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Abstract: The pioneer theorem of Weddernburn on commutativity of division rings was proved in the very beginning of 

twentieth century. Aside from its own intrinsic beauty and important role in many diverse parts of algebra specially, the 

theorem serves as the starting point for investigations of certain kinds of conditions that render a ring commutative. A large 

part of the results in this area was developed in the hands of many distinguished mathematicians like Jacobson, Herstein, 

Kaplansky, Faith, Martindale, Nakayama, Bell and many others. The purpose of the present paper is to investigate 

commutativity of a ring with unity 1 satisfying certain polynomial constraints. The main result of the first section asserts that a 

ring is commutative if at least one of the integral exponent used in the polynomial constraints of the theorem is zero and the 

ring also satisfies the property Q(n) Further, in the second section, commutativity of a ring with unity 1 has also been 

established under a set of different polynomial identities applying the most frequently used technique known as Streb’s 

classification. Finally, in the last section, these results of the foregoing sections are further extended to a special class of rings 

called as one sided s - unital rings. 

Keywords: Associative Ring, Factor Subring, Polynomial Constraints, Nilpotent Elements, Commutators, Center of Ring,  

s - Unital Ring and Commutativity 

 

1. Introduction 

Throughout the present paper, R will denote an associative 

ring (may be without unity 1), ( )C R the commutator ideal, 

( )P R  the center and ( )N R the set of nilpotent elements of a 

ring R respectively. As usual,  [ ]Z X is the totality of 

polynomials in X with coefficients in ,Z the ring of integers. 

For any ,x y R∈ , the symbol  [ , ]x y stands for commutator 

.xy yx−  A ring R is said to have the property ( )Q n if for 

any positive integer n  and for all ,x y R∈ ,  [ , ] 0n x y = ⇒

[ , ] 0x y = . 

The present paper contains 4 sections. Section 1 deals with 

introduction, section 2 includes commutativity of ring with 

unity satisfying some identities, section 3 incorporates 

commutativity of ring with unity through Streb’s 

classification and satisfying some other related identities and 

finally the results of the foregoing sections are extended for 

s - unital rings in section 4. 

The famous theorem due to Jacobson [17] asserts that if 

every element x of a ring R satisfies the condition ( ) ,n xx x=  

where ( ) 1n x > is a positive integer, then R is commutative. 

This result at the same time generalizes that every finite 

division ring is commutative and also the result that every 

Boolean ring is commutative. Among the interesting 

generalizations of Jacobson’s theorem, Herstein [13] proved 

that rings satisfying the polynomial identity 

( )
n n n

x y x y+ = + for some 1n >  must have nil commutator 

ideal. Among other classes of rings in which ideal is known 

to be nil is the class of rings satisfying the polynomial 

identity [ , ] [ , ]
n n

x y x y=  for some 1n > . It can be easily 

observe that this class includes the rings satisfying the 

identity .
( ) .

n n n
x y x y+ = +  Bell [8] proved the 

commutativity of a ring R with unity 1 satisfying the 

polynomial identity [ , ] [ , ]
n n

x y x y=  if the additive group 

( , )R + is n-torsion free. Motivated by the above observations, 

the main purpose of this paper is to investigate 
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commutativity of rings under the following polynomial 

constraints: 

For all y R∈  there exist polynomials 

( ),   ( )  [ ]p X q X Z X∈  such that 

 [ , ] ( ) [ , ]  ( )
r n s m k

x x y x p y x y q y= for all x R∈ where 

1,    0,   0,   0,   0 n k m r s> > ≥ ≥ ≥ are fixed non-negative 

integers. 

A number of authors have studied commutativity of rings 

satisfying various special cases of the above property. The 

objective of the present section is to generalize these results 

for rings with unity 1 satisfying the above property. Further, 

the results are extended for one sided s- unital rings in the 

subsequent section. 

2. Commutativity of Ring with Unity 

Main result of this section states as follows: 

Theorem 2.1 Let R be a ring with unity 1 satisfying the 

property  [ , ] ( ) [ , ]  ( ) .
r n s m k

x x y x p y x y q y= Further, if R

also satisfies the property ( ),Q n then R is commutative. 

The discussion begins with the following lemmas which 

are pertinent for the development of the proof of the above 

theorem. 

Lemma 2.1 [18] If ,x y R∈ and [ ,[ , ]] 0,x x y = then 

1
[ , ] [ , ]

m m
x y mx x y

−=  for all positive integers m . 

