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Abstract: Real GDP per capita is an important indicator of a country’s or regional economic activity and is often used by 

decision makers in the development of economic policies. Expectations about future GDP per capita can be a primary 

determinant of investments, employment, wages, profits and stock market activities. This study employed both the frequentist 

and the Bayesian approaches to Kenya’s GDP per capita time series data for the period between 1980-2017 as obtained from 

the World Bank data portal. The autoregressive integrated moving average (ARIMA) and the state space models were fitted. 

The results of the study showed that the local linear trend model and the ARIMA(1,2,1) model are appropriate for forecasting 

the GDP per capita but the former outperforms the latter. The local linear trend model was used to perform a 3-step ahead 

forecast and the forecasted value was found to be U.S $ 1717.694, U.S $ 1844.446 and U.S $ 1971.198 for 2018, 2019 and 

2020 respectively. The findings of this study showed that the state space models, which utilize the Bayesian approach, 

outperform the ARIMA models which use the frequentist approach in time series forecasting. 
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1. Introduction 

1.1. Background 

Gross domestic product (GDP) is the total value of all the 

finished goods and services produced within a country’s 

borders in a specific time period, usually one year [1]. Real 

GDP per capita on the other hand, is the average income per 

person in a country or region after isolating the effect of price 

changes (inflation/deflation). GDP per capita is used by 

economists to monitor the status and growth of output in an 

economy and when combined with measures of the 

purchasing power parity (PPP) it’s used to measure people’s 

living standard [2]. It has a close correlation with the trend in 

living standards over time and is used to compare the living 

standards across countries with different populations. An 

increase in real GDP per capita of a country means an 

improvement in the living standards of that country. 

Real GDP per capita is a better measure of economic 

growth because it puts inflation and population change 

into consideration. As real GDP grows it is assumed that 

everyone in the chain will benefit and the growth will have 

a trickle-down effect on the population, thus improving the 

standard of living of every person in that economy. A 

positive or negative change in GDP per capita has a 

significant effect on the stock market and investors pay 

attention to this change when coming up with an 

investment idea or strategy. 

The world’s average GDP per capita dropped from US 

$10,871.178 in 2014 to US $10,714.466 in 2017. 

Luxembourg recorded the highest GDP per capita of US 

$105,803 and South Sudan the lowest of US $228 in 2017. In 

Africa, Seychelles had the highest GDP per capita of US 

$15,504.5 in 2017. In sub Saharan Africa, it dropped from 

US $1,819.464 in 2014 to US $1,553.767 in 2017. In Kenya 

it was U. S$ 1,594.8350 in 2017 which was equivalent to 

14.88%, 10.2%, and 1.5% of the world’s, Seychelles’ and 

Luxembourg’s GDP per capita respectively. In 2017, the 

World Bank ranked Kenya’s GDP per capita at position 148 

out of the 193 countries of the world. According to KNBS, 

the percentage growth in Real GDP per capita for Kenya was 

recorded as 2.8%, 2.9% and 1.9% for the year 2015, 2016 



28 Nathan Musembi et al.:  Bayesian and Frequentist Approach to Time Series Forecasting with  
Application to Kenya’s GDP per Capita 

 

and 2017 respectively. Compared to the world’s, Seychelles’ 

and Luxembourg’s, Kenya’s GDP per capita is far much 

lower and it’s necessary to formulate policies that aim at its 

improvement. 

Per capita GDP indicates whether an economy is expanding 

or contracting and can be used as an indication of a nation’s 

economic growth, decline, or recession. It’s significance as a 

measure of economic development can be seen in three 

aspects. Firstly, GDP per capita reflects the level and degree of 

economic development in industrialized countries. Secondly, 

is that if individual income levels in a country do not vary 

much between residents, the data can be used to measure 

social justice and equality. Finally, GDP per capita has been 

seen to be related to the level of social stability in a country. 

Forecasting future economic outcomes is important in the 

decision-making process in central banks for all countries. 

Scientific prediction of GDP per capita has important 

theoretical and practical significance on the formulation of 

economic development goals. 

The ARIMA model, developed by Box and Jenkins, has 

been one of the most appropriate models for modelling 

and forecasting future values of a time series data. The 

study [3] found that the ARIMA (2,2,2) model was the 

most appropriate model for predicting Kenya’s real GDP, 

[4] identified the ARIMA (1,1,1) as the best model for 

predicting the GDP of China and [5] used the Box–Jenkins 

technique to show that the ARIMA (1,1,0) is the best 

model for predicting the GDP of Pakistan. However, other 

empirical studies such as that of the studies [6-7] have 

shown that there are other models that can outperform the 

ARIMA models. 

According to a study [8] state space model (also known as 

dynamic linear model) provides a methodology for treating a 

wide range of problems in time series analysis. In this model, 

the development of the system over time is determined by an 

unobserved series of vectors (θ1, θ2,...θn) associated with a 

series of observations (y1, y2...yn). The application of the 

Kalman filter in state space modelling leads to Minimum 

Variance Linear Unbiased Estimates(MVLUE) of the model 

parameters. State space models can be discussed in three 

different perspectives; the local level, local level with trend 

and the basic structural model–more details are found in 

section 3.3.3. The estimates of future observations of a time 

series can be made modelled dynamically using the Kalman 

filter, while the minimum mean square error 

estimators(MMSE) of the model parameters can be computed 

by a smoothing algorithm [9]. 

The study [10] compared the forecasts made by a basic 

form of the structural model with the forecasts made by 

ARIMA models and concluded that there may be strong 

arguments in favor of using state space models in practice. In 

another study [11] showed that a structural time series model 

is appropriate for analyzing a time series with trend, 

seasonality, cyclical and a regression component–both in the 

time and frequency domain. According to a study [12] the 

posterior probability is spread widely among many models 

and Bayesian models are superior over choosing any single 

model. The study [13] suggested that Bayesian model 

averaging is a useful alternative to other forecasting 

procedures especially due to the flexibility by which new 

information can be incorporated. A study [14] showed that 

Bayesian models can outperform ARIMA models, especially 

when forecasting over a short horizon. 

An accurate prediction of real GDP per capita is necessary 

to get an insightful idea of the future trend in living standards. 

Raw current and historical data cannot be used to develop 

suitable economic policies and strategies or in the allocation 

of funds to a particular industry. This requires an accurate, 

efficient and reliable estimate of GDP per capita for some 

period ahead. A wide range of models can be used for 

prediction; each has its own characteristics, advantages and 

disadvantages. This study aimed at identifying the best 

statistical model for predicting Kenya’s real GDP per capita. 

The frequentist (ARIMA model) and the Bayesian (State 

space model) approaches were used. 

1.2. Statement of the Problem 

Both real GDP and GDP per capita measure a country’s 

economic activity but the former is the most widely used 

measure. However, the latter has a close correlation with the 

trend in living standards and is a better measure because it puts 

population growth in to consideration. It is used to compare 

the standards of living across countries with different 

populations or from one period to another. The world’s 

average GDP per capita dropped from U.S$ 10,871.178 in 

2014 to U.S$ 10,714.466 in 2017 with Luxembourg recording 

the highest GDP per capita of US $105,803. In Kenya it rose 

from U.S$ 1335.123 in 2014 to U.S$ 1,594.834 in 2017 but 

the living standard in Kenya is still low. A report by 

KNBS(2018) showed that it’s growth dropped from 2.9% in 

2016 to 1.9% in 2017. Accurate prediction is necessary so as 

to understand the future trend in standards of living. Raw 

current and historical data cannot be used to develop suitable 

economic policies and strategies or in the allocation of funds 

to a particular industry. This requires a reliable estimate of 

GDP per capita for some period ahead. This study aimed at 

identifying the best model for predicting Kenya’s real GDP 

per capita. 

