mean squared error expression for 

the Ridge Logistic Estimator are given as: 

Bias ��e�h� = −�C�m��efgh                 (11) 

Var ��e�h� = �C�m�	v	C�m��′                (12) 

MSE ��e�h� = ∑ ��~*
�~*����

�
Ea�  + ∑ �����

�������
�
�a�                 (13) 

where Q is the matrix whose columns are eigen vectors of 

ijkli. 

where �E# = �′�efgh; �E is the j
th

 eigen value of ijkli 

2.4. Liu logistic Estimator 

To address the effect of the presence of multicollinearity, 

Liu, K introduced the Liu estimator by combining the Stein 

estimator �e�h = v�efgh , where 0 < R < 1 , and the biasing 

parameter obtained as R = �l���� �l���
�l���� �l����������l���.  with the 

Ridge estimator �e�h = �ijkli + ���m�i′kln , where the 

ridge biasing parameter � = 	 �
�l���� �l���

 to form the Liu 

estimator [10, 24] given as 

�egh = tijkli + �um��i′kli + O��	�efgh        (14) 

where the Liu biasing parameter is obtained as suggested by 

Liu, K O = ��*�m��
.
�*m�*

� . 

where �E# =	∑ �E��efgh�$
�a�  and  E  is the F��  eigenvalue of 

the weighted information matrix tijkliu; F = 1,2, … ,  ;	�E  
is the F�� eigenvector corresponding to the F�� 	eigenvalue of 

tijkliu. 
where 0 < O < 1 and �efgh = �ijki�m�i′kn. 

Let C= ijkli then �egh = �v + ��m��v + O��	�efgh     (15) 

The bias, variance and mean squared error of the Liu 

logistic estimator are given by 

Bias ��egh� = �O − 1�Λ�m��efgh                (16) 

Var ��egh� = �Λ�m�Λ¢Λm�Λ¢Λ�m��′              (17) 

where Q is the matrix whose columns are Eigen vectors of 

ijkli, Λ is the diagonal matrix containing the Eigen values 

of ijkli, Λ� is �v + �� and Λ¢ is �v + O��. 

MSE ��egh� = ∑ �~*�¢��
~*�~*�¢��

�
Ea� + �O − 1�#∑ £*�

�~*����
�
Ea�     (18) 

where �E# = �′�efgh; �E is the j
th

 eigen value of ijkli. 

O = ��*�m��
.
�*m�*

� . Where �E# =	∑ �E��efgh�$
�a�  and  E  is the F�� 

eigenvalue of the weighted information matrix tijkliu; F =
1,2, … ,  ;	�E  is the F��  eigenvector corresponding to the 

F�� 	eigenvalue of tijkliu. 
2.5. Modified Logistic Ridge Estimator 

To address the presence of multicollinearity Ogoke et al.,  

presented a modification on the Ridge Logistic estimator [17] 

developed by Scheafer et al., [21] by exponentiating the 

response probability, which enhanced the weighted matrix 

thereby reducing the variances of the parameter estimates in 

the logistic regression. Their modified estimator is given by 

�fg�h = �i′kl √��ci	 + ���m�i′kl √��cne√��c     (19) 

where 

kl √��c = O	LIo��√��c \1 − ��√��c_p 0 ≤ ¦ ≤ 1. 
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ne√��c = q� = § +	 �r�m]�√.(¨�
]�√.(¨��m]�√.(¨�

  

where 

§ = 	"�E�e` + "�E�e� +⋯+ "�E�e$m�. 