Lemma 2.2 [9] Let R be a ring with unity 1 and let 

:f R R→ be a polynomial function of two variables with 

the property ( 1, ) ( , )f x y f x y+ =  for all ,x y R∈ . If for all 

, ,x y R∈ ( , ) 0
k

x f x y =  or ( , ) 0
k

f x y x = for a fixed positive 

integer k , then necessarily ( , ) 0.f x y =  

Lemma 2.3 [19, Theorem] Let f be a polynomial identity 

in n non-commuting indeterminates 1, 2, 3,............ ,, nx x x x with 

relatively prime integer coefficients. Then the following are 

equivalent 

i. For ring satisfying the polynomial identity 

0,   ( )f C R= is nil ideal. 

ii. For every prime 2,   ( ( ))p GF p fails to satisfy 0.f =  

iii. Every semi-prime ring satisfying 0f = is 

commutative. 

Lemma 2.4 [10, Theorem] Let R be a ring (may be 

without unity 1) and suppose for each ,x y R∈ there exists a 

polynomial ( )  [ ]f X Z X∈ such that [ , ] [ , ] ( ).x y x y f x= Then 

R  is commutative. 

The proofs of the following lemmas are essential before 

developing the proof of Theorem 2.1. 

Lemma 2.5 Let R  be a ring satisfying the property 

 [ , ] ( ) [ , ]  ( ) ,r n s m kx x y x p y x y q y=  then ( ) ( )C R N R⊆ . 

Proof. Suppose R is a ring satisfying the given property 

 [ , ] ( ) [ , ]  ( ) .r n s m kx x y x p y x y q y= If 0r = , then we have 

 [ , ] ( ) [ , ]  ( )           n s m kx y x p y x y q y=  

Replacing x by 1x + in the given property, we get 

[( ) , ]( ) [ , ] .n s n sx y y x y x y x+ + =  

This is a polynomial identity and it can be easily observe 

that 11 21,  11x e e y e= − + =  fail to satisfy this equality in 

2( ( )) , GF p where p is a prime. Hence, by Lemma 2.3

( ) ( )C R N R⊆ . On the other hand if 0,s = then choose 

11 12,  11x e e y e= − + =  to get the required result. 

Lemma 2.6 Let R be a ring with unity 1 satisfying the 

property  [ , ] ( ) [ , ]  ( ) .r n s m kx x y x p y x y q y=  Moreover, R

satisfies the property ( )Q n , then ( ) ( ).N R P R⊆  

Proof. Let ( )u N R∈ , then there exists a positive integer t  

such that 

( )tu P R∈                                      (1) 

If 1t = , the result is obvious. Therefore, onward assume 

that 1t > . Replacing x  by 1tu −  in the given property to get 

( 1) ( 1) ( 1) 1[ , ] ( ) [ , ] ( ).− − − −=r t n t s t t m ku u y u p y u y q y  

Now application of (1) and the fact that ( 1) ,n t t− ≥ yields 

that 

1( )[ , ] ( ) 0− =t m kp y u y q y                       (2) 

Replacement x  by 11 tu −+  in our hypothesis yields
1 1 1 1(1 ) [(1 ) , ] (1 ) ( ) [ , ] ( ) 0.t r t n t s t m ku u y u p y u y q y− − − −+ + + = =

Thus, application of (2) gives 
1 1 1(1 ) [(1 ) , ] (1 ) 0.t r t n t su u y u− − −+ + + =  But since 

1(1 )tu −+  is invertible, the last equation implies that 

1[(1 ) , ] 0−+ =t nu y  for all ∈y R                    (3) 

Combining (1) and (3), we get 

1 10 [(1 ) , ] [1 , ]− −= + = +t n tu y nu y  

i.e. 1 [ , ] 0,tn u y− =  for all y R∈ . Hence, application of 

property ( )Q n  yields that 1 ( )tu P R− ∈ . This contradicts the 

minimality of t in (1) and thus 1t =  and ( )u P R∈ . 