1.3. Research Objectives 

1.3.1. General Objective 

The general objective of this study was to identify the most 

appropriate model for forecasting Kenya’s real GDP per 

capita. 

1.3.2. Specific Objectives 

The specific objectives of the study were: 

1. To identify an appropriate state space model for 

forecasting Kenya’s GDP per capita. 

2. To fit an appropriate ARIMA model for forecasting the 

GDP per capita. 

3. To compare the models identified in (i) and (ii) above 

and use the best model to forecast 3 years ahead. 
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1.4. Significance of the Study 

Kenya’s average GDP per capita was U.S $ 1,594.8350 in 

2017. This is too low compared to the World’s average GDP 

per capita of US $10,714.466. Most of the Previous studies on 

economic growth have put more emphasis on the real GDP 

rather than the real GDP per capita. A country’s aggregate 

economic growth is not what matters most; What matters most 

is whether the people living in a country are getting wealthier. 

Real GDP per capita puts the aspect of inflation and 

population growth into consideration making it a good 

measure of economic growth and indicator of the standards of 

living. The ARIMA model has been widely used in modelling 

economic time series data but still there are other models that 

can be used to model this type of data such as the state space 

models. One of the advantages of the state space model is that 

the model parameter estimates are updated as newer 

information becomes available. This used the most recent data 

to build statistical models based on the Bayesian and 

Frequentist approach. The best model was identified and used 

to perform a 3-step ahead forecast of Kenya’s real GDP per 

capita. 

2. Literature Review 

This section presents the theoretical, empirical and 

conceptual framework. Section 2.1 covers the theoretical 

literature, section 2.2 is on Empirical literature and section 2.3 

presents the conceptual framework. These three sections are 

further discussed in subsections. 

2.1. Theoretical Literature 

2.1.1. Classical Theory of Economic Growth 

The classical theory of economic growth was developed by 

Adam Smith, David Ricardo, and Robert Malthus in the 

eighteenth and nineteenth centuries. The theory states that every 

economy has a steady state GDP and any deviation off that 

steady state is temporary and will eventually return [15]. This is 

because when there is a growth in GDP, population will also 

increase, leading to a higher demand on the limited resources 

and the GDP will eventually lower back to the steady state. 

When GDP goes below the steady state, population will 

decrease and lead to a lower demand on the resources which in 

turn will raise the GDP back to its steady state. 

2.1.2. Neoclassical Growth Theory 

This theory was developed by Robert Solow and Trevor 

Swan in 1956. According to this theory, economic growth is 

affected by labor, capital, and technology; but more 

specifically, technological advances [16]. The output per 

worker increases with the output per capita but at a decreasing 

rate, diminishing marginal returns. As per this theory 

economic growth will not take place unless there are 

technological advances – which lead to the adjustment of 

labor and capital. According to this theory, if all nations have 

access to the same technology, then the standard of living will 

all become equal. This model fails to explain how technology 

is a factor of growth. 

2.2. Empirical Literature Review 

2.2.1. Forecasting GDP Using the ARIMA Model 

The ARIMA methodology has been widely applied by 

many researchers in modelling and forecasting future GDP 

rates. The Autoregressive integrated moving average 

(ARIMA) model was first popularized by a study [17]. The 

Future values of a time series are predicted as a linear 

combination of its own past values and a series of random 

shocks or innovations. ARIMA is an iterative process that 

involves four stages; identification, estimation, diagnostic 

checking and forecasting of time series. This model is applied 

in stationary time series. It can also be applied in 

non-stationary time series which can be transformed to a 

stationary time series [18]. 

The study [3] used Kenya’s GDP time series data for the 

period between 1960–2012 to build a class of ARIMA models 

using the Box–Jenkins procedure and showed that the ARIMA 

(2,2,2) model was the most appropriate model for modelling 

Kenya’s GDP. [19] used time series GDP data from Shaanxi 

for the period 1952–2007 to perform a 6–year forecast for the 

country’s GDP. They identified the ARIMA (1,2,1) model as 

the most appropriate model for predicting the GDP of 

Shaanxi. 

The study [4] identified the ARIMA (1,1,1) as the best 

model for fitting the GDP of China using time series data for 

the period between 1978 to 2006. This was followed by a 

prediction from 2007 to 2011 and the error between the actual 

value and the predicted value was small indicating that the 

ARIMA model is a high precision and effective method to 

forecast the GDP time series. [20] applied the Box–Jenkins 

methodology in modelling and forecasting the real GDP rate 

in Greece using time series data for the period between 1980–

2013. They used the fitted model to forecast GDP for the year 

2015, 2016 and 2017. The statistical results showed that 

Greece’s real GDP rate was steadily improving. 

The study [5] used Pakistan’s GDP time series data from 

1953 to 2012, which was obtained from the IMF, to construct 

an ARIMA model for predicting future GDP for Pakistan. 

After investigating a set of ARIMA models following the 

Box–Jenkins technique, ARIMA (1,1,0) was found to be the 

best fit for the data. This model was used for predicting the 

GDP for Pakistan from 2013 to 2025. The predicted GDP was 

found to be 23477 Billion and 103918 billion rupees for 2013 

and 2025 respectively. 

[6] used time series data for the period 1993 to 2009 to 

study the GDP per capita for the top 5 ranked countries in 

Sweden. They used ARIMA, VAR and AR (1)) models to fit 

the regional GDP per capita using data for the period between 

1993 to 2004, and then the data for the last 5 years was used to 

evaluate the performance of the prediction. After comparing 

the performance of the three models based on several 

statistical measures they found that the three models are valid 

for forecasting real GDP per capita but AR (1) outperformed 

the other models. 
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In another study [7] compared the performance of VAR, 

ARIMA, and Bridge models in forecasting the quarterly GDP 

growth for Albania. Their empirical results showed that the 

VAR model outperformed the other models and the ARIMA 

models portrayed the worst forecast performance compared 

with the two other models. Again, the ARIMA models 

performed better than naive models because the Theil’s U 

Statistic was lower than 1. 

2.2.2. Forecasting GDP per Capita 

GDP per capita is often used as a measure of economic 

development and is one of the most important measures in 

macroeconomics. It is a widely used indicator for 

country-level income and has been used in modeling health 

outcomes, mortality trends, cause specific mortality 

estimation, health system performance and finances, and 

several other topics of interest. Again, it is one of the most 

regularly measured economic indicators, with estimates 

produced quarterly or annually by countries themselves as 

well as agencies such as the World Bank, UN and the IMF. 

When combined with the purchasing power parity (PPP), 

GDP per capita is used to measure people’s standards of 

living. 

The study [21] applied the extrapolation method to estimate 

the real GDP per capita for more than 100 countries using data 

for 16 countries. The data for the other countries were 

estimated using a short-cut method which extrapolates the 

relationship found for the 16 countries between real GDP per 

capita and certain independent variables. These estimates 

were subject to large margin of error but were closer to the true 

figures than the most commonly used comparisons of nominal 

GDP per capita. 

The study [22] studied the real GDP per capita growth rate 

of 19 selected OECD member countries for the period 

between 1950 and 2007. His findings indicated that the growth 

rate of real GDP per capita is represented as a sum of two 

components – a monotonically decreasing economic trend and 

fluctuations related to the change in some specific age 

population. According to this study, the economic trend is 

modeled by an inverse function of real GDP per capita with a 

constant numerator. The Statistical analysis showed that there 

is a very weak linear trend in the annual increment of GDP per 

capita for the case of USA, Japan, France, and Italy, and there 

is a larger positive linear trend in annual increments for the 

case of UK, Australia and Canada. 