2.6. Modified Liu Logistic Estimator 

The Modified Liu Logistic Regression estimator is a 

combination of [10] and [17] Modified logistic ridge 

estimator is stated as follows: 

�efggh = �i′kl √��ci	 + ��m��i′kl √��ci	 + 	O���ª (20) 

where 

I= Identity Matrix and 

�ª = �i′kl √��ci	 + ��m�i′kl √��cne√��c  

kl √��c = O	LIo��√��c \1 − ��√��c_p  

ne√��c = q� = [KI \��√��c_ +	 �r�m]�√.(¨�
]�√.(¨��m]�√.(¨�

  

where 

�� = 	��  Response probability and 0 ≤ O ≤ 1  and 

0 ≤ ¦ ≤ 1 

The Modified Liu logistic estimator for the logit model is a 

biased estimator, and a direct modification of the one 

proposed by Liu, K. for the linear regression model [10]. The 

parameter ¦ may take values between zero and one and when 

¦ is equal to 0, we have �efggh = �egh. When ¦ is less than or 

equal to one, we have then �efggh < �egh. Since �egh addresses 

the problem of multicollinearity, �efggh  is assumed to 

perform better than �egh  in such situation. The presented 

estimator is compared with the existing Liu, Ridge and 

Modified Ridge Logistic estimators in terms of smaller bias, 

variance and mean squared error. The bias, variance and 

mean squared error of the presented estimator are given by 

Bias ��efggh� = �O − 1�	Λ«�m��ª                (21) 

Var ��efggh� = �Λ«�m�Λ«¢Λ«m�Λ«¢Λ«�m��′                (22) 

where Q is the matrix whose columns are eigenvectors of 

ijkl √��ci , Λ«  is the diagonal matrix containing the eigen 

values of ijkl √��ci , Λ«�  = �v¬ + �� , Λ«¢  = �v¬ + O��  and v¬= 

ijkl √��ci. 

MSE ��egh� = ∑ �~*√.(¨�¢��
~*√.(¨�~*√.(¨�¢��

�
Ea� + �O − 1�#∑ £*�

�~*√.(¨����
�
Ea�  (23) 

where �E# = �′�efgh; �E is the j
th

 eigen value of ijkl √��ci. 

Of = ��*�m��
.
�*m�*

�   

where �E# =	∑ �E�ª$
�a�  and  E  is the F��  eigenvalue of the 

weighted information matrix \ijkl √��ci_ ; F = 1,2, … ,  ;	�E 
is the F�� eigenvector corresponding to the F�� 	eigenvalue of 

\ijkl √��ci_	for the modified biasing parameter. 

3. Application, Analysis, Results and 

Discussion 

3.1. Application and Analysis 

We present the results of the correlation matrix. Also, the 

results of the maximum likelihood estimator of the logistic 

regression, Liu logistic estimator, ridge logistic estimator, 

modified ridge logistic estimator and the modified logistic 

estimator when compared in terms of bias, variance and 

mean squared error criterion using a life dataset. 

A secondary dataset on hypotensive patients was used for 

illustration. The variables considered are Hypertension, Age 

(AGE), Body Mass Index (BMI), Marital Status (MS), 

Diabetic (D), and Smoking Habit (SH). We take response 

variable (Categorical) Y= Hypertension with predictor 

variables X1=AGE, X2=BMI, X3=MS, X4=D, X5=SH. 

For this analysis, we first observed the correlation matrix 

to detect the presence of multicollinearity and afterwards 

advanced to use the Maximum Likelihood Estimator (MLE) 

estimation method to obtain the parameters of the logistic 

model and then used the Liu logistic estimator, Ridge logistic 

estimator, Modified Ridge logistic estimator and the 

Modified Liu logistic estimator to address the problem of 

multicollinearity as well to test its competency. 

3.2. Results 

Table 1 shows the classification table of the variables of 

the model for the prediction of hypertension case, in order to 

describe the nature of the variables under study. The 

following is an analytical presentation of these measures for 

each variable of the model. The result revealed that age, BMI 

and marital status are significant to the cause of hypertension 

while diabetic and smoking habit are not significant to the 

cause of hypertension. 

Table 1. Classification table for the prediction of hypertension. 