Proof of the Theorem. Combination of Lemma 2.5 and 

Lemma 2.6 gives 

( ) ( ) ( )⊆ ⊆C R N R P R                            (4) 

Replacing x  by 1 x+  in the given property of the theorem 

to get 

(1 ) [(1 ) , ](1 ) ( )[1 , ] ( )+ + + = +r n s m kx x y x p y x y q y  

( )[ , ] ( )= m kp y x y q y  

[ , ] .= r n sx x y x  

Now application of Lemma 2.1 and (4) yields that 
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1 1 [ , ](1 )  [ , ]  + + − + + −+ =r s n r s nn x y x n x y x  

This implies that 1 1 [ , {(1 )  }] 0.+ + − + + −+ − =r s n r s nn x y x x

Application of property ( )Q n  yields 

{ }
1 1

1 1

0  [ , {(1 )  }]

   [ , ]   (1 )  

+ + − + + −

+ + − + + −

= + −

= + −

r s n r s n

r s n r s n

x y x x

x y x x
 

This is a polynomial identity which can be written in the 

form of [ , ] [ , ] ( )x y x y f x= for some ( )  [ ]f X X Z X∈ . 

Hence, R is commutative by Lemma 2.4. 

The following corollary is an immediate consequence of 

the above theorem. 

Corollary 2.1 [5, Theorem 2.1] Let 1,    0,   0 n r s> ≥ ≥ be 

fixed non-negative integers and let R be a ring with unity 1 

in which for every y R∈  there exist integers 

( ) 0,   ( ) 0,l l y j j y= ≥ = ≥ ( ) 0m m y= ≥  such that 

[ , ] [ , ]r n s i m jx x y x y x y y=  for all x R∈ . Further, if at least 

one of ,r s  is zero and R  satisfies the property ( )Q n , then 

R is commutative. 

The existence of unity 1 in the hypothesis of Theorem 2.1 

can be justified by the following example. 

Example 2.1 Let kD  be the ring of all k k×  matrices over 

a division ring D  and { } ( / 0 ( ) k ij k ijA a D a i j= ∈ = ≥ . 

Then 3A  is a non-commutative ring of index 3 which 

satisfies the identity [ , ] [ , ]n nx y x y=  for all 3,x y A∈  and 

2.n ≥  

The following example strengthens the existence of the 

property ( )Q n  in the hypothesis of the Theorem 2.1. 

Example 2.2 Let 0   / , , , (2)

0 0

a b c

R a d a b c d GF

a

  
  = ∈  
  
  

. 

Then R is a non-commutative ring with unity 1 satisfying the 

identity [ , ] [ , ]n nx y x y=  for all ,x y R∈ and 2.n =  

3. Commutativity of Rings Through 

Streb’s Classification 

In an attempt to generalize a well known theorem due to 

Bell [7], Quadri and Khan [31] proved; a ring R with unity 1 

is commutative if it satisfies a polynomial identity 

[ , ] 0m nxy y x x− =  where 1m ≥  and 1n ≥  are positive 

integers. Further Bell et al [6] established that the above 

result remains true if the value of the exponent m appearing 

in the given identity is no longer fixed rather depends on the 

ring element y . Recently, Nishinaka [27] improved this 

result as follows: a ring R with unity 1 is commutative if it 

satisfies the condition [ ( ) , ] 0m nx y f y x x− =  for some 

2( )  [ ]f t t Z t∈ , where m and n are fixed non-negative 

integers. The objective of the present paper is to further 

extend the study in this direction and investigate the 

commutativity of a ring R satisfying the following properties: 

( )CH  For each , ∈x y R  there exists a polynomial 

( )  [ ]∈f X Z X  such that 2 2 [ ( ), ( )] 0− − =x x f x y y f y  

1( )P  For each , ∈x y R  there exists an integer  0m ≥ and 

polynomials 2( )  [ ]∈f X X Z X  and ( ), ( )  [ ]∈g X h X XZ X  

such that { }1- ( )m mx yg x y

{ }( ), 1 ( ) 0m m m m mx y x yf x y x x yh x y − − =  . 

*
1( )P  For each , ∈x y R  there exists an integer 

 ( , ) 0= ≥m m x y  and polynomials 2( )  [ ]∈f X X Z X  

and ( ), ( )  [ ]∈g X h X XZ X such that { }1- ( )m mx yg x y

{ }( ), 1 ( ) 0m m m m mx y x yf x y x x yh x y − − =  . 

2( )P  For each , ∈x y R  there exists an integer  0m ≥  and 

polynomials 2
( )  [ ]∈f X X Z X and ( ), ( )  [ ]∈g X h X XZ X such that

{ }1- ( )m mx yg x y { }( ), 1 ( ) 0m m m m myx x yf x y x x yh x y − − =  . 