In another study [23] investigated the evolution of real 

GDP per capita in the United States using a two-component 

model; the first component was the growth trend and the 

second component was the fluctuations around the growth 

trend. The trend component was found to be inversely 

proportional to the attained level of real GDP per capita. The 

Second component was defined as a half of the growth rate of 

the number of 9–year–olds. The VAR, VECM, and linear 

regression were used in estimation of the goodness of fit and 

RMSE. The highest R2 of 0.95 and the lowermost RMSE 

was obtained in the VAR representation. The cointegration 

tests showed that the deviations of real economic growth 

from the growth trend are driven by the change in the number 

of 9–year–olds. 

The study [24] considered two methods of forecasting real 

per capita GDP at various horizons. The univariate time series 

models estimated country–by–country and the cross–country 

growth regressions. The results of the study showed that there 

was only modest differences between these two approaches. 

Both models performed similarly to forecasts generated by the 

World Bank’s Unified Survey. The results did not highlight 

which model outperformed the other but suggested that there 

are potential gains from combining time series and growth 

regression-based forecasting approaches. 

In summary, there are many models that can be used to 

forecast macroeconomic time series variables such as real 

GDP per capita. The study [25] argued that ARIMA models 

are robust especially when generating short-run GDP forecasts 

and have frequently outperformed more sophisticated 

structural models in terms of short-run forecasting ability. 

Other empirical studies such as that of the studies [6-7] have 

shown that ARIMA models can be outperformed by other 

models. 

2.2.3. Bayesian Analysis of State Space Models 

The Bayesian philosophy was developed by Reverend 

Thomas Bayes in late 18th century and at this time it was not 

widely used because of its complexity. Due to its advantages 

and computational advances, it was revived in the 20th 

century and its use in econometrics has increased rapidly since 

then. In this method, the prior information we possess before 

seeing the data can be incorporated. The Bayesian paradigm is 

natural for prediction and takes into account all model 

parameters and model uncertainty. 

The study [11] developed the Bayesian Structural Time 

Series (BSTS) model which falls under state space models. In 

this model an unobserved latent state is predicted using noisy 

measurements of the observed quantity. This model assumes 

that the noise is normally distributed and that we have some 

idea of how the latent state evolves over time. The time 

dependency in this model is computed using a combination of 

Kalman filtering, Kalman smoothing, and sampling from 

posterior distributions using Markov Chain Monte Carlo 

methods. 

The study [26] a system for short–term forecasting that 

averages over different combinations of predictors. The 

system combined a structural time series model for the target 

series with regression component capturing the contributions 

of contemporaneous search query data. Even though their 

system focused on search engine data to forecast economic 

time series, they also suggested that the underlying statistical 

methods could also be applied to more general short-term 

forecasting with large numbers of contemporaneous 

predictors. 

The study [27] suggested that the use of MCMC methods 

has made complex time series models docile to Bayesian 

analysis. Their study focused on ARIMA models and their 

fractionally integrated counterparts, state-space models, 

Markov switching and mixture models, models allowing for 
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time-varying volatility and recent approaches to 

non-parametric Bayesian modelling of time series. They 

recommend that Bayesian models are alive and well and there 

is need to explore their advantages. 

According to a study [8] state space models provide a 

methodology for treating a wide range of problems in time 

series analysis. The development of the system over time is 

determined by an unobserved series of vectors (θ1, θ2,...θn) 

associated with a series of observations (y1, y2...yn). The 

Kalman filtering leads to Minimum Variance Linear Unbiased 

estimates of the model parameters and can be used to model 

future observations of a time series. The minimum mean 

square error estimator of the model parameters can be 

computed by a smoothing algorithm [9]. 

The study [10] compared the forecasts made by a 

structural model with the one made by ARIMA models and 

concluded that there may be strong arguments in favor of 

using structural models in practice. In another study [11] 

showed that a structural time series model is appropriate for 

analyzing a time series with trend, seasonality, cyclical and a 

regression component. [12] found that the posterior 

probability is spread widely among many models and 

suggested that Bayesian models are superior over choosing 

any single model. 

The study [28] described Practical methods for 

implementing Bayesian model averaging with factor models. 

They simulated algorithms that can efficiently select the 

model with the highest marginal likelihood. The simulated 

methods were used to forecast the GDP of U.S using data on 

162 time series. The results of this simulation indicated that 

models containing factors outperform autoregressive models 

in forecasting GDP at short horizons. 

2.3. Summary of Reviewed Literature 

The reviewed literature focused mostly on ARIMA, state 

space models, GDP and GDP per capita. Several studies such 

as that of studies [3, 5, 17, 19-20] showed that the ARIMA 

model is appropriate for modelling and forecasting GDP. 

However, other empirical studies such as that of studies [6-7] 

indicate that the ARIMA models can be outperformed by other 

models. The study of studies [26-28, 14] have shown that the 

state space models are the most appropriate models for fitting 

and forecasting short time series data. Most of the statistical 

models can be expressed in state space form, including all 

ARIMA and VARMA models. 

2.4. Research Gaps 

Most of the past empirical studies identified the ARIMA 

models as the most appropriate models for fitting and 

forecasting real GDP or GDP per capita. In these studies, there 

is little research on real GDP per capita in developing 

countries with almost none in Kenya. Real GDP per capita 

responds differently to changes in technology, health and other 

socio–economic variables. Bayesian models are appropriate 

for forecasting using time series data, especially over a short 

horizon, but have been under-utilized because they are 

complex. The development of computational algorithms in 

statistical software has made it easier. [14] recommended that 

Bayesian models are alive and well and there is need to 

explore the advantages that can be gained from using 

Bayesian methods on time series data. This study was meant 

to bridge this literature gap. 

3. Methodology 

3.1. Research Design 

In this study the experimental research design was used 

since the data was subject to two different models; with the 

aim of identifying the best model and then performing a 3-step 

ahead forecast using the identified model. [29] stated that 

experimental design is used where there is time priority in a 

causal relationship, consistency in a causal relationship and 

where the magnitude of the correlation is great. The 

longitudinal study design was applied since measurement 

about our study population was taken sequentially over time at 

regular time intervals, i.e. annually. 

3.2. Target Population, Sampling Frame, Sample Size and 

Sampling Technique 

Target population refers to the the entire group of 

individuals or objects which the researcher wishes to study 

and draw conclusions. The target population for this study was 

Kenya’s GDP per capita. The sampling frame was the real 

GDP per capita for the period between 1980–2017. If the 

target population is less than 100, the whole population should 

be included in the study and a census survey undertaken, 

(Sperling, Gay, & Airasian, 2003). For this study, a census 

survey was undertaken since the sampling frame was less than 

100, hence no sampling was done. The data used in this study 

was retrieved from the World Bank’s data portal. The data was 

available for the time period between 1980 and 2017. 

3.3. Data Processing and Analysis 

In this study R statistical software package was used to 

assist in data processing and analysis. The Kenya’s real GDP 

per capita time series data was used to construct the ARIMA 

and the state space model. This study focused on the additive 

time series model which takes the form: 

yt = µt + γt + εt               (1) 

where yt is the observed value, µt is the trend component, γt the 

seasonality and εt is a random component assumed to be white 

noise. 

3.3.1. Autoregressive Integrated Moving Average (ARIMA) 

Model 

An ARIMA(p,d,q) process is obtained when an 

Autoregressive (AR) process of order p is combined with a 

moving average(MA) process of order q and a dth
 difference 

taken so as to make the ARMA(p,q) process stationary. An 

AR(p) process is expressed as: 
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yt = φ1yt−1 + φ2yt−2 +... + φp yt−p + εt       (2) 

while an MA (q) process is expressed as: 

yt = ε t − β1ε t−1 − β2ε t−2 −... – βqε t−q    (3) 

When equation 2 and 3 are combined they yield the 

ARMA(p,q) process represented by equation 4 below. 

yt = φ1yt−1 + φ2yt−2 +... + φp yt−p + εt − β1ε t−1 − β2ε t−2 −... – βqε t−q                    (4) 

A non-stationary ARMA(p,q) process can be transformed to a stationary process through differencing yielding an 

ARIMA(p,d,q) process as shown below. 