Predictor (s) Hypertensive (n=21) Not hypertensive (=129) P-value 

Age    

Young (18-40 Years) 2 (9.5) 109 (84.5) <0.0001 

Old (Above 40 Years) 19 (90.5) 20 (15.5)  

BMI    

Not obese (<30) 1 (48) 117 (90.7) <0.0001 
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Predictor (s) Hypertensive (n=21) Not hypertensive (=129) P-value 

Obese (≥30) 20 (90.5) 12 (9.3)  

Marital Status    

Married 3 (14.3) 116 (89.9) <0.0001 

Single 18 (85.7) 13 (10.1)  

Diabetic    

Non diabetic 1 (4.8) 113 (87.6) 0.063 

Diabetic 20 (95.2) 16 (12.4)  

Smoking Habit    

Non-smokers 5 (23.8) 112 (86.8) 0.559 

Smokers 16 (76.2) 17 (13.2)  

Percentages in bracket 

Table 2. Correlation matrix. 

Variable X1 (Age) X2 (BMI) X3 (MS) X4 (D) X5 (SH) 

X1 1     

(Age)      

X2 0.804 1    

(BMI)      

X3 0.824 0.860 1   

(MS)      

X4 0.841 0.889 0.908 1  

(D)      

X5 0.886 0.884 0.802 0.832 1 

(SH)      

Table 3. � Parameter estimates. 

Estimator (s) 	­®  ­� ­� 	­¯ ­° ­± 
MLE -5.589 1.374 4.399 1.008 2.159 -2.943 

Liu Logistic -24.723 -1.644 -4.569 -0.515 2.391 0.276 

Ridge Logistic -22.521 -1.022 -2.596 -0.055 4.39 2.412 

Modified Ridge Logistic -18.716 -2.114 -4.143 -0.502 3.513 0.278 

Modified Liu Logistic -18.998 -2.65 -4.332 -0.504 2.331 0.274 

Table 4. Variance of � parameter estimates. 

Estimator (s) 	­® ­� ­� 	­¯ ­° ­± 

MLE 2.741 1.080 2.833 1.729 2.663 4.461 

Liu Logistic 1.833 0.442 0.565 0.976 1.933 2.225 

Ridge Logistic 1.921 0.661 0.721 0.792 2.015 2.699 

Modified Ridge Logistic 1.746 0.301 0.391 0.925 0.972 0.765 

Modified Liu Logistic 1.741 0.299 0.379 0.775 0.921 0.642 

The variance of the proposed MLLE has the least variance 

Table 5. Standard errors of � parameter estimates. 

Estimator (s) 	­® ­� ­� 	­¯ ­° ­± 

MLE 1.513 1.715 1.698 1.700 2.024 1.665 

Liu Logistic 0.784 0.993 0.422 1.246 1.935 1.225 

Ridge Logistic 0.943 1.959 0.951 1.551 2.016 2.002 

Modified Ridge Logistic 0.789 0.952 0.492 1.121 1.446 2.055 

Modified Liu Logistic 0.688 0.933 0.396 1.119 1.366 1.116 

The standard errors of the proposed MLLE has the least standard error values 

Table 6. Bias of � parameter estimates. 

Estimator (s) 	­®  ­�  ­�  	­¯  ­°  ­±  

Liu Logistic 2.239 -0.614 -2.299 0.436 -1.062 1.770 

Ridge Logistic 2.920 -0.421 -2.143 -0.309 -1.093 2.966 

Modified Ridge Logistic 1.535 -1.135 -1.535 -0.437 -1.892 0.499 

Modified Liu Logistic 1.523 -1.153 -1.545 -0.574 -1.937 0.429 

The bias of the proposed MLLE has the least bias values 
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Table 7. Computed MSE values of the estimators. 

 MLE LLE LRE MLRE MLLE 

MSE (�) 17.8522 8.2420 9.9959 7.9959 7.665389 

The mean square error of the proposed MLLE has the least mean square error 

3.3. Discussion of the Findings 

To establish the existence of the presence of 

multicollinearity, Table 2 shows the correlation matrix 

obtained which showed that all the bivariate correlations are 

greater than 0.88 which means that there exists the presence 

of multicollinearity [19]. 