*
2( )P  For each , ∈x y R  there exists an integer 

 ( , ) 0= ≥m m x y  and polynomials 2( )  [ ]∈f X X Z X and

( ), ( )  [ ]∈g X h X XZ X such that 

{ }1- ( )m mx yg x y { }( ), 1 ( ) 0 − − = 
m m m m myx x yf x y x x yh x y  

The discussion starts with the following theorem: 

Theorem 3.1 Let R be a ring with unity 1 satisfying either 

of the property 1( )P  or 2( )P , then R is commutative (and 

conversely). 

The following rings should be taken into consideration in 

order to develop the proof of the above theorem: 

( ) ( )
( )      

0 ( )

GF p GF p
i

GF p

 
 
 

 

( ) ( )
( )       

0 0
l

GF p GF p
i

 
 
 

 

( ) 0
( )       

( ) 0
r

GF p
i

GF p

 
 
 

 

( )     ( )  / ,
0 ( )

ii M K Kσ
α β

α β
σ α

   = ∈  
   

, where K is a 

finite field with a non-trivial automorphism. 

( )        iii A non-commutative division ring. 

( )     S 1 ,   iv T T=< > + a non-commutative radical subring 

of .S  

( )     S 1 ,   v T T=< > + a non-commutative radical subring 

of S such that [ , ] [ , ] 0.T T T T T T= =  

In the year 1989, Streb [33] had given the classification of 

non-commutative rings which has been used effectively as a 

tool to obtain a number of commutativity theorems (cf.[22], 

[23], [24] further references can be found). From the proof of 

[34, corollary 1], it can be easily observe that if R is a non-
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commutative ring with unity 1, then there exists a factor 

subring of R which is of the form ( ),i ( ),ii ( ),iii ( )iv or ( )v . 

This observation gives the following result which plays the 

key role in our subsequent study (cf., [24, Lemma 1]. 

Lemma 3.1 Let P be a ring property which is inherited by 

factor subrings. If there no rings of the form ( )i , ( ),ii ( ),iii

( )iv or ( )v  satisfy the property P , then every ring with unity 

1 satisfying the property P  is commutative. 

The following result has been proved in [22, Corollary 1]. 

Lemma 3.2 Suppose that a ring R with unity 1 satisfies the 

condition ( )CH and if R is a non-commutative ring, then it is 

always possible to find out a factor subring of R  which is of 

the form ( )i  or ( ).ii  

The following result is due to Herstein [13]. 

Lemma 3.3 Let R be a ring in which for every ,x y R∈  

there exists polynomial ( )  [ ]f X Z X∈  such that

2[ ( ), ] 0x x f x y− = , R then is commutative. 

The proof of the following lemma is essential for 

developing the proof of the main theorem. 

Lemma 3.4 If R is a division ring satisfying either of the 

property 1( )P  or 2( )P , then R is commutative. 

Proof. Suppose R satisfies the property 1( )P . Let u  be a 

unit in R , then for every y R∈  there exist polynomials 

2( )  [ ]f X X Z X∈  and ( ), ( )  [ ]g X h X XZ X∈  such that 

{ }
{ }
0 1 ( ) ( ) ( ),

1 ( ) ( )

− − − − −

− −

 = − −
 

−

m m m m m m m m m m

m m m m

x x y g x x y x x y x x yf x x y x

x x y h x x y

 { } [ ] { }1  ( )   ( ),  1  ( ) .y g y y y f y x y h y= − − −  

This implies that 1 ( ) 0yg y− =  or 1 ( ) 0yh y− =  or 

[ ( ), ] 0.y yf y x− =  In all possible cases, R is commutative by 

application of Lemma 3.3. 

Proof of the Theorem. Suppose R satisfies the property

1( )P . In view of Lemma 3.1, it is sufficient enough to show 

that R do not belongs to the family of considered rings. First 

consider, R is a ring of the form
( ) ( )

 
0 ( )

GF p GF p

GF p

 
 
 

,

( ) ( )
 

0 0

GF p GF p 
 
 

 or 
( ) 0

 
( ) 0

GF p

GF p

 
 
 

. Then in 2( ( ))GF p , 

where p is a prime then it can be observe that for each 

2( )  [ ]f X X Z X∈  and ( ), ( )  [ ]g X h X XZ X∈  

{ }

{ }

11 12 22 11 12 22

11 12 22 11 12 22 11 12 22 11

11 12 22 11 12 22

1 ( )  ( ( ))