Wt = Yt − Yt−1                                          (5) 

= φ1Wt−1 + φ2Wt−2 +... + φpWt−p + εt – β1ε t−1 − β2ε t−2 −... – βqε t−q                 (6) 

= φ1(Yt−1 − Yt−2) + φ2(Yt−2 − Yt−3) +... + φp(Yt−p − Yt−p−1)+ εt − β1ε t−1 − β2ε t−2 −... – βqε t−q     (7) 

Which can be rewritten as: 

Yt = (1+φ1)Yt−1 + (φ2 − φ1)Yt−2 + (φ3 − φ2)Yt−3 +... + (φp − φp−1)Yt−p − φpYt−p−1 + εt − β1ε t−1 − β2ε t−2 −... – βqε t−q (8) 

A time series {Yt} is said to follow an ARIMA model if the 

dth difference, Wt = ∆dYt is a stationary ARMA process. The 

ARIMA (0,0,0) process is known as a white noise process; φi 

and βj are parameters to be estimated and εt is a white noise 

process for i = 1, 2,... p, j = 1, 2,..q.  

(i). Testing Stationarity 

The basic concept of stationarity is that the probability laws 

that govern the behavior of the process do not change over 

time. A process {Yt} is said to be strictly stationary if the joint 

distribution of Yt1, Yt2, Yt3,..., Ytn is the same as the joint 

distribution of Yt1−k, Yt2−k, Yt3−k,..., Ytn−k for all choices of time 

points t1, t2, t3,..., tn and all choices of time lag k. If a process is 

strictly stationary and has finite variance, then the covariance 

function must depend only on the time lag. A stochastic 

process {Yt} is said to be weakly stationary if it the mean 

function is constant over time and cov(yt, yt−k) = cov(y0, yk), 

for all time t and lag k ≥ 0.  

A time plot for the real GDP per capita gave the general 

trend of the series. The ADF unit root test was run to 

determine whether the series was stationary. Since the series 

was found to be non-stationary, it was transformed to a 

stationary time series through differencing. 

(ii). Box-Jenkins Methodology 

Box and Jenkins (1976) developed the ARIMA model for 

the purpose of forecasting and estimation of a uni-variate time 

series. In order to use this methodology, one should have 

either a stationary time series or a time series that can be 

transformed to a stationary time series. After making the 

process stationary, the ARIMA(p,d,q) process can be 

represented by an ARMA(p,q) process as shown in equation 

(5 & 6) above. If {yt} is an ARMA (p, q) process then: 

yt = φ1yt−1 + φ2yt−2 +... + φp yt−p + εt − β1ε t−1 − β2ε t−2 −... – βqε t−q                       (9) 

which can be written as: 

yt − φ1yt−1 − φ2yt−2 −... − φp yt−p = εt − β1ε t−1 − β2ε t−2 −... – βqε t−q                 (10) 

where φi and βi are model parameters of the AR and MA parts 

respectively. Equation (10) above can be re-written as: 

Φ(L)Yt = 1 − Θ(L) εt              (11) 

where: 

Φ(yt) = 1 − φ1yt−1 φ2yt−2 −... − φp yt−p        (12) 

Θ(εt) = 1 − β1ε t−1 − β2ε t−2 −... – βqε t−q       (13) 

(iii). Model Identification 

The ACF and PACF plots of the transformed time series 

was used to identify the order of the AR and MA terms in the 

ARIMA model. AIC and BIC are given by: 

AIC = −2log(L) + 2(p + q)          (14) 

BIC = −2log(L) + (p + q)log(n)       (15) 

where: L ≡ the likelihood of the data 

n ≡ the sample size 

p and q ≡ the lag orders of the AR and MA terms 

respectively. 

NB: The model with the lowest AIC or BIC value was be 

taken to be the best fit for the data. 

(iv). Diagnostic Checks 

After fitting the model, Diagnostic checking was carried out 

to ensure that the selected model was the most appropriate. 

The significance of the model parameters was tested by 

checking whether the sequence of the residuals formed a white 

noise process. This was achieved by running the Ljung Box 

test for independence and the Shapiro-wilks test for normality 

respectively. 

(v). Forecasting Real GDP per Capita 

One of the primary objectives of building a model for a time 
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series is to be able to forecast the future values for that series. 

This study we focused on both the in–sample and out–of–

sample forecasting. Based on the available time series data up 

to time t, i.e., {Yt} = {Y1, Y2, Y3,...Yt−1, Yt}, our aim was to 

forecast the value of Yt+m that will occur m time units into the 

future. The minimum mean square error forecast is given by: 

Yt(m) = E[Yt+m| Y1, Y2, Y3,...Yt−1, Yt]     (16) 

3.3.2. Bayes Theorem 

A model is recognized as Bayesian when a probability 

distribution and the Bayes Theorem are used to describe 

uncertainty regarding the unknown parameters. The Bayesian 

approach for model formulation begins by first quantifying the 

researcher’s existing state of knowledge and assumptions [32]. 

The prior knowledge is then combined with the likelihood 

function–the joint probability of the data under the stated 

model assumptions. The posterior distribution is obtained by 

combining the prior and likelihood information. This 

combination constitutes the Bayes’ theorem and can be 

illustrated by the relationship shown below. 

posterior ∝ prior × likelihood 

Bayes theorem states that the probability that event A 

occurs, given that event B has occurred, is equal to the 

probability that both A and B occur, divided by the probability 

that B occurs: i.e. 

�	��|�� = 		�
	∩��
		���             (17) 

From equation (17) above, if we let A to be a parameter(s) 

and B the observed data (yt), then we have: 

��
|��� = 	��∩���
	����

= 	���|��×		���
	����

       (18) 

where: 

P (θ|yt) ≡ the Posterior probability. 

P (yt|θ) ≡ the likelihood of obtaining the data under the null 

hypothesis. 

P (θ) ≡ the Prior probability of θ. 

P (yt) ≡ the probability of obtaining the data under all 

admissible parameter estimates. 

3.3.3. State Space/Dynamic Linear Model 

The state space models are also known as dynamic linear 

models (DLM). The idea behind state space models is that an 

observable yt is generated by an observation or measurement 

equation, i.e., 

Yt = F’t ′θt + vt               (19) 

where vt ∼ N (0, Vt), and is expressed in terms of an 

unobservable state vector θt. θt is modeled dynamically 

through a system or transition equation as shown below. 

θt = Gtθt−1 + ωt               (20) 

With ωt ∼ N (0, Wt) and the error terms ωt and vt are 

mutually independent. Normality is usually assumed and a 

prior distribution is required to describe the initial state vector 

θ0. The general univariate state space model is represented by 

equations (19 & 20) where: 

Observation Equation: Yt = F’t′θt + vt, vt ∼ N (0, Vt), 

System Equation: θt = Gtθt−1 + ωt ωt ∼ N (0, Wt) 

Yt ≡ the observation series at time t 

Ft ≡ a vector of known constants 

θt ≡ the vector of model state parameters 

vt ≡ a stochastic error term 

Gt ≡ a matrix of known coefficients that defines the 

systematic evolution of the state vector across time 

ωt ≡ a stochastic error term having a normal 

The two stochastic series {vt} and {ωt} are assumed to be 

independent. The dynamic linear model can be broken down 

further into: Local level model, local linear trend model and 

basic structural model as follows: 

Local level model 

Yt = θt + vt, vt ∼ N (0, Vt)         (21) 

θt = θt−1 + ωt, ωt ∼ N (0, Wt)         (22) 

Local linear trend model 

Yt = θt + vt, vt ∼ N (0, Vt)        (23) 

θt = θt−1 + βt +ωt, ωt ∼ N (0, Wt)      (24) 

βt = βt−1 + ηt, ηt ∼ N (0, Ht)        (25) 