Table 3 indicates the �  parameter estimates by the 

traditional maximum likelihood estimator which suffer 

from multicollinearity as shown in the correlation matrix. 

For addressing multicollinearity, the Liu Logistic 

estimator, Ridge Logistic estimator and Modified Ridge 

estimator were applied. For the same value of the biasing 

constant d in the Liu logistic estimator, the Modified Liu 

logistic estimator reduces the bias, variance and MSE as 

likened with the parent Liu logistic estimator. The results 

are showed in tables 4, 5 and 6. The bias of the ordinary 

Liu Logistic estimator are 2.2391, -0.6139, -2.2985, -

0.4360, -1.0617, 1.7697, bias values for Ridge Logistic 

estimator are 2.9201, -0.4211, -2.1432, -0.3039, -1.0928, 

2.9664, bias values for Modified Ridge Logistic estimator 

are 1.5347, -1.1347, -1.5345, 0.4371, -1.8919, 0.4993 

while bias values of the Modified Liu Logistic estimator 

are 1.5227, -1.1527, -1.5449, -0.5737,-1.9373, 0.4294. 

The modified Liu logistic estimator has the smallest 

variance of the parameter estimates as showed in table 4 

above. The variance of estimates of the ordinary Liu 

logistic are 1.8331, 0.4418, 0.5646, 0.9758, 1.9327, 

2.6423, for the Ridge Logistic are 1.9210, 0.6613, 0.7214, 

0.7921, 2.0150, 2.6991, for Modified Ridge Logistic are 

1,7459, 0.3011, 0.3912, 0.9247, 0.9721, 0.7649, while 

those of the presented estimator are 1.7410, 0.2992, 

0.3789, 0.7749, 0.9214, 0.6419. The MSE of the 

parameter estimates using the MLE is 17.852, for the Liu 

Logistic estimator is 8.242, for Logistic Ridge estimator is 

9.996, for Modified Logistic Ridge estimator is 7.996 and 

for the presented estimator Modified Liu Logistic 

estimator has the least MSE of 7.665. 

According to the results, the modified Liu logistic 

estimator MLLE has an improved performance in 

comparison to the Liu Logistic estimator, Ridge Logistic 

estimator and the Modified Ridge Logistic estimator. This is 

based on bias, variance and MSE values. 

4. Summary and Conclusion 

4.1. Summary 

This study modified the existing Liu logistic estimator by 

exponentiating the response probability to obtain a new estimator 

called the Modified Liu Logistic Estimator (MLLE). The 

Modified Liu Logistic Estimator (MLLE) is examined and 

compared against the Liu Logistic, Ridge Logistic and Modified 

Ridge Logistic estimators in terms of the bias, variance and MSE 

criterion. Expressions for these criterions were stated in each case. 

To demonstrate the efficiency of the modified Liu Logistic 

estimator, a real life dataset of contributing factors 

responsible for a person being prone to hypertension survey 

was used. Results were obtained and generated using both R 

statistical software and MathLab. The results showed that the 

modified Liu Logistic estimator have smaller values for the 

bias, variance and mean squared error as compared to the 

values obtained from the traditional MLE, Liu logistic 

estimator, Ridge Logistic estimator and the Modified Ridge 

Logistic estimator indicating its superiority. 

4.2. Conclusion 

This study presented an estimator, named the Modified Liu 

Logistic estimator which is an extension of the Liu Logistic 

estimator. The modified Liu logistic estimator outperformed 

the Liu Logistic estimator, Ridge Logistic estimator and the 

Modified Ridge Logistic estimator in terms of smaller bias, 

variance, and mean squared error (MSE) values using a life 

dataset. The findings showed that the presented estimator can 

be used in place of Liu Logistic estimator, Ridge Logistic 

estimator and the Modified Ridge Logistic estimator to address 

multicollinearity issues arising from real life data situations. 
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