( ) ( ) ( ( ),

1 ( )  ( ( ))

− + +

 + − + +
 

− + +

m m

m m m

m m

e e e g e e e

e e e e e e f e e e e

e e e h e e e

12 0= − ≠e , 

a contradiction. Hence, there is no ring of the form

( ) ( )
 

0 ( )

GF p GF p

GF p

 
 
 

, 
( ) ( )

 
0 0

GF p GF p 
 
 

 or 
( ) 0

 
( ) 0

GF p

GF p

 
 
 

which is satisfying the property 1( ).P  If we consider the ring 

( )  / ,
0 ( )

R M K Kσ
α β

α β
σ α

   = = ∈  
   

, where K is taken 

as a finite field with a non-trivial automorphism. Now, 

choosing 

0 0 1
       ,            

0 ( ) 0 0

   
= =   

   
x y

α
σ α

 

Then for each 2( )  [ ]∈f X X Z X  and 

( ), ( )  [ ]∈g X h X XZ X  we see that 

{ } { }1 ( ) ( ), 1 ( ) − − − 
m m m m m m mx yg x y x y x yf x y x x yh x y  

12( ( ) ) 0,= − ≠m eα σ α α  

again a contradiction, therefore ( ).R M Kσ≠ Further, suppose 

that R  is a non-commutative division ring, then by the 

application of Lemma 3.4, R is commutative, a 

contradiction. Assume that  S 1 ,   R T T= =< > + a non-

commutative radical subring of ,S then a careful scrutiny of 

the proof of Lemma 3.4 shows that for a unit u R∈ and 

arbitrary y R∈ , there exist polynomials 2( )  [ ]q X X Z X∈  

and ( ), ( )  [ ]g X h X XZ X∈  such that either 1 ( ) 0yg y− =  or 

1 ( ) 0yh y− =  or [ ( ), ] 0y yf y x− = . Let , ,a b T∈ then 1 a+  is 

a unit and there exist polynomials 2( )  [ ]q X X Z X∈  and 

( ), ( )  [ ]g X h X XZ X∈  such that either 1 ( ) 0bg b− = or 

1 ( ) 0bh b− =  or [1 , ( )] 0a b b q+ − = . Hence by Lemma 3.3, T

is commutative, a contradiction. Now, suppose that 

 S 1 ,   R T T= =< > + a non-commutative radical subring of 

S such that [ , ] [ , ] 0.T T T T T T= = Then for each ,a b T∈  

there exist polynomials 2( )  [ ]f X X Z X∈  and 

( ), ( )  [ ]g X h X XZ X∈  such that 

{ }

{ }

0 1 (1 ) ((1 ) )

(1 ) (1 ) (1 ) ,  1

1 (1 ) ((1 ) )

= − + +

 + − + + +
 

− + +

m m

m m m

m m

a bg a b

a b a bf a b a

a bh a b

{ }
{ }

1 (1 ) ((1 ) )  (1 ) ,  1

1 (1 ) ((1 ) )

 = − + + + +
 

− + +

m m m

m m

a bg a b a b a

a bh a b

{ } [ ]

{ }
1 (1 ) ((1 ) )  ,  1

1 (1 ) ((1 ) )

= − + + +

− + +

m m

m m

a bg a b b a

a bh a b
 

[ , ]= b a  

This is again a contradiction, hence  S 1 ,   R T T≠ =< > +  a 
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non-commutative radical subring of S such that 

[ , ] [ , ] 0.T T T T T T= = Now, Let R satisfies the property 2( )P . 

If R is a ring of the form
( ) ( )

 
0 ( )

GF p GF p

GF p

 
 
 

, 

( ) ( )
 

0 0

GF p GF p 
 
 

 or 
( ) 0

 
( ) 0

GF p

GF p

 
 
 

, then there exist 

polynomials 2( )  [ ]f X X Z X∈  and ( ), ( )  [ ]g X h X XZ X∈  

such that 

{ }
{ }

22 12 22 12 12 22 22 12 22 12 22

22 12 22 12

1  ( )  ( ),

1  ( )

 − −
 

−

m m m m m

m m

e e g e e e e e e f e e e

e e h e e
 

12 0,= ≠e  

a contradiction. Using similar arguments as used above, It 

can be easily shown that there does not exists any ring among 

the remaining four rings as discussed above which is 

satisfying the property 2( )P  and in view of Lemma 3.1, we 

get the required result. 