Basic structural model 

Yt = θt + γt + vt, vt ∼ N (0, Vt      (26) 

θt = θt−1 + βt + ωt, ωt ∼ N (0, Wt)       (27) 

βt = βt−1 + ηt, ηt ∼ N (0, Ht)        (28) 

s−1 

γt = − ∑ γt−j + kt              (29) 

j=1 

(i). The Kalman Filter 

The Kalman Filter is a recursive set of equations used to 

update the estimated parameters as new observations become 

available. Filtering updated our knowledge of the system each 

time a new observation yt was brought in. The idea of updating 

in the Kalman Filter is related to the Bayesian approach, 

indeed the theory behind the Kalman Filter is Bayesian. The 

Kalman smoothing algorithm was used to obtain the best 

estimate of the state at any point in the sample. Kalman 

filtering accumulates information about the time series as it 

moves forward through the list of the parameters while the 

Kalman smoother moves backward through time, distributing 

information about later observations to earlier parameters. Let 

yt−1 be the vector of observations (y1, y2..., yt−1)′ for t = 2, 3... 

and assume that the conditional distributions θt|Yt−1 ∼ N (at, 

Pt), θt|Yt ∼ N (at|t, Pt|t) and θt+1|Yt ∼ N (at+1, Pt+1) where at and 

Pt are known. Our objective is to calculate at|t, Pt|t, at+1 and Pt+1 

when yt is brought in. We refer at|t as the filtered estimator of 

the state θt and at+1 as the one–step ahead predictor of θt+1. An 

important part is played by the one-step ahead prediction error 

vt of yt. 
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vt = yt − at 

According to Durbin and Koopman (2012a), if we let 

Zt = V ar(vt|yt−1) and �� = �� ��� , then it can be showed that: 

vt = yt − at,               (30) 

at|t = at + Ktvt,             (31) 

at+1 = at + Ktvt,             (32) 

for t = 1,..., n 

�� =	�� 	+ 	���		           (33) 

Pt|t	 = 	Pt�1	 − 	Kt�         (34) 

��#$ 	= 	���1	 −	����%
� 	          (35) 

The relations showed in the above equation is referred as 

the Kalman Filter. The Kalman filtering accumulates 

information about the time series as it moves forward through 

the list of (at, Pt) elements i.e. mean and variance. The Kalman 

smoother moves backward through time, distributing 

information about later observations to successively earlier (at, 

Pt) pairs. 

(ii). Updating Prior to Posterior and Forecasting 

Model forecasts were derived from the prior information 

and the observation equation. The Prior information on the 

state vector for time (t+1) was summarized as a normal 

distribution with mean at+1 and covariance Rt+1. θt+1|Dt ∼ N 

[at+1, Rt+1], where Dt denotes the state of knowledge at time t. 

From the prior information, forecasts were generated using the 

observation equation. The forecast quantity Yt+1 is a linear 

combination of normally distributed variables, θt+1|Dt and vt+1. 

The forecast mean and variance are given by: 

&'��#$|(�) = 	&'*�#$
+ 
�#$ + ,�#$|(�)          (36) 

= 	&'*�#$
+ 
�#$|(�) + &',�#$|(�) 

=	*�#$
+ &'
�#$|(�) + &',�#$) 

= *�#$
+ -. + 1 

= 	/. + 1 

0-1''��#$|(�) 	= 	,-1'*�#$
+ 
�#$ + ,�#$|(�)     (37) 

= 	,-1'*�#$
+ 
�#$|(�) + ,-1',�#$|(�) 

=	*�#$
+ ,-1'
�#$|(�)*�#$

+ + ,-1',�#$) 

= *�#$
+ 2. + 1	*. + 1 

= 	3. + 1 

The forecast quantity was normally distributed with mean 

ft+1 and variance Qt+1. Yt+1|Dt ∼ N [ft+1, Qt+1] Given the prior 

for time (t+1) the implied prior for time (t+2) from the same 

standpoint, with no additional information is p(θt+2|Dt). This 

prior was obtained by applying the system equation as in 

θt+2 = Gθt+1 + ωt+2 with ωt+2 ∼ N (0, Wt+2)      (38) 

E[θt+2|Dt] = E[Gθt+1 + ωt+2|Dt] 

= E[Gθt+1|Dt] + E[ωt+2|Dt] 

= GE[Gθt+1|Dt] 

= Gat+1 

V ar[θt+2|Dt] = V ar[Gθt+1 + ωt+2|Dt]          (39) 

= V ar[Gθt+1 |Dt] + V ar[ωt+2|Dt] 

= Gvar[θt+1 |Dt]G′ + Wt+2 

= GRt+1G′ + Wt+2 

The likelihood, a function of the model parameters, is the 

conditional forecast distribution evaluated at the observed 

value and has the normal form given as; 

L(θt|Yt = yt, Vt)∝ P(Yt = yt|θt, Vt) ∼ N [Ft ′, Vt] (40) 

The prior information is combined with the likelihood to 

yield the posterior distribution as shown below. 

��
�|(�4$, ��� =
	�6�7	��|��,8��	���|9�:;�

<�6�7	���
     (41) 

Forecasting k steps ahead requires the prior information to 

be projected into the future through repeated application of the 

system equation. 

Yt+k |Dt ∼ N [ft(k), Qt(k)]        (42) 

4. Results and Discussion 

This section presents the results of the fitted ARIMA and 

state space models that were found to be appropriate models 

for predicting Kenya’s real GDP per capita. The results of the 

two models were compared and the best model was used to 

perform a 3-step ahead forecast of the real GDP per capita. 

4.1. Data 

The data used in this study was obtained from the World 

Bank data portal and organized as shown in the table 1 below. 

Table 1. Kenya’s GDP per capita (U.S Dollars) from 1980 to 2017. 

Year Per Capita Year Per Capita Year Per Capita 

1980 446.5745 1993 223.3348 2006 697.0066 

1981 405.5510 1994 269.2487 2007 839.1081 

1982 366.2750 1995 330.8043 2008 916.8993 

1983 327.8176 1996 427.9513 2009 920.0816 

1984 326.9365 1997 452.9848 2010 967.3505 

1985 312.1960 1998 473.4327 2011 987.4809 

1986 355.2313 1999 421.4329 2012 1153.2322 

1987 377.4185 2000 403.9797 2013 1229.1011 

1988 382.0224 2001 401.7764 2014 1335.1233 

1989 365.9748 2002 395.8494 2015 1355.0458 

1990 366.3009 2003 436.6875 2016 1462.5051 

1991 337.1222 2004 458.8844 2017 1594.8350 

1992 328.8393 2005 519.7999 
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4.2. The ARIMA Model 

4.2.1. Trend 

A time plot of the observed and smoothed real GDP per 

capita was fitted so as to get the general trend. The time plot 

showed an exponentially increasing trend. A plot of Yt against 

Yt−1 shows that there is a strong correlation between Yt and 

Yt−1. 

 

Figure 1. Plot of real GDP per capita. 

 

Figure 2. Plot of Yt against Yt-1. 

4.2.2. Stationarity of the Data 

The Augmented Dickey-Fuller(ADF) test was run at 5% 

level of significance to check the stationary of the observed 

and differenced time series. The null hypothesis for this test 

is that the data was non-stationary. The results of running the 

ADF test are as shown in table 2 below. 

Table 2. ADF test results. 

Series P value Dickey Fuller 

First difference 0.1025689 -3.2070121 

second difference 0.0100000 -4.4660824 

The p values obtained on running the ADF test on the 

observed, first and second difference was found to be 0.99, 

0.1025689 and 0.01 respectively. The p-values obtained on the 

observed and first difference series was greater than the 

significance level, therefore we failed to reject the and 

concluded that the first difference and the observed GDP per 

capita series was non-stationary. However, the p-value 

obtained by running the ADF test on the second difference 

was smaller than the level of significance, therefore we 

rejected the null hypothesis in favor of the alternative 

hypothesis and concluded that the second difference 

transformation made the series stationary. 

4.2.3. Model Identification 

The ACF and PACF plots of the observed and transformed 

series is as shown in figure 3 below. 

 

Figure 3. ACF and PACF Plots. 

The ACF plot of the second difference suggested that the 

transformed series followed an ARMA(1,1) process. 

Therefore the appropriate model for fitting the GDP per 

capita was identified as ARIMA(1,2,1). 

4.2.4. Model Fitting 

The ARIMA(1,2,1) model identified in the section above 

takes the form: 

Yt = φ1Yt-1 − β1 εt-1 + εt         (43) 

where φ1 and β1 are parameters to be estimated. These model 

parameters were estimated through the Maximum likelihood 

approach and the estimates were found to be: 

φ1 = 0.328775 and β1 = −0.8340786 

The fitted ARIMA model for the real GDP per capita was 

identified as: 

Yt = 0.328775Yt-1 + 0.8340786εt−1 + εt    (44) 

where the series εt follows a white noise process and εt ∼ N 

(0, σ2) 



36 Nathan Musembi et al.:  Bayesian and Frequentist Approach to Time Series Forecasting with  
Application to Kenya’s GDP per Capita 

 

 

Figure 4. ARIMA diagnostic plot. 

4.2.5. Diagnostic Checking 

The residuals of the fitted model were examined to check 

whether they are independent and normally distributed. A 

plot of the standardized residuals, ACF and P values of the 

Ljung-Box statistic obtained. 

The ACF plot values are within the confidence band 

except at lag 3 where there is a very weak serial correlation. 

A plot of the Ljung-Box statistic p values at different lags 

contains values that are above the significance level 

indicating that the residuals are independent. Again, the 

Ljung Box test was run on the standardized residuals of the 

fitted model to check whether they are independent. The null 

hypothesis for this test was that the residuals are independent. 

The p-value obtained from this test was 0.5402776. Based on 

this p value we failed to reject the null hypothesis and 

concluded that the residuals were independent. To check 

whether the residuals were normally distributed, the Shapiro–

Wilk test for normality was run and the p-value for this test 

was 0.1505323. The null hypothesis for this test was that the 

residuals are normally distributed and based on this p value 

we failed to reject the null hypothesis; the conclusion was 

that the residuals were normally distributed. A plot of the 

residuals, ACF, histogram, density and quantile plot of the 

residuals is as shown in figure 5. 

 

 

Figure 5. Diagnostic plots for the ARIMA model. 

The plots above together with the Shapiro–Wilk and 

Ljung box test showed that the residuals of the fitted model 

are independent and normally distributed. We therefore 

concluded that the ARIMA (1,2,1) model with φ1 = 

0.328775 and β1 = −0.8340786 is a good fit for the real 

GDP per capita. 

4.2.6. Forecasting Real GDP per Capita 

A 3-step ahead forecast of the Kenya’s real GDP per capita 

was performed using the fitted ARIMA (1,2,1) model. The 

point forecasts at 95% confidence level are as shown in 

below. 

Table 3. ARIMA(1,2,1) forecast. 

Year Point Forecast Low 95 High 

2018 1696.908 1593.022 1800.793 

2019 1789.033 1602.209 1975.856 

2020 1877.887 1611.843 2143.930 

The in-sample forecast together with the associated 95% 

confidence interval was found to be: 

Table 4. In-sample ARIMA(1,2,1) forecast. 

Year Forecast Lower Upper 

1980 446.3747 340.36748 552.3820 

1981 406.2418 300.23458 512.2491 

1982 364.7348 258.72752 470.7420 

1983 326.5364 220.52914 432.5437 

1984 290.3053 184.29808 396.3126 

1985 309.2740 203.26673 415.2813 

1986 291.7563 185.74904 397.7636 

1987 365.4761 259.46887 471.4834 

1988 382.9100 276.90279 488.9173 

1989 381.4858 275.47855 487.4931 

1990 356.0398 250.03258 462.0471 

1991 363.4119 257.40460 469.4191 

1992 320.1253 214.11807 426.1326 

1993 320.0398 214.03257 426.0471 

1994 166.5131 60.50586 272.5204 

1995 279.3713 173.36405 385.3786 

1996 354.6655 248.65822 460.6727 

1997 475.6945 369.68722 581.7017 

1998 473.2449 367.23764 579.2522 

1999 492.2054 386.19817 598.2127 

2000 404.6347 298.62745 510.6420 
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Year Forecast Lower Upper 

2001 398.4311 292.42387 504.4384 

2002 401.7965 295.78922 507.8037 

2003 393.6598 287.65251 499.6670 

2004 457.0138 351.00649 563.0210 

2005 473.3930 367.38572 579.4002 

2006 554.7406 448.73338 660.7479 

2007 793.7878 687.78050 899.7950 

2008 931.8674 825.86010 1037.8746 

2009 986.0310 880.02374 1092.0383 

2010 953.7413 847.73402 1059.7485 

2011 1017.7627 911.75539 1123.7699 

2012 1023.9464 917.93917 1129.9537 

2013 1259.0256 1153.01839 1365.0329 

2014 1300.3783 1194.37106 1406.3856 

2015 1422.0790 1316.07176 1528.0863 

2016 1402.5719 1296.56463 1508.5792 

2017 1548.7554 1442.74810 1654.7626 

4.3. Fitting the State Space Model 

 

Figure 6. Plot of observed, fitted and predicted values. 

4.3.1. Introduction 

In this section we focused on two forms of state space 

models, i.e the local level model (LLM) and the local linear 

trend model(LLTM). The two models were fitted by use of the 

Kalman filter and the Kalman smoother. The best state space 

model was identified and GDP per capita forecasted using this 

model. The general representation of the state space model is: 

Observation Equation:  

Yt = F’t′θt + vt, vt ∼ N (0, Vt)     (45) 

System Equation:  

θt = Gtθt−1 + ωt ωt ∼ N (0, Wt)      (46) 

The parameters of this model were obtained by Maximum 

Likelihood method and the variances were assumed to be 

unknown. 

4.3.2. Local Level Model (LLM) 

A state space model is a local level model if the coefficient 

of θt and θt-1 in equation is 1. The local level model is 

represented by the equations: 

Observation Equation:  

Yt = ′θt + vt, vt ∼ N (0, Vt)   (47) 

System Equation:  

θt = θt−1 + ωt ωt ∼ N (0, Wt)        (48) 

4.3.3. Building the Local Level Model 

The local level model was built by setting the order of the 

model to 1. The maximum likelihood estimates were 

obtained and the convergence component was zero indicating 

that the algorithm converged successfully. The estimated 

model parameters were used to fit a model that was used to 

generate the filtered and the smoothed estimates with: 

Ft = 1, Gt = 1, Vt = 10−4 and Wt = 4840.971764 

V and W are the variances of the random components in the 

observation and transition equations respectively. The BFGS 

optimization algorithm was used to obtain the maximum 

likelihood estimates and the optimum estimated hessian 

matrix. The asymptotic variance matrix of the maximum 

likelihood estimators is given by the inverse of the Hessian 

matrix of the negative log likelihood function. The predicted 

states, filtered estimates of state vectors and smoothed 

estimates of the state together with the corresponding 

variances were also obtained. 

4.3.4. Diagnostic Checking 

The residuals of the fitted model were examined to check 

whether they are independent and are normally distributed. 

Several diagnostic plots are shown in figure 7 below. 

 

Figure 7. Local level model diagnostic plots. 
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The Ljung Box test for independence and the Shapiro–Wilk 

test for normality was performed and the results were as 

shown in table 5 below. 

Table 5. Diagnostic tests for local level model. 