Corollary 3.1 Let 0m ≥  be a fixed positive integer and let 

R  be a ring with unity 1. If for each ,x y R∈  there exists a 

polynomial 2( )  [ ]f X X Z X∈ such that 

[ ( ), ] 0,m m mx y x yf x y x− = then R  is commutative. 

Remark 3.1 If the integral exponent m  in the properties 

1( )P and 2( )P are allowed to vary with the pair of ring 

elements ,x y R∈ , i.e. R  satisfies either of the property 

1( *)P  or 2( *)P , then a careful scrutiny of the proof of 

Theorem 3.1 shows that R  has no factor subring of the 

type ( )i or ( )ii . Thus in addition, if R  satisfies the 

property ( )CH , then in view of Lemma 3.2, we get the 

following: 

Theorem 3.2 Let R be a ring with unity 1 satisfying either 

of the property 1( *)P  or 2( *)P . Moreover, if R satisfies the 

property ( )CH , then R  is commutative (and conversely). 

Example 3.1 The non-commutative ring of 3 3×  strictly 

upper triangular matrices over a ring satisfies the property 

[ ( ), ] 0m m mx y x yf x y x− =  and hence rules out the possible 

generalization of the above theorem for arbitrary rings. 

4. Commutativity of s-Unital Rings 

A ring R is called left (respectively right) s - unital 

ring   if Rxx ∈ (respectively xRx ∈ ) for all Rx ∈ . 

Further R is called s - unital ring if R  is both left as well 

as right s - unital i.e. xRRxx ∩∈  for all Rx ∈ . 

Following [16], if R is s - unital ring (respectively left or 

right s - unital ring) then for any subset F of R there 

exists an element Re ∈  such that xxeex ==  

respectively xexxe ==  for all Fx ∈ .Such an element e
is called pseudo identity (respectively left or right 

identity) of F  in R . There are numerous examples in the 

existing literature (cf. [24, Remark 2]) which shows these 

classes of rings are generalization of class of rings with 

unity. Recently, many results for rings with unity 1, 

particularly a number of commutativity theorems have 

been extended to one sided s - unital ring . 

Although Example 2.1 strengthens the existence of unity 1 

in the hypothesis of Theorem 2.1, the same theorem may be 

extended to one sided s - unital rings. 

Theorem 4.1 Let 1,    0,   0,   0,   0 n k m r s> > ≥ ≥ ≥ be 

fixed non-negative integers and let R be a left (respectively 

right) s - unital ring in which for every y R∈  there exist 

polynomials ( ),   ( )  [ ]p X q X Z X∈  such that 

 [ , ] ( ) [ , ]  ( )r n m kx x y p y x y q y= (resp.

 [ , ]  ( ) [ , ]  ( )n s m kx y x p y x y q y=  for all Rx ∈ . If R satisfies 

the property ( ),Q n then R  is commutative. 

Proof. Let R be a left (resp. right) s - unital ring satisfying 

 [ , ] ( ) [ , ]  ( )r n m kx x y p y x y q y=  (resp.

 [ , ]  ( ) [ , ]  ( )n s m kx y x p y x y q y=  for some 

( ),   ( )  [ ]p X q X Z X∈ . Choose an element e  in R  such that 

,ex x ey y= =  (resp. ,xe x ye y= = ). Now replace x  by e  in 

the given property, we get 

 [e , ] ( ) [e, ]  ( )=r n m ke y p y y q y  (resp.

 [ , ]  ( ) [e, ]  ( )=n s m ke y e p y y q y  

for some ( ),   ( )  [ ]p X q X Z X∈  and fixed integers 

1,    0,   0,   0,   0 n k m r s> > ≥ ≥ ≥ . This yields that 

y eny yR= ∈  (resp. e )ny y Ry= ∈ . Thus R is right (resp. 

left) s - unital ring and hence s - unital. Now in view of 

proposition [15], we can assume that R has unity 1 and 

hence commutativity of R  follows by Theorem 2.1 

Corollary 4.1 [5, Theorem 2.3] Let 1,    0,   0 n r s> ≥ ≥ be 

fixed non-negative integers and let R be a left (resp. right) s

- unital ring in which for  y R∀ ∈ there exists integers

( ) 0, ( ) 0, ( ) 0t t y j j y m m y= ≥ = ≥ = ≥  such that 

 [ , ] [ , ] r n t m jx x y y x y y= (resp.  [ , ]  [ , ] n s t m jx y x y x y y= ) 

for all x R∈ . If R satisfies the property ( ),Q n then R  is 

commutative. 