Test Statistic P Value 

Ljung Box 10.2678065 0.0013537 

Shapiro-wilk 0.9619733 0.2199502 

The p value obtained upon running the Shapiro–Wilk test 

was 0.2199502. Based on this p value we failed to reject the 

null hypothesis and concluded that the residuals were 

normally distributed. The p value obtained by running the 

Ljung box tests was 0.0013537. According to this p value we 

rejected the null hypothesis and concluded that the residuals 

were not independent but they were correlated. Since the 

residuals were correlated we concluded that the local level 

model is not a good fit for the real GDP per capita. What 

followed is that We considered the Local linear trend model, 

which is of order 2. 

4.3.5. Local Linear Trend Model 

A local linear trend model takes the form: 

Yt = θt + vt, vt ∼ N (0, Vt)          (49) 

θt = θt−1 + βt + ωt, ωt ∼ N (0, Wt)       (50) 

βt = βt−1 + ηt, ηt ∼ N (0, Ht)        (51) 

4.3.6. Building the Local Linear Trend Model 

The local linear trend model was fitted using the same 

steps and functions used to fit the local level model except 

that the order is set to 2 in the dlmModPoly function and a 

trend component is added. The maximum likelihood 

estimates for the parameters were obtained as follows. 

Table 6. Local linear trend model Maximum likehood estimates. 

V W H Convergence Value 

5.535959 -0.1689513 5.535959 0 179.6639 

The convergence component was zero indicating that the 

algorithm converged successfully. The model parameter 

estimates in equation (49,50 and 51) were identified as: 

*� = �1 0�, >� = ?1 1
0 1@ , 0� = �253.651� 

-FG	H� = ?0.84455 0
0 2008.15322@ 

Where Vt is the observational error variance(V) and Wt is 

the transitional error variance(W). 

4.3.7. Diagnostic Checking 

The results obtained upon running the Ljung Box and 

Shapiro Wilks tests are as follows. 

Table 7. Diagnostic tests for local linear trend model. 

Test Statistic P value 

Ljung Box 0.1337043 0.7146218 

Shapiro-wilk 0.9563005 0.1436483 

The p value obtained from the Shapiro-Wilk normality test 

is 0.1436483. We failed to reject the null hypothesis and 

concluded that the residuals are normally distributed. On the 

other hand, the p value obtained from the Ljung Box test was 

0.7146218. We failed to reject the null hypothesis and 

concluded that the residuals are independent. The results of 

the Ljung Box and shapiro Wilk tests showed that the local 

linear trend model is a good fit for the real GDP per capita. 

4.3.8. Forecasting 

Both in-sample and out-of-sample forecasting was 

performed using the fitted local linear trend model. A plot of 

the observed, fitted(filtered), smoothed and forecasted values 

is as shown in figure 8 below.  

 

Figure 8. Observed, filtered, smoothed and predicted values. 

The 3-step ahead out-of-sample forecast using the local 

linear trend model is as shown in table 8 below. 

Table 8. Out-of-sample filtered forecast. 

Year Point Forecast Upper Lower 
Forecasted 

state 

2018 1717.694 1811.292 1624.096 1717.694 

2019 1844.446 2029.791 1659.101 1844.446 

2020 1971.198 2269.463 1672.934 1971.198 

The in-sample forecast (filtered estimates), smoothed 

estimates and the associated 95% confidence intervals are as 

shown in the table 9 below. 

Table 9. In-sample forecast of GDP per capita. 

Year Filtered Upper limit Lower limit Smoothed Observed 

1982 364.5801 462.3291 266.83111 364.9247 366.2750 

1983 326.4982 420.1218 232.87461 331.7796 327.8176 
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Year Filtered Upper limit Lower limit Smoothed Observed 

1984 289.0982 382.7153 195.48116 321.9435 326.9365 

1985 315.1592 408.7593 221.55917 320.3687 312.1960 

1986 301.2802 394.8783 207.68212 351.6108 355.2313 

1987 382.3445 475.9425 288.74638 375.4391 377.4185 

1988 405.2644 498.8625 311.66636 380.3315 382.0224 

1989 392.9997 486.5978 299.40165 370.4312 365.9748 

1990 355.9658 449.5639 262.36777 363.2887 366.3009 

1991 361.5044 455.1024 267.90631 341.1270 337.1222 

1992 315.8439 409.4420 222.24585 310.0647 328.8393 

1993 314.8671 408.4652 221.26906 244.4151 223.3348 

1994 145.4677 239.0658 51.86968 267.3381 269.2487 

1995 271.9944 365.5924 178.39630 334.8922 330.8043 

1996 384.9532 478.5513 291.35517 418.3584 427.9513 

1997 517.2004 610.7985 423.60233 456.5886 452.9848 

1998 500.0618 593.6599 406.46374 464.4706 473.4327 

1999 496.5946 590.1926 402.99650 428.2758 421.4329 

2000 389.2056 482.8037 295.60753 405.3233 403.9797 

2001 376.3421 469.9402 282.74405 398.6857 401.7764 

2002 393.3335 486.9316 299.73548 400.8021 395.8494 

2003 391.1831 484.7812 297.58502 428.6219 436.6875 

2004 464.4892 558.0872 370.89111 459.8135 458.8844 

2005 486.28 579.8738 392.67770 535.9746 519.7999 

2006 570.5270 664.1250 476.92888 691.3676 697.0066 

2007 840.0566 933.6547 746.45853 832.0768 839.1081 

2008 991.3932 1084.9913 897.79517 908.8995 916.8993 

2009 1016.2805 1109.8785 922.68239 928.3006 920.0816 

2010 945.4051 1039.0031 851.80700 960.1367 967.3505 

2011 1000.7014 1094.2994 907.10329 1009.087 987.4809 

2012 1013.1752 1106.7733 919.57717 1137.99 1153.232 

2013 1277.2165 1370.8146 1183.6183 1234.805 1229.101 

2014 1329.9343 1423.5324 1236.3362 1320.777 1335.1233 

2015 1435.8672 1529.4653 1342.2691 1368.2425 1355.0458 

2016 1398.8793 1492.4774 1305.2812 1464.1760 1462.5051 

2017 1545.1296 1638.7277 1451.53152 1590.9413 1594.8350 

 

4.4. Performance of the Fitted ARIMA and State Space 

Model 

The ARIMA(1,2,1) was identified as the best ARIMA fit for 

the real GDP per capita while the local linear trend model(LLTM) 

was identified as the most appropriate state space model. The 

mean error(ME), standard error(SE), mean absolute error(MAE), 

mean percentage error (MPE), mean absolute percentage 

error(MAPE), mean absolute scaled error(MASE), AIC, BIC and 

the log likelihood were used to compare the accuracy and the 

performance of the two models. The table below summarizes the 

performance of the two models. 

Table.10. Comparison of the performance of the fitted models. 

Metric ARIMA LLTM 

SE 8.8339 2.65440 

MAE 38.2759 0.74779 

MASE 0.7103 0.01094 

logLik -194.3463 -179.66393 

AIC 380.6926 365.32786 

BIC 395.8596 370.24062 

The rule of the thumb is that we select the model that 

maximizes the likelihood, minimizes the errors as well as the 

AIC and BIC and the one whose R -Squared is closest to one. 

In this case, the Local linear trend model was identified as the 

most appropriate model for fitting and forecasting the real 

GDP per capita for Kenya. 

4.5. Summary of the Forecasts 

The predicted values using state space and ARIMA models 

are as shown in table 11 below. 

Table 11. Out-of-sample forecast. 

Year ARIMA State space 

2018 1696.908 1717.694 

2019 1789.033 1844.446 

2020 1877.887 1971.198 

The Local linear trend model was identified as the best fit 

and a 3-step ahead forecast of the real GDP per capita is as  in 

table 12  below. 

Table 12. Out-of-sample filtered forecast. 