The following example shows that a left (respectively 

right) s - unital ring with the property 

 [ , ]  [ , ] n s t m jx y x y x y y=  (resp.  [ , ] [ , ] )r n t m jx x y y x y y=  

need not be commutative. 

Example 4.1 Let 

1

0 0 1 0 0 1 1 1
,      ,       ,      

0 0 1 0 0 1 1 1
R

         =         
         

be a 

subring of 2 2× matrices over ( (2)).G F  Then 1R  is a non-

commutative left s - unital ring satisfying the property

 [ , ]  [ , ] n s t m jx y x y x y y=  for any fixed positive integers 

1,  0  0,  n k r> > ≥ 0,   0,   0. s t j≥ ≥ ≥ Indeed 1R  has the 

property ( )Q n  for odd .n  
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Similarly

2

0 0 1 1 0 0 1 1
,      ,       ,      

0 0 0 0 1 1 1 1
R

         =         
         

be a 

subring of 2 2× matrices over ( (2)).G F Then 2R is a non-

commutative right s - unital ring satisfying the property

 [ , ] [ , ] r n t m jx x y y x y y=  for any fixed positive integers 

1,  0  0,  n k r> > ≥ 0,   0,   0. s t j≥ ≥ ≥ Indeed 2R  has the 

property ( )Q n  for odd .n  

Before moving ahead to establish commutativity of s - 

unital rings satisfying some related properties as considered 

in Theorem 3.1, the following lemma is due to Komatsu et al. 

[25] is pertinent in order to make our paper self-contained. 

Lemma 4.1 If R is left - unital not right - unital, then 

R has a factor subring of the form
( ) ( )

 
0 0

 
 
 

GF p GF p

Theorem 4.2 Let R be a left (respectively right) - unital 

ring in which for every ,x y R∈  there exists polynomial 

2( )  [ ]f X X Z X∈  such that [ ( ), ] 0m m mx y x yf x y x− =  resp. 

[ ( ), ] 0m m myx x yf x y x− = where 0m ≥ is a fixed positive 

integer. Then R is commutative (and conversely). 
Proof. If R is a left (respectively right) s − unital ring 

satisfying the identity [ ( ), ] 0m m mx y x yf x y x− =  respectively 

[ ( ), ] 0m m myx x yf x y x− = , then a careful scrutiny of the 

proof of Theorem 3.1 shows that no ring of the form 

( ) ( )
 

0 0

GF p GF p 
 
 

respectively 
( ) 0

 
( ) 0

GF p

GF p

 
 
 

satisfy the 

property [ ( ), ] 0m m mx y x yf x y x− =  resp. 

[ ( ), ] 0m m myx x yf x y x− = Hence, by Lemma 4.1, R is right 

(respectively left) s −unital. Thus, in both the cases R is s −
unital and in view of Proposition 1 of [15], it can be assumed 

that R  has unity 1 and commutativity of R  follows by 

Theorem 3.1. 

Using the similar arguments as used to get Theorem 3.2, 

the following can be easily proved: 

Theorem 4.3 Let R be a left (respectively right) s −unital 

ring in which for every ,x y R∈  there exists integer 

( , ) 0m m x y= ≥  and a polynomial 2( )  [ ]f X X Z X∈  such 

that [ ( ), ] 0m m mx y x yf x y x− =  resp. 

[ ( ), ] 0m m myx x yf x y x− = . Moreover, R  also satisfies the 

property ( )CH . Then R is commutative (and conversely). 

Conclusion. Bell proved the commutativity of a ring R
with unity 1 satisfying the polynomial identity 

[ , ] [ , ]n nx y x y=  if the additive group ( , )R + is n-torsion free. 

This result of Bell possess a natural question that weather it 

is feasible to extend this result for some wider polynomial 

identities or not. This paper gives an affirmative answer of 

this question and hence establishes commutativity of a ring 

with unity 1 satisfying some wider polynomial identities and 

further assures the commutativity of one sided s − unital 

rings also. The same results may also be extended to another 

class of rings called near rings as well as derivations of rings. 
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