Year Point Forecast Upper Lower 

2018 1717.694 1811.292 1624.096 

2019 1844.446 2029.791 1659.101 

2020 1971.198 2269.463 1672.934 

A plot of the observed, predicted and smoothed estimates is 

as shown in figure 9 below. 
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Figure 9. Plot of observed, Predicted and smoothed value. 

5. Conclusions and Recommendations 

5.1. Summary 

Expectations about future GDP per capita can be the 

primary determinant of investments, employment, wages, 

profits and stock market activities. The ARIMA model uses 

the frequentist approach in forecasting the future values of a 

time series while state space models use the Bayesian 

approach. This study used time series data from the World 

Bank for the period between 1980-2017 to compare the 

performance of the ARIMA and state space models. The 

results of this study showed that the ARIMA(1,2,1) and the 

local linear trend models are appropriate models for 

forecasting Kenya’s real GDP per capita. The accuracy of the 

two models was compared and local linear trend model (a 

form of state space models) was found to perform better than 

the ARIMA model because it had a larger log likelihood, 

minimum MAE, SE, MASE, AIC and BIC and the R -Squared 

was closer to 1. The findings of this study were found to be 

consistent with those of [10, 12, 14, 27, 28] who concluded 

that Bayesian models are alive and well and are appropriate 

for prediction especially over a short horizon. 

5.2. Conclusion 

State space models outperform ARIMA models in their 

forecasting ability. This clearly indicates that the Bayesian 

approach is superior to the frequentist approach in time series 

forecasting. The advantage of Bayesian approach is that the 

model parameters are updated when a new observation is 

brought in. These models are therefore appropriate for 

generating future values of a macroeconomic time series. 

5.3. Recommendations 

The results of this study showed that the state space models 

which are a class of Bayesian models outperform the 

autoregressive moving average models which employ the 

frequentist approach in time series forecasting. We therefore 

recommend the use of State space models in forecasting the 

future values of a macroeconomic time series. 

5.4. Suggestions for Further Research 

There are many models that can be used to forecast future 

values of a time series. We suggest further studies to determine 

whether there are other models that can outperform the state 

space models in their predictive ability. More research can be 

conducted to establish ways that can ensure a sustained 

increase in real GDP per capita especially in developing 

countries like Kenya. 

 

References 

[1] Pavia, M., Jose, M., & Cabrer, B., Borras. (2007). On 
estimating contemporaneous quarterly regional GDP. Journal 
of Forecasting, 26 (3), 155–170. 

[2] Larsson, H., & Harrtell, E. (2007). Does choice of transition 
model affect GDP per capita growth? 

[3] Musundi, S. W. (2016). Modeling and forecasting Kenyan GDP 
using autoregressive integrated moving average (arima) models. 
Science Journal of Applied Mathematics and Statistics, 4 (2), 
64–73. 

[4] Wang, Z., & Wang, H. (2011). GDP prediction of china based 
on arima model. Journal of Foreign Economic and Trade, 210 
(12). 

[5] Zakai, M. (2014). A time series modeling on GDP of pakistan. 
Journal of Contemporary Issues in Business Research, 3 (4), 
200–210. 

[6] Hai, V. T., Tsui, A. K., & Zhang, Z. (2013). Measuring 
asymmetry and persistence in conditional volatility in real 
output: Evidence from three east Asian tigers using a 
multivariate garch approach. Applied Economics, 45, 2909–
2914. 

[7] Shahini, L., & Haderi, S. (2013). Short term albanian GDP 
forecast:“one quarter to one year ahead”. European Scientific 
Journal, ESJ, 9 (34), 198–208. 

[8] Durbin, J., & Koopman, S. J. (2012b). Time series analysis by 
state space methods. Oxford University Press. 

[9] Harvey, A. C. (1981). Finite sample prediction and over 
differencing. Journal of Time Series Analysis, 2 (4), 221–232. 

[10] Harvey, A. C., & Todd, P. (1983). Forecasting economic time 
series with structural and box-jenkins models: A case study. 
Journal of Business & Economic Statistics, 1 (4), 299–307. 

[11] Harvey, A. C. (1989). Forecasting, structural time series 
analysis, and the kalman filter. Cambridge University Press. 

[12] Fernandez, C., Ley, E., & Steel, M. F. (2001). Model 
uncertainty in cross-country growth regressions. Journal of 
applied Econometrics, 16 (5), 563–576. 

[13] Jacobson, T., & Karlsson, S. (2004). Finding good predictors 
for inflation: A Bayesian model averaging approach. Journal of 
Forecasting, 23 (7), 479–496. 

[14] De Alba, E., Mendoza, M. et al. (2007). Bayesian forecasting 
methods for short time series. The International Journal of 
Applied Forecasting, 8, 41–44. 



 International Journal of Data Science and Analysis 2019; 5(2): 27-41 41 
 

 

[15] Spengler, J. J. (1959). Adam smith’s theory of economic 
growth: Part i. Southern Economic Journal, 25 (4), 397–415. 

[16] Solow, R. M. (1956). A contribution to the theory of economic 
growth. The quarterly journal of economics, 70 (1), 65–94. 

[17] Box, G. E., & Jenkins, G. M. (1976). Time series analysis, 
control, and forecasting. San Francisco, CA: Holden Day, 3226 
(3228), 10. 

[18] Hamilton, K. (1994). Green adjustments to GDP. Resources 
Policy, 20 (3), 155–168. 

[19] Wei, N., Bian, K., Yuan, Z., et al. (2010). Analysis and forecast 
of shaanxi GDP based on the arima model. Asian Agricultural 
Research, 2 (1), 34–41. 

[20] Dritsaki, C. (2015). Forecasting real GDP rate through 
econometric models: An empirical study from greece. Journal 
of International Business and Economics, 3 (1), 13–19. 

[21] Kravis, A. W., Irving B Heston, & Summers, R. (1978). Real 
GDP per capita for more than one hundred countries. The 
Economic Journal, 88 (350), 215–242. 

[22] Kitov, O. I. (2009). The evolution of real GDP per capita in 
developed countries. Journal of Applied Economic Sciences, 4 
(2), 221–234. 

[23] Kitov, I. O., Dolinskaya, S. et al. (2009). Modelling real GDP 
per capita in the (usa): Cointegration tests. Journal of Applied 
Economic Sciences, Spiru Haret University, Faculty of 
Financial Management and Accounting Craiova, 4 (1), 7. 

[24] Kraay, A., & Monokroussos, G. (1999). Growth forecasts using 
time series and growth models. The World Bank. 

[25] Stockton, D. J., & Glassman, J. E. (1987). An evaluation of the 
forecast performance of alternative models of inflation. The 
Review of Economics and Statistics, 69 (1), 108–117. 

[26] Scott, S. L., & Varian, H. R. (2013). Predicting the present with 
Bayesian structural time series. Available at SSRN 2304426. 

[27] Steel, M. F. J. (2010). Bayesian time series analysis. In S. N. 
Durlauf & L. E. Blume (Eds.), Macroeconometrics and Time 
Series Analysis (pp. 35–45). London: Palgrave Macmillan UK. 

[28] Koop, G. M., & Potter, S. (2003). Forecasting in Large 
Macroeconomic Panels Using Bayesian Model Averaging. 
SSRN Electronic Journal. 

[29] Leedy, P. (1997). Practical research: Planning and design. New 
Jersey: Prentice-Hall. 

[30] Kothari, C. R. (2004). Research methodology: Methods and 
techniques. New Age International. 

[31] Sperling, R. A., Gay, L., & Airasian, P. W. (2003). Student 
study guide to accompany lr gay and peter airasian’s 
educational research: Competencies for analysis and 
application. Merrill. 

[32] Pole, A., West, M., & Harrison, J. (1994). Applied Bayesian 
forecasting and time series analysis. Chapman and Hall/CRC. 

 

